
HAL Id: hal-01576626
https://centralesupelec.hal.science/hal-01576626

Submitted on 23 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed faulty node detection in DTNs in presence
of Byzantine attack

Wenjie Li, Francesca Bassi, Michel Kieffer, Alex Calisti, Gianni Pasolini,
Davide Dardari

To cite this version:
Wenjie Li, Francesca Bassi, Michel Kieffer, Alex Calisti, Gianni Pasolini, et al.. Distributed faulty
node detection in DTNs in presence of Byzantine attack. IEEE International Conference on Commu-
nications (ICC), May 2017, Paris, France. pp.1 - 6, �10.1109/ICC.2017.7996846�. �hal-01576626�

https://centralesupelec.hal.science/hal-01576626
https://hal.archives-ouvertes.fr

Distributed Faulty Node Detection in DTNs
in Presence of Byzantine Attack

Wenjie Li∗, Francesca Bassi∗†, Michel Kieffer∗‡§, Alex Calisti¶, Gianni Pasolini¶, and Davide Dardari¶
∗Laboratoire des Signaux et Systèmes (L2S, UMR CNRS 8506) CNRS-CentraleSupelec-Université Paris-Sud

3, rue Joliot Curie 91192 Gif-sur-Yvette, France
†ESME-Sudria, 94200 Ivry-sur-Seine, France
‡LTCI Telecom ParisTech, 75013 Paris, France

§Institut Universitaire de France, 75005 Paris, France
¶CNIT, DEI, University of Bologna, Italy.

Abstract—This paper considers a delay tolerant network con-
sisting of nodes equipped with sensors, some of them producing
outliers. A distributed faulty node detection (DFD) algorithm,
whose aim is to help each node in estimating the status of its
sensors, has been proposed recently by the authors. The aim of
this paper is to analyze the robustness of the DFD algorithm to
the presence of misbehaving nodes performing Byzantine attacks.
Two types of attacks are considered and analyzed, each trying
to mislead the other nodes in the estimation of the status of
their sensors. This provides insights on the way the parameters
of the DFD algorithm should be adapted to minimize the impact
of misbehaving nodes. Theoretical results are illustrated with
simulations considering nodes with random displacements, as
well as traces of node inter-contact times from real databases.

I. INTRODUCTION

Delay Tolerant Networks (DTNs) refer to the challenging
situation of networks operating with intermittent connectiv-
ity [1]. This happens, for example, in Vehicular DTNs [2],
where the nodes are moving vehicles and communication is
established only between closely located agents. This produces
frequent link disruptions and network topology reconfigura-
tion. This time-varying nature exposes DTNs to infiltrations
by potentially malicious nodes, who may attempt to perturb
the DTN behavior. Threatens against the DTN integrity may
come in the form of malware attacks [3], selfish behavior of
nodes [4], Byzantine attacks [5], and so on. The absence of
a central unit able to act as a certifying authority makes trust
management in DTNs very difficult.

In this paper we consider a DTN where nodes are equipped
with sensors, collecting data used, e.g., to estimate some
physical phenomenon. We assume that the network behavior
is perturbed by nodes with defective sensors and by nodes
performing Byzantine attacks.

A sensor is called defective if it frequently reports erro-
neous measurements. This phenomenon may be due, e.g., to
the degradation of the equipment in time. The identification
of nodes equipped with defective sensors is very important
to save communication resources and to prevent erroneous
measurements to pollute the estimates provided by the DTN.
Distributed fault detection (DFD) is a well-investigated topic in
Wireless Sensor Networks (WSNs), see [6]–[8] and references
therein. The WSNs considered in the literature are usually

dense and have a static topology. DFD in DTNs is made
more challenging by the sparse and dynamic topology, and
is much less investigated. The authors proposed in [9] a fully
distributed and easily implementable algorithm allowing each
node of a DTN to determine whether its own sensors are
defective.

