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Abstract: This paper addesses the problem of formation control in multi-agent systems (MAS)
and adopts an event-triggered strategy to reduce the number of communications between agents.
For that purpose, to evaluate its control input, each agent maintains estimators of the states of
the other agents. Communication is triggered when the discrepancy between the actual state of
an agent and its estimate reaches some threshold. The impact of additive state perturbations is
studied. A condition for the convergence of the MAS to a stable formation is studied. Simulations
show the effectiveness of the proposed approach.
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1. INTRODUCTION

Distributed cooperative control of a MAS usually requires
significant exchange of information between agents. In
early contributions, see, e.g., Olfati-Saber et al. (2007);
Do (2008), communication was considered permanent.
Recently, more practical approaches have been proposed
like intermittent communication Wen et al. (2012, 2013),
discrete or periodical communication Garcia et al. (2014),
or communications triggered by some event, as in Garcia
et al. (2015); Viel et al. (2016); Seyboth et al. (2013).

Event-triggered communication is a promising approach to
save energy. The main difficulty consists in determining the
communication triggering condition (CTC) that will ens-
ure the completion of the task assigned to the MAS, e.g.,
reaching some consensus, maintaining a formation, etc. In
a distributed strategy, the states of the other agents are not
permanently available, thus each agent usually maintains
estimators of the state of its neighbors to estimate their
control laws. Nevertheless, without permanent communi-
cation, the quality of the state estimates is difficult to
evaluate. As a consequence, each agent has to maintain an
estimate of its own state only using the information it has
shared with its neighbours. When the discrepancy between
this own state estimate and its actual state reaches some
threshold, the agent triggers a communication. This is the
approach considered, e.g., in Seyboth et al. (2013); Garcia
et al. (2015); Viel et al. (2016); Sun et al. (2015); Liu et al.
(2015); Zhu et al. (2014).

Most of the event-triggered approaches have been app-
lied in the context of consensus in MAS Seyboth et al.
(2013); Garcia et al. (2015); Viel et al. (2016); Zhu et al.
(2014). This paper focuses on distributed formation con-
trol, which has been considered in Liu et al. (2015); Sun
et al. (2015); Tang et al. (2011). Formation control con-
sists in driving and maintaining all agents of a MAS to

some reference, e.g., their relative position, orientation,
and speed. Various approaches have been considered. For
example, displacement-based control Wang et al. (2014),
virtual structure Ren and Beard (2004), tensegrity Qingkai
et al. (2015), leader-follower Do (2008), etc. Most of these
formation control approaches assume permanent commu-
nication between agents.

Some recent works consider event-triggered approaches for
distance-based or displacement-based formation control
Liu et al. (2015); Sun et al. (2015); Tang et al. (2011). In
these works, the dynamics of the agents are described by a
simple integrator, with control inputs considered constant
between two successive communications. The proposed
CTCs are all centralized, considering different threshold
formulations. A constant threshold is considered in Sun
et al. (2015) and a time-varying threshold in Liu et al.
(2015); Tang et al. (2011). The CTC depends then on the
relative positions between agents and the relative discre-
pancy between actual and estimated agent states. These
CTCs reduce the number of triggered communications
when the system converges to the desired formation. A
minimal time between two communications is also defined.
Finally, in all these works, no perturbations are considered.
Similar problems have been considered using Logic-Based
Communications (LBCs) to reduce the number of commu-
nications in Rego et al. (2013); Aguiar and Pascoal (2007).
These papers consider MAS with decoupled nonlinear
agent dynamics. Each agent has to follow a parametrized
path. The paths are designed in a centralized way. LBC
allows agents to follow the paths in a synchronized way to
reach a desired formation pattern. Communication delays,
as well as packet losses are considered.

This paper proposes a strategy to reduce the number of
communications for displacement-based formation control,
where agent dynamics are described by an Euler-Lagrange
system including perturbations. Contrary to LBC techni-



ques, no a priori trajectory for agents has to be designed.
This work both extends results presented in Qingkai et al.
(2015) by introducing an event-triggered strategy, and
results of Liu et al. (2015); Sun et al. (2015); Tang et al.
(2011) by addressing systems with more complex dyna-
mics than simple integrators. To obtain distributed control
laws, estimators of other agents’ states are introduced.
The proposed distributed CTC involves the relative dis-
crepancy between the actual and estimated agent states.
The impact of state perturbations on the formation and
on the communications is analyzed.