A basic assumption in [9] is that all the nodes in the DTN
may not be misbehaving in other ways than carrying defective
sensors. This paper investigates the performance of the DFD
algorithm when the DTN is under Byzantine attack, i.e.,
several nodes are fully controlled by some adversary. While
the normal nodes perform the DFD algorithm to determine
the status of their own sensors, the Byzantine nodes try to
prevent the correct self-evaluation of normal nodes. This work
aims to determine i) whether the DFD algorithm proposed
in [9] is robust against the introduction of Byzantine nodes;
ii) how to adjust the algorithm parameters to minimize the
effects of the Byzantine attack. To answer these questions we
extend the analysis in [9] by taking into account a proportion
of Byzantine nodes. Theoretical predictions are supported by
simulation results obtained by using both an idealized node
displacement model and traces from real databases.

The rest of the paper is organized as follows. Section II
presents the system model and the basic assumptions. Sec-
tion III details the DFD algorithm for DTNs and introduces
the Byzantine attack model. Section IV discusses the dynamics
of different nodes during the DFD algorithm. Section V
analyzes the property of the equilibrium obtained from the
state equations and discusses the choice of the parameters
in the algorithm. Section VI provides numerical results and
Section VII concludes the paper.

II. SYSTEM MODEL

Consider a set S of moving nodes equipped with sensors.
Assume that a subset B ⊂ S of these nodes are controlled by
some adversary and perform a Byzantine attack to disturb the
behavior of the network. The nodes in the set N = S \ B are
normal. Let D ⊂ N denote the subset of nodes which are not
malicious but produce outliers due to their defective sensors.
The outliers are measurements having statistical characteristics
significantly different from normal measurements provided by

good sensors. As a consequence, the status of Node i has three
possible values θi(t) ∈ Θ = {0, 1, 2}, i.e.,

θi(t) =

0, if i ∈ N \ D,
1, if i ∈ D,
2, if i ∈ B.

In this paper, one assumes that the status of nodes remains
constant during the algorithm, i.e., θi(t) = θi, and that the
nodes are initially not aware of their status and only nodes in
N are willing to estimate their status. Let pθ be the proportion
of nodes with status θ ∈ Θ, with p0 + p1 + p2 = 1.

Nodes can exchange information only during the limited
time interval in which they are in vicinity. As in [9], the nodes
are assumed to be well-mixed and the time interval between
two successive meetings of one node is assumed to follow
an exponential distribution with an inter-contact rate λ [10].
Moreover, one assumes that each meeting involves only two
nodes. When more than two nodes meet at the same time
instant, processing is performed pair-by-pair.

During each meeting of a pair of nodes (i, j) ∈ S each
node senses data m. with their own sensors and then may
exchange these data. If Node i has received the data from
Node j (i.e., mj), then a local outlier detection test (LODT)
can be performed by Node i with outcome yij . Assume that
the spatial and temporal correlation between data is such that
only data sensed during the meeting of two nodes can be
exploited by a LODT. Therefore, previously collected data
are not exploited. The LODT yields yij = 1 if it detects
the presence of at least an outlier among the data mi and
mj , and yij = 0 otherwise. The LODT is not able to
determine which sensor is producing outliers. Such situation
occurs for example, when comparing few scalar measurements
of the same physical quantity. The presence of an outlier is
easily detected when the measurements are very different.
Nevertheless, even if the difference is large, it is difficult to
determine which measurement is an outlier.

LODTs can take various forms, see [8]. In this paper,
the LODT is characterized by the probabilities qθiθj =
P {Yi,j = 1 | θi, θj}, with θi ∈ Θ and θj ∈ Θ. For example,
q00 is the probability that some outlier is detected when data
are provided by good sensors. One has qθiθj = qθjθi as
yij = yji. One further assumes that q00 < q01 = q10 6 q11,
which is reasonable, since the outcome of a LODT is more
likely to be 1 as the number of outliers involved increases.

The properties of LODTs when a malicious node is involved
will be further discussed in Section III-B.

III. DFD ALGORITHM SUBJECT TO BYZANTINE ATTACKS

This section recalls the DFD algorithm presented in [9] and
then discusses the behavior of misbehaving nodes.

A. DFD algorithm

In the DFD algorithm [9], each node manages two counters
cm,i(t) and cd,i(t) with cm,i(t) = cd,i(t) = 0. Using cm,i(t),
Node i counts the number of LODTs that it has performed.
Using cd,i(t), Node i counts the number of LODTs resulting in

the detection of outliers, i.e., yi· = 1. Consider ν as a constant
decision threshold, Node i sets its own estimate θ̂i (t) = 1 if
cd,i(t)/cm,i(t) > ν. Otherwise, it sets θ̂i (t) = 0.

Only the nodes with θ̂ (t) = 0 can send their data to the
nodes met at time t. Each node performs a LODT and updates
its counters only when it has received some data from another
node. For example, assume that Node i with θ̂i (t) = 1 meets
Node j at time t. Node i still takes measurements, but it does
not send these data to Node j. If θ̂j (t) = 0, then Node i can
receive the data from Node j and perform a LODT.

To simplify the analysis, one has chosen to consider the
evolution of cm,i(t) and cd,i(t) over a sliding time window con-
taining the time instants of the last M meetings during which
Node i has performed a LODT. Algorithm 1 summarizes the
proposed DFD technique for an arbitrary normal Node i ∈ N .

Algorithm 1 Sliding-Window DFD algorithm for Node i ∈ N .

1) Initialize t0i = 0, θ̂i
(
t0i
)

= 0, cm,i(t
0
i) = cd,i(t

0
i) = 0,

ι = 1, and µ = 0.
2) Do θ̂i (t) = θ̂i

(
tι−1
i

)
, cm,i (t) = cm,i

(
tι−1
i

)
, cd,i (t) =

cd,i
(
tι−1
i

)
, and t = t+ δt until the ι-th meeting occurs

at time tιi with Node jι ∈ S.
3) Perform local measurement of data mi (tιi).
4) If θ̂i (tιi) = 0, then transmit mi (tιi) to Node jι.
5) If data mjι have been received from Node jι, then

a) µ = µ+ 1. Perform a LODT with outcome yµi .
b) Update cm,i and cd,i as{

cm,i(t
ι
i) = min {µ,M}

cd,i(t
ι
i) =

∑µ
m=max{1,µ−M+1} y

m
i

(1)

c) Update θ̂i as follows

θ̂i(t
ι
i) =

{
1 if cd,i(t

ι
i)/cm,i(t

ι
i) > ν,

0 else
(2)

6) ι = ι+ 1. Go to 2.

B. Byzantine attack

To disturb the behavior of Algorithm 1, a Byzantine Node b
may set θ̂b (t) = 0, ∀t > 0, so that it always indicates to the
encountered nodes that it is well behaving and that it trusts
its sensors. Then Node b may transmit some artificial data to
mislead the other nodes. Two types of behavior are considered
in what follows.

B1) Node b always transmits random quantities to the
encountered nodes. These random data are usually outliers.
Therefore, q20 and q21 are close to 1.

B2) Node b performs a measurement mb and always waits
for the data mi coming from the encountered Node i. If mi

is close to mb then it is likely that Node i is carrying good
sensors. To introduce confusion, Node b does not send mb,
but sends a significantly different quantity to Node i. If mi is
very different from mb, it is likely that Node i is carrying a

defective sensor. To increase confusion, Node b transmits to
Node i a quantity similar to mi. In this case q20 is close to 1
and q21 is close to 0.

IV. DYNAMICS OF THE DFD ALGORITHM UNDER
BYZANTINE ATTACK

Define the triple xi(t) = (θi, cm,i (t) , cd,i (t)) to represent
the state of Node i ∈ N . The evolution of the state of
Node i, conditioned by its status θi, follows a Markov model.
In particular, there are two chains as θ ∈ {0, 1}.

In order to simplify the notations, let cm,i (t) = ` and
cm,i (t) = k. At time t, among the nodes with status θ ∈
{0, 1} , denote X`,k

θ (t) as the proportion of nodes in state
x(t) = (θ, `, k). The state transition probabilities of nodes are
evaluated in Section IV-A. Then the evolution of X`,k

θ (t) are
described in Section IV-B.