Hypotheses are introduced in Section 2. The conside-
red formation parametrization is presented in Section 3
and the new decentralized control law is proposed in
Section 3.2, based on estimates of the agents’ states des-
cribed Section 3.3. The CTC is presented in Section 3.4.
A simulation example is considered in Section 4 to illus-
trate the reduction in communications obtained. Finally,
conclusions are drawn in Section 5.

2. NOTATIONS AND HYPOTHESES

Consider a MAS consisting of a network of N agents which
topology is described by an undirected graph G = (N , E).
N = {1, 2, ..., N} is the set of nodes and E ⊂ N×N the set
of edges of the network. The set of neighbours of Agent i
is Ni = {j ∈ N| (i, j) ∈ E , i 6= j}. Ni is the cardinal
number of Ni. Let qi ∈ Rn be the vector of coordinates
of Agent i in some global fixed reference frame R and
let q =

[
qT1 qT2 . . . qTN

]T ∈ RN.n be the configuration of
the MAS. The dynamics of each agent is described by the
Euler-Lagrange system

Mi (qi) q̈i + Ci (qi, q̇i) q̇i = τi + di (t) (1)
where τi ∈ Rn is some control input described in
Section 3.2, Mi (qi) ∈ Rn×n is the inertia matrix of
Agent i, Ci (qi, q̇i) ∈ Rn×n is the matrix of the Coriolis
and centripetal term on Agent i, and di (t) is the additive
external state perturbation satisfying ‖di (t)‖ < Dmax.
The state vector of Agent i is xTi =

[
qTi , q̇

T
i

]
. Assume that

the dynamics satisfy the following assumptions:

• Mi (qi) is symmetric positive and such that there
exists kM > 0 satisfying ∀x, xTMi (qi)x 6 kMx

Tx,
• Ṁi (qi) − 2Ci (qi, q̇i) is skew symmetric or negative
definite, and such that there exists kC > 0 satisfying
∀x, xTCi (qi, q̇i)x 6 kC ‖q̇i‖xTx,
• For all (i, j) ∈ N , if Agent j knows qi and q̇i, it can
evaluate Mi (qi) and Ci (qi, q̇i).

In what follows, the notations Mi and Ci are used to
replace Mi (qi) and Ci (qi, q̇i). One also assumes that each
Agent i has access to its own state xi without error.

3. FORMATION CONTROL PROBLEM

This paper aims at designing a decentralized control stra-
tegy to drive a MAS to a desired target formation in
some global reference frame R, while reducing as much as
possible the communications between agents. The target
formation is first described in Section 3.1. The potential
energy of a MAS is introduced to quantify the discrepancy
between the target and current formations. The distribu-
ted control introduced in Section 3.2 tries to minimize this

potential energy. To evaluate the control input, estimators
of the coordinate vectors of all agents are managed by
each agent, as presented in Section 3.3. A CTC is designed
to limit this discrepancy by updating the estimators as
described in Section 3.4.

3.1 Formation parametrization

Consider the relative coordinate vector rij = qi − qj
between two agents i and j. A target formation is obtained
using some control input which ensures that rij converges
to a desired vector r∗ij for all (i, j) ∈ N :
Definition 1. The MAS converges to the target formation
iff

∀ (i, j) ∈ N , lim
t→∞

(qi (t)− qj (t)) = r∗ij .

Consider without loss of generality the first agent as refe-
rence and introduce the target relative configuration vector
r∗ =

[
r∗T11 . . . r∗T1N

]T . Any target relative configuration
vector r∗ij can be expressed as r∗ij = r∗1i − r∗1j . In this
paper, one assumes that the target relative configuration
r∗ is constant.

As defined for tensegrety formations in Qingkai et al.
(2015), the potential energy P (q, t) of the formation rela-
ted to the disagreement between rij and r∗ij is expressed
as

P (q, t) =
1

2

N∑
i=1

N∑
j=1

kij
∥∥rij − r∗ij∥∥2 (2)

where kij = kji is some spring coefficient, which can be
positive, negative, or null. The minimum number of non-
zero coefficients kij i, j ∈ N to properly define a target
formation is N−1. Indeed, for a given r∗, all target relative
coordinate vectors r∗ij between any agents i and j can be
expressed from components of r∗.
Definition 2. The MAS converges to the formation shape
with a bounded error iff there exists some ε > 0 such as

lim
t→∞

P (q, t) 6 ε. (3)

From Definition 1 and 2, the control law should be desig-
ned to reduce the potential energy P (q, t). To describe
the evolution of P (q, t), one introduces

gi =
∂P (q, t)

∂qi
=

N∑
j=1

kij
(
rij − r∗ij

)
(4)

si = q̇i + kpgi (5)
where gi characterizes the evolution of the discrepancy
between the current and target formations and kp is a
positive scalar design parameter.