A. Transition probabilities

Define πδm,δd
θ as the transition probability from State (θ, `, k)

to State (θ, `+ δm, k + δd). In case where cm,i(t) = ` < M ,
the counter cm,i(t) either increases or remains constant, thus
(δm, δd) ∈ {(0, 0) , (1, 0) , (1, 1)}. The only possibility leading
to δm = 0 is that Node J is not a Byzantine node and θ̂J (t) =
1. Therefore, for any θ ∈ {0, 1},

π0,0
θ (t, `, k) =

∑
θ∈{0,1}

P {θJ = θ}P
{
θ̂J (t) = 1|θJ = θ

}
= p0p

01 (t) + p1p
11 (t) , (3)

where pθ = P {θJ = θ} by the assumption that the nodes are
well mixed. One introduces

pθθ̂ (t) = P
{
θ̂J (t) = θ̂|θJ = θ

}
, (4)

which is the proportion of agents with status θ believing their
status is θ̂. Notice that pθθ̂ (t) can be obtained from X`,k

θ (t)
according to the decision rule (2), i.e.,{

pθ0 (t) = X0,0
θ (t) +

∑
`,k:k/`<ν X

`,k
θ (t) .

pθ1 (t) =
∑
`,k:k/`>ν X

`,k
θ (t) .

(5)

A state transition occurs with (δm, δd) = (1, 1) when Node i
with status θi = θ meets Node J with θ̂J (t) = 0 and when
the LODT yields yi (t) = 1. The two events are independent,
hence

π1,1
θ (t, `, k) =

∑
φ∈Θ

P
{
YiJ (t) = 1, θJ = φ, θ̂J (t) = 0|θi = θ

}
=
∑
φ∈Θ

P {θJ = φ}P
{
θ̂J (t) = 0|θJ = θ

}
·

· P {Yi (t) = 1|θi = θ, θJ = φ} =
∑
φ∈Θ

pφqθφp
φ0 (t) . (6)

Since the Byzantine nodes with θb = 2 always indicate θ̂b = 0,
one may rewrite (6) as

π1,1
θ (t, `, k)=p2qθ2 +

∑
φ∈{0,1}

pφqθφp
φ0 (t) . (7)

Finally, π1,0
θ (t, `, k) = P

{
Yi (t) = 0, θ̂J (t) = 0|θi = θ

}
is

obtained similarly from (6)

π1,0
θ (t, `, k)=p2 (1− qθ2)+

∑
φ∈{0,1}

pφ (1− qθφ) pφ0(t) . (8)

In the case where cm,i(t) = M , one has δm = 0 as
the counter cm,i(t) reaches its maximum value. In Algo-
rithm 1, µ is the number of LODTs performed by Node i
up to time t. When µ > M , only the last M LODT
outcomes are considered: LODT outcomes ymi with m 6
µ − M are discarded. Consider the random event Ey (t) ={
Y µ−Mi = y |

∑µ−1
m=µ−M Y mi = k

}
in which y ∈ {0, 1}. This

event represents a situation where one knows that k LODTs
were positive among the last M tests and the old LODT
outcome that will be discarded once the new LODT outcome is
available, also concluded in the presence of defective sensors.
As discussed in [9], one has

P {E1 (t)} ≈ k

M
, P {E0 (t)} ≈ 1− k

M
. (9)

Assume that the (µ−M)-th LODT performed by Node i
occurred at time t̃, then yµ−Mi can also be denoted as yi

(
t̃
)

and δd = yi (t)− yi
(
t̃
)
∈ {−1, 0, 1} .

To have (δm, δd) = (0, 1), three independent events have to
occur: 1) the encountered Node J has θ̂J (t) = 0; 2) yi (t) = 1;
3) yi

(
t̃
)

= 0, i.e., E0 (t). The transition probability is then
deduced using derivations similar to (6),

π0,1
θ (t,M, k)=

M − k
M

(
p2qθ2 +

∑
φ∈{0,1}

pφqθφp
φ0(t)

)
. (10)

Consider then (δm, δd) = (0,−1), similarly, one obtains,

π0,−1
θ (t,M, k)

=
k

M

(
p2 (1− qθ2) +

∑
φ∈{0,1}

pφ (1− qθφ) pφ0 (t)

)
. (11)

Considering the last transition (δm, δd) = (0, 0). To obtain the
expression of π0,0

θ (t,M, k), one needs to introduce (10-11)
into the following

π0,0
θ (t,M, k) = 1− π0,1

θ (t,M, k)− π0,−1
θ (t,M, k) . (12)

B. Macroscopic evolution

With the transition probabilities discussed in Section IV-A
and the initial conditions

X0,0
θ (0) = 1, and X`,k

θ (0) = 0,∀`, k 6= 0,

the evolution of the various proportions X`,k
θ (t) of nodes in

the corresponding states can be obtained, see [9] for the detail.
To lighten the equations, consider the function

Zδm,δd
θ (`, k, t) =

{
X`,k
θ (t)πδm,δd

θ (`, k) , if 0 6 k 6 ` 6M,

0, otherwise,

then for any θ ∈ {0, 1}, one has

dX
`,k
θ
dt

(a)
= λ

∑
δd∈{0,1}

(
Z

1,δd
θ (`− 1, k − δd, t)− Z

1,δd
θ (`, k, t)

)
dX

M,k
θ
dt

(b)
= λ

∑
δd∈{−1,1}

(
Z

0,δd
θ (M,k − δd, t)− Z

0,δd
θ (M,k, t)

)
+λ

∑
δd∈{0,1}

Z
1,δd
θ (M − 1, k − δd, t) ,

(13)
where (a) describes the evolution of the proportion of state
components in the transient regime and (b) is for the perma-
nent regime.

V. ANALYSIS OF THE EQUILIBRIUM

In this section, we investigate the asymptotic behavior of the
DTN state equations (13). Algorithm 1 may drive X`,k

θ to an
equilibrium X

`,k

θ at which the proportions of nodes in different
states X`,k

θ (t) do not vary any more. As a consequence, pθ0 (t)
defined in (5) also tends to an equilibrium pθ0.

A. Equilibrium of X`,k
θ

The results presented in this section are the extension of
those in [9] by considering the affect of Byzantine attack.

Proposition 1. Assume that the dynamic system described by
(13) admits some equilibrium X

`,k

θ , then p =
(
p00, p10

)
is

the solution of (16) (at the top of the next page) and for any
θ ∈ {0, 1} and k 6 `,

X
`,k

θ =

{
0, ∀` < M,(
M
k

)
(hθ (p))

k
(1− hθ (p))

M−k
, ` = M,

(14)

where

hθ (p) =
p0qθ0p

00 + p1qθ1p
10 + p2qθ2

p0p
00 + p1p

10 + p2
. (15)

Proposition (1) can be proved using derivations similar to
those presented in [9]. Proposition (1) provides non-linear
equations (16) that have to be satisfied by p. With the solutions
of (16), the values of X

M,k

θ at equilibrium can be easily
deduced.

B. Approximations of the Equilibrium

Closed-form expressions for p00 and p10 are difficult to
obtain from (16). This section introduces an approximation of
(16) from which some insights may be obtained on the way ν
should be chosen to minimize the impact of the presence of
misbehaving nodes.

Since both p10 and p01 represent the proportions of nodes
having wrong estimates of their status, the values of p10 and
p01 should be small. Thus one may consider the following
approximations

h̃θ = lim
(p00,p10)→(1,0)

p0qθ0p
00 + p1qθ1p

10 + p2qθ2

p0p
00 + p1p

10 + p2

=
p0qθ0 + p2qθ2
p0 + p2

. (17)

10
−8

10
−6

10
−4

10
−2

10
0

10
−8

10
−6

10
−4

10
−2

10
0

p
01

=1−p
00

p
1
0

p
2
=0

p
2
=0.01

p
2
=0.05

p
2
=0.1

Fig. 1. Approximate p10 as a function of approximate p01 at equilibrium,
for various ν ∈ [0, 1] and p2 ∈ {0, 0.01, 0.05, 0.1}.