3.2 Distributed control

The control law proposed in Qingkai et al. (2015) is defined
as τi = τi(qi, q̇i, q) and aims at reducing P (q, t), thus
making the MAS converge to the target formation in case
of permanent communication. In this approach, each agent
evaluates its control using the state vectors of others agents
obtained via permanent communication. Here, in a de-
centralized context with limited communications between
agents, agents cannot have permanent access to q. Thus,



one introduces the estimate q̂ij of qj performed by Agent i
to replace the missing information in the control law.
The MAS configuration estimated by Agent i is denoted
q̂i =

[
q̂iT1 . . . q̂iTN

]T ∈ RN.n. The evaluation of q̂ij is
described in Section 3.3.

In a decentralized context with limited communications,
Agent i is able to evaluate

ḡi =

N∑
j=1

kij
(
r̄ij − r∗ij

)
(6)

s̄i = q̇i + kpḡi (7)

with r̄ij = qi − q̂ij and ˙̄rij = q̇i − ˙̂qij . From these terms, it
is able to evaluate the decentralized control input
τi
(
qi, q̇i, q̂

i, ˙̂qi
)

= −kss̄i − kg ḡi − kp
(
Mi (qi) ˙̄gi + Ci (qi, q̇i) ḡi

)
.

(8)
for some kg > 0 and ks ≥ 1 + kp (kM + 1). Section 3.3
introduces the estimator q̂ij of qj needed in the control (8).

3.3 Estimator dynamics and control law

In what follows, let tij,k be the time at which the k-th
message sent by Agent j has been received by Agent i.
Assuming that there is no communication delay between
agents, tij,k = tpj,k for all (i, p) ∈ Nj . Due to the presence of
perturbations and of communications occurring at discrete
time instants, errors

eij = q̂ij − qj (9)

appear between qj and its estimate q̂ij obtained by an
other Agent j, which are used in Section 3.4 to trigger
communications when eii becomes too large. Thus the
estimator will be designed so as to keep eii small.

To stay close to the agent behavior, the dynamics of the
estimate is expressed as

Mj

(
q̂ij
)

¨̂qij + Cj

(
q̂ij ,

˙̂qij

)
˙̂qij = τ̂ ij , ∀t ∈

[
tij,k, t

i
j,k+1

[
(10)

x̂ij
(
tij,k
)

= xj
(
tij,k
)

(11)

where xj =
[
qTj , q̇

T
j

]T and x̂ij =
[
q̂iTj , ˙̂qiTj

]T
. The control

τ̂ ij can be evaluated with one of the two following proposed
methods.

Basic control:
τ̂ ij = −ks ˙̂qij (12)

In this case, for all i, j such that kij 6= 0, Agents i and
j must be connected in the communication graph. The
main advantage of this control input is that the estimates
of other agent state are not required.

Accurate control:

τ̂ ij = −ksŝij − kg ĝ
i
j

(
q̂i
)
− kp

(
Mj

(
q̂ij
)

˙̂gij + Cj

(
q̂ij ,

˙̂qij
)
ĝij
)

(13)

where ŝij = ˙̂qij + kpĝ
i
j , ĝij

(
q̂i
)

=
∑N
k=1 kjk

(
r̂jk − r∗jk

)
,

˙̂gij

(
˙̂qi
)

=
∑N
k=1 kjk

(
˙̂rjk − ṙ∗jk

)
, and r̂jk = q̂ij − q̂ik. This

expression of the control input makes the estimator more
accurate than (12) and so helps to keep eii small. Note

that if there is no perturbation, i.e., Dmax = 0, the error
eii vanishes. The price to be paid for this method is that
every agent needs to maintain an estimator of the state
of all other agents, and a fully-connected communication
graph is hence required.

Note that, since one assumed that there is no communi-
cation delay, these estimators satisfy q̂ij = q̂jj , ∀ (i, j) ∈ N .
Estimates are used in the evaluation of the agents cont-
rol law, but are also used in the evaluation of the CTC
presented in what follows.

3.4 Event-triggered communications

Theorem 3 introduces a CTC used to trigger communica-
tions to ensure a bounded convergence of the MAS to the
target formation. A message broadcast by an Agent i con-
tains the state xi. The initial value of the state vectors are
considered to be known by all agents. In practice, this con-
dition can be satisfied by triggering a communication from
all agents at time t = 0 to initialize the estimates of its
neighbours. Let αi =

∑N
j=1 kij and αM = maxi=1:N {αi}.