Therefore, (16) may be rewritten as
p̃00 =

∑
k:k/M<ν

(
M
k

) (
p0q00+p2q02
p0+p2

)k (
1− p0q00+p2q02

p0+p2

)M−k
,

p̃10 =
∑

k:k/M<ν

(
M
k

) (
p0q10+p2q12

p0+p2

)k (
1− p0q10+p2q12

p0+p2

)M−k
.

(18)
from which one deduces the approximate values X̃M,k

θ of
X
M,k

θ X̃M,k
0 =

(
M
k

) (
p0q00+p2q02
p0+p2

)k (
1− p0q00+p2q02

p0+p2

)M−k
,

X̃M,k
1 =

(
M
k

) (
p0q10+p2q12

p0+p2

)k (
1− p0q10+p2q12

p0+p2

)M−k
.

(19)
The quality of the approximation can be verified by check-

ing whether there exists some value of ν that leads to both
p00 → 1 (or p01 → 0) and p10 → 0. Some numerical
comparison between X̃M,k

θ and X
M,k

θ will be presented in
Section VI.

Consider here a toy example: fix M = 20 and the LODT
is such that q00 = 0.05 and q10 = 0.8. The Byzantine nodes
have the behavior of type B2) with p02 = 1 and p12 = 0,
which corresponds to the most serious attack. Consider p2 ∈
{0, 0.01, 0.05, 0.1} and p0 = p1 = (1− p2) /2 in all the
cases, Figure 1 presents p̃10 as a function of p̃01, obtained for
different values of ν ∈ [0, 1]. One observes that the Byzantine
nodes have limited influence on the performance of the DFD
algorithm, except when p2 reaches 10%. Nevertheless, if the
values of M and ν are properly chosen, both p̃01 and p̃10 can
be kept relatively small even in presence of 10% of Byzantine
nodes.

Figure 1 is also helpful to choose the value of ν in order
to meet different performance requirements.

VI. NUMERICAL RESULTS

This section provides simulation results to illustrate the the-
oretical results presented in Section V. The results presented in
Section VI-A are obtained considering nodes with an idealized

 p00 =
∑
k:k/M<ν

(
M
k

) (
p0q00p

00+p1q01p
10+p2q02

p0p00+p1p10+p2

)k (
1− p0q00p

00+p1q01p
10+p2q02

p0p00+p1p10+p2

)M−k
,

p10 =
∑
k:k/M<ν

(
M
k

) (
p0q10p

00+p1q11p
10+p2q12

p0p00+p1p10+p2

)k (
1− p0q10p

00+p1q11p
10+p2q12

p0p00+p1p10+p2

)M−k
.

(16)

displacement model. Some real databases are then considered
in Section VI-B.

A. Idealized displacement model

Consider a DTN consisting of 1000 moving nodes, with
their initial positions uniformly distributed over a unit square.
Nodes randomly move within this square. Two nodes com-
municate only when their distance is less than their commu-
nication range r0 at discrete time instants k∆t, k = 1, 2
One assumes an idealized displacement model: the location
of each agent at time (k + 1) t is independent of its previous
location at time k∆t. The value of r0 can be chosen to adjust
the inter-contact probability during a time interval of duration
∆t. Here, the inter-contact probability is taken as 0.33.

Consider Nb = 50 Byzantine nodes and Nd = 200
nodes with defective sensors, which leads to p0 = 0.75,
p1 = 0.2, and p2 = 0.05. The characteristics of the LODT are
q00 = 0.05, q01 = 0.8, and q11 = 0.9. Consider both types of
Byzantine nodes: for the type B1), assume that p02 = p12 = 1;
for the type B2), assume that p02 = 1 and p12 = 0. One also
takes into account the situation where no Byzantine node is
present, i.e., p2 = 0, in order to see the influence of Byzantine
attack. In the latter case, one sets Nd = 211 so that the ratio
of p0 and p1 are close in all the situations.

Figure 2 presents the evolution of p01 and p10 as functions
of time, with M = 15 and ν = 0.4. Recall that p01 is the
proportion of normal nodes with good sensors that wrongly
decide their sensors as defective and p10 is the proportion of
normal nodes with defective sensors that wrongly decide their
sensors as good. Compared with the situation where p2 = 0,
one observes that both p01 and p10 decreaser slower when the
Byzantine nodes are present. As expected, the attack of type
B2) impact more the agents compared than that of type B1).
Figure 3 shows a good match between the distribution of XM,k

θ

obtained by the end of the simulation and the approximation
of XM,k

θ using (19). In order to have a good performance
of the DFD algorithm, the distributions of XM,k

0 and XM,k
1

should be as separate as possible. The main influence of the
Byzantine attack is that it makes the two distributions closer.
Nevertheless, the DFD algorithm still behaves in a satisfying
way if the parameter ν is properly chosen using (16): in the
simulations both p01 and p10 can be made less then 1%.

B. Simulation with real databases

In this section, the DFD algorithm is executed considering
node inter-contact times taken from real databases provided
by the Haggle Project [11] and by our own experiments
conducted at the EuWin platform at University of Bologna.
In the simulation, one is interested in the inter-contact trace,

0 50 100
10

−4

10
−3

10
−2

10
−1

10
0

t/∆t

p
0
1

p
2
=0.05, B2

p
2
=0.05, B1

p
2
=0

0 50 100

10
−4

10
−3

10
−2

10
−1

10
0

t/∆t

p
1
0

p
2
=0.05, B2

p
2
=0.05, B1

p
2
=0

Fig. 2. Evolution of p01 (left) and p10 (right), considering an idealized
displacement model.

0 5 10 15
0

0.1

0.2

0.3

0.4

k

0 5 10 15
0

0.1

0.2

0.3

0.4

k

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

k

p2=0.05, B2

p2=0

X
0

15,k
, approximation

X
1

15,k
, simulation

X
0

15,k, simulation

X
1

15,k
, approximation

p2=0.05, B1

Fig. 3. Comparison of X15,k
θ at the equilibrium, when 5% of nodes perform

a byzantine attack of type B2 (top), of type B1 (middle), and when there are
no Byzantine nodes (bottom).

i.e., which pair of agents have a meeting at which time. We
use the following databases:

• Infocom05, in which N = 41, lasted 3 days.
• Bologna16, in which N = 34, during the break of a

course (which lasts about 17 minutes).

For each database, 500 Monte-Carlo simulations are per-
formed. In each simulation, one randomly choose Nb nodes
as Byzantine nodes and Nd nodes as the ones with defective
sensors. The results are then averaged over these simulations.
In Infocom05, one sets Nb = 2 and Nd = 10. In Bologna16,

0 10 20 30 40 50 60 70 80
0

20

40

time (hours)

0 10 20 30 40 50 60 70 80
10

−3

10
−2

10
−1

10
0

time (hours)

p
10

p
01

0 2 4 6 8 10 12 14 16 18
0

20

40

time (minutes)

0 2 4 6 8 10 12 14 16 18
10

−2

10
−1

10
0

time (minutes)

p
10

p
01

Fig. 4. Indexes of active nodes (having met another node) at different time (top) and evolution of p10 and p01, obtained using the Infocom05 database (left)
and the Bologna16 database (right).

0 5 10 15
0

0.1

0.2

0.3

0.4

k

X
0

15,k
, Infocom05

X
0

15,k
, approximation

X
1

15,k
, Infocom05

X
1

15,k
, Infocom05

0 5 10 15
0

0.1

0.2

0.3

0.4

k

X
0

15,k
, Bologna16

X
0

15,k
, approximation

X
1

15,k
, Bologna16

X
1

15,k
, approximation

Fig. 5. Values of X15,k
θ the end of the simulation, as well as the theoretical values at equilibrium obtained from (19), obtained using the Infocom05 database

(left) and the Bologna16 database (right).

one sets Nb = 1 and Nd = 6.
Consider the following parameters: q00 = 0.05, q01 = 0.8,

q11 = 0.9, p02 = 1, p12 = 0, M = 15 and ν = 0.4. At the
top of Figure 4, the index of the active nodes (which have
contact with the others) are presented at each time to show
the frequency of the inter-contacts at different epochs. The
evolution of p10 and p01 is plotted at the bottom of Figure 4.
Interestingly, both p10 and p01 obtained by both databases
decrease to 10−2 after a sufficient long time. The decreasing
speed of p10 and p01 is highly related to the inter-contact rate
(reflected by the density of points in the sub-figures at the top):
1) using Infocom05, variations are significant at beginning
of working hours; using Bologna16, p10 and p01 decrease
significantly in the end, when all the students came back to
the class.