Theorem 3. Consider a MAS with agent dynamics given
by (1) and the control law (8). Consider some design
parameters η ≥ 0, η2 ≥ 0 η3 ≥ 0, and bi > 0. In absence of
communication delays, the agents can be driven to some
target formation such that

lim
t→∞

P (q, t) ≤ η2 (14)

if the communications are triggered when one of the
following conditions is satisfied

kss̄
T
i s̄i + kpkg ḡ

T
i ḡi + η ≤ α2

M
(
kee

iT
i e

i
i + kpkM ė

iT
i ė

i
i

)
+αMk

2
Ckp

∥∥eii∥∥2 N∑
j=1

kij

(∥∥∥ ˙̂qij

∥∥∥+ η3

)2
+ kgbi ‖q̇i‖2 (15)

‖q̇i‖ ≥
∥∥∥ ˙̂qii

∥∥∥+ η3 (16)

with ke = ksk
2
p + kgkp +

kg
bi

and if the bound on the
perturbation satisfies

D2
max ≤

4kgkpαMη2
N

− η (17)

and η ≤ 4kgkpαMη2
N .

The proof of Theorem 3 is given in Appendix 6.

From (14) and (15), one sees that η and σ can be used to
adjust the trade-off between the bound η2 on the potential
energy and the amount of triggered communications. If
η2 = 0 and if there is no perturbation, the system achieves
an asymptotic convergence.

The CTC (15) mainly depends on eii and ėii. A commu-
nication is triggered by Agent i when eii and ėii becomes
large. To reduce the number of triggered communications,
one has to keep eii and ėii as small as possible, which can
be achieved by increasing the accuracy of the estimator, as
proposed in Section 3.3, but possibly at the price of a more
complex structure for the estimator. The choice of the
estimator should hence be driven by a trade-off between
complexity and amount of triggered communications.

The perturbations have a direct impact on eii and ėii,
thus on the frequency of communications. The sufficient



condition (17) on Dmax to have a formation convergence
depends on η and on the desired bound η2 on the potential
energy. Nevertheless, we were not able to prove the absence
of Zeno behavior.

4. EXAMPLE

Consider a set of N = 6 agents with coordinate vector
qi ∈ R2. The performance of the proposed algorithm
will be evaluated considering the following two dynamical
models, assumed identical for all the agents. For Model 1,
one has

M1
i =

[
1 0
0 1

]
C1
i (q̇i) =

[
0.1 0
0 0.1

]
‖q̇i‖ , (18)

with kg = 15, kp = 1, kM = 1, kC = 0.1 and ks = 3. For
Model 2, one considers

M2
i =

[
0.56 −2.23
−2.23 9.28

]
C2
i (q̇i) =

[
1.40 −1.76
−1.76 2.99

]
‖q̇i‖ ,

with kg = 15, kp = 0.185, kM = 9.81, kC = 6.33, and
ks = 3. The initial vector state x (0) is such that

q (0) =

[ [
−0.35
−1.11

]T [
4.59
−4.59

]T [
4.72
2.42

]T
. . .

. . .

[
0.64
1.36

]T [
3.53
1.56

]T [−1.26
3.36

]T ]T
,

and q̇ (0) = 02N . The vector of relative configurations
representing a hexagone

r∗ =

[[
0
0

]T [
2
0

]T [
3√
3

]T [
2

2
√

3

]T [
0

2
√

3

]T [−1√
3

]T]T
.

A stress matrix has been computed using the approach
in Qingkai et al. (2015). Its components are such that
ki(i+1) = ki(i−1) = 0.3, kii = 0 and kij = 0.1 for all (i, j)
such that |i− j| > 1.

A fully-connected communication graph is considered. The
simulation duration is T = 2.5 s for Model 1 and T = 6 s
for Model 2. Euler integration with a step size ∆t = 0.01 s
is used. As the system has been discretised, the minimum
delay between the transmission of two messages by the
same agent is set to ∆t. The perturbation d (t) is assumed
constant over each interval of the form [k∆t, (k + 1) ∆t[.
The components of d (t) are independent realizations of
zero-mean uniformly distributed noise U

(
−Dmax√

2
, Dmax√

2

)
and are thus such that ‖d (t)‖2 ≤ Dmax. Let Nm be
the total number of messages broadcast during a simu-
lation. Performance are evaluated by comparing Nm to
the maximum number of messages that can be broadcast
Nm = NT/∆t ≥ Nm. The percentage of residual commu-
nications is defined as Rcom = 100Nm

Nm
and expressed in %.