Figure 5 represents the proportion of nodes in each state
XM,k
θ in the end of the simulation, obtained by using the

databases Infocom05 and Bologna16. The simulation results
are compared with the approximation (19). One still finds that
there is a good match by using the databases.

VII. CONCLUSION

This paper investigates the impact of Byzantine attacks
on the performance of a distributed faulty node detection
algorithm in the context of delay tolerant networks. The aim
of the algorithm is to make each normal node estimate the
status of its own sensors, whereas some Byzantine nodes
attempt to mislead the behavior of the algorithm. The affect of

Byzantine attack on the equilibrium is analyzed theoretically,
which is helpful to adjust the algorithm parameters in order
to ensure the robustness of the DFD algorithm. Both ideal
movement model and real databases have been considered in
the simulations to illustrate our results.

REFERENCES

[1] M. J. Khabbaz, C. M. Assi, and W. F. Fawaz, “Disruption-tolerant net-
working: A comprehensive survey on recent developments and persisting
challenges,” IEEE Communications Surveys & Tutorials, vol. 14, no. 2,
pp. 607–640, 2012.

[2] P. R. Pereira, A. Casaca, J. J. Rodrigues, V. N. Soares, J. Triay, and
C. Cervelló-Pastor, “From delay-tolerant networks to vehicular delay-
tolerant networks,” IEEE Communications Surveys & Tutorials, vol. 14,
no. 4, pp. 1166–1182, 2012.

[3] W. Peng, F. Li, X. Zou, and J. Wu, “Behavioral malware detection
in delay tolerant networks,” IEEE Trans. on Parallel and Distributed
Systems, vol. 25, no. 1, pp. 53–63, 2014.

[4] H. Zhu, S. Du, Z. Gao, M. Dong, and Z. Cao, “A probabilistic misbe-
havior detection scheme toward efficient trust establishment in delay-
tolerant networks,” IEEE Trans. on Parallel and Distributed Systems,
vol. 25, no. 1, pp. 22–32, 2014.

[5] E. Ayday and F. Fekri, “An iterative algorithm for trust management
and adversary detection for delay-tolerant networks,” IEEE Trans. on
Mobile Computing, vol. 11, no. 9, pp. 1514–1531, 2012.

[6] Y. Zhang, N. Meratnia, and P. Havinga, “Outlier detection techniques
for wireless sensor networks: A survey,” IEEE Communications Surveys
& Tutorials, vol. 12, no. 2, pp. 159–170, 2010.

[7] A. Mahapatro and P. M. Khilar, “Fault diagnosis in wireless sensor net-
works: A survey,” IEEE Communications Surveys & Tutorials, vol. 15,
no. 4, pp. 2000–2026, 2013.

[8] W. Li, F. Bassi, D. Dardari, M. Kieffer, and G. Pasolini”, “Defective
sensor identification for WSNs involving generic local outlier detection
tests,” IEEE Trans. on Signal and Information Processing over Networks,
vol. 2, no. 1, pp. 29–48, 2016.

[9] W. Li, L. Galluccio, M. Kieffer, and F. Bassi, “Distributed faulty node
detection in DTNs,” in Proc. International Conference on Computer
Communication and Networks, 2016.

[10] H. Zhu, L. Fu, G. Xue, Y. Zhu, M. Li, and L. Ni, “Recognizing
exponential inter-contact time in vanets,” in Proc. INFOCOM, March
2010, pp. 1–5.

[11] J. Scott, R. Gass, J. Crowcroft, P. Hui, C. Diot, and A. Chaintreau,
“CRAWDAD dataset cambridge/haggle (v. 2009-05-29),” Downloaded
from http://crawdad.org/cambridge/haggle/20090529, May 2009.