Rcom indicates the proportions of time slots during which
a communication has been triggered.

Figure 1 shows the trajectories of the agents when the
control (8) is applied along with the CTC defined in
Theorem 3. It can be seen that agents converge to the
desired formation with a limited number of communicati-
ons. Figure 2 shows the evolution of the communication
ratio Rcom and of the potential energy once the system
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Fig. 1. Results considering the second estimator with
Dmax = 20. Top: Agent trajectory to an hexagonal
formation; limt→∞ P (q, t) = 0.026. Bottom: commu-
nication time instants; Rcom = 2.73%.
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Fig. 2. Evolution of Rcom and P (q, t) for different values
of Dmax = { 0.1, 0.5, 1, 5, 10, 20, 30 }.

has converged, for different values of Dmax. When Dmax

is small, the accurate estimator (13) provides better per-
formance in terms of communication reduction than the
basic estimator (12). As expected, the potential energy
obtained once the system has converged increases for both
estimators with the level of perturbations.

When Dmax gets large, the performance of both estimators
gets closer. In that case, the simpliest estimator should be
preferred.

5. CONCLUSION

This paper presents an event-triggered communication
strategy to reach a target formation for MAS with pertur-
bed Euler-Lagrange dynamics. Two estimators of different
complexity and accuracy have been considered to provide
the missing information required by the control, allowing a
trade-off between computation time and amount of trigge-
red communications. Convergence to a desired formation



and influence of state perturbations on the convergence
and on the amount of required communications have been
studied. Simulations have shown the effectiveness of the
proposed method.

In future work, the considered problem will be extended to
time-varying formations and trajectory tracking. Proof of
absence of Zeno behavior as well as communication delay
will also be studied.
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6. APPENDIX: PROOF OF CONVERGENCE

Consider the candidate Lyapunov function

V =
1

2

N∑
i=1

(
sTi Misi

)
+
kg
4
P (q, t)

Taking the time derivative of V leads to

V̇ =

N∑
i=1

[
1

2
sTi Ṁisi + sTi Miṡi

]
+
kg
4

d

dt
P (q, t) (19)

where ṡi = q̈i + kpġi. It can be shown that 1
4
d
dtP (q, t) =∑N

i=1 (q̇i − q̇∗i )
T
gi. One focuses now on the termMiṡi and

tries to find an equivalent expression. Consider

Miṡi + Cisi =Mi [q̈i + kpġi] + Ci [q̇i + kpgi]

= τi + kp (Miġi + Cigi) + di (20)

Using (8), one gets
Miṡi + Cisi =−kss̄i − kg ḡi − kp (Mi ( ˙̄gi − ġi)

+Ci (ḡi − gi)) + di (21)
One notices that rij = qi − qj = qi − q̂ij + eij = r̄ij + eij ,
thus gi = ḡi +Eij with Eij =

∑N
i=1 kije

i
j . In the same way,

one obtains si = s̄i + kpE
i
j . One gets

Miṡi + Cisi =−kss̄i − kg ḡi + kp

(
MiĖ

i
j + CiE

i
j

)
+ di.(22)

Put V̇1 =
∑N
i=1 2kps

T
i

(
MiĖ

i
j + CiE

i
j

)
. Using (22) in (19),

one obtains

V̇ =

N∑
i=1

[
sTi

[
1

2
Ṁi − Ci

]
si − kssTi s̄i − kg (q̇i + kpgi)

T
ḡi

+kg q̇
T
i gi + sTi di

]
+

1

2
V̇1

Since 1
2Ṁi − Ci is skew symmetric or definite negative,

sTi

[
1
2Ṁi − Ci

]
si ≤ 0. Using dTi si ≤ 1

2

(
D2

max + sTi si
)
, one

gets

V̇ ≤
N∑
i=1

[
−kssTi s̄i − gTi ḡikgkp +

1

2
sTi si +

1

2
D2

max

+kg q̇
T
i (gi − ḡi)

]
+

1

2
V̇1 (23)

Note that ‖si − s̄i‖2 =
∥∥kpEij∥∥2, thus

sTi s̄i =−1

2

∥∥kpEij∥∥2 +
1

2
sTi si +

1

2
s̄Ti s̄i (24)

In the same way, one obtains gTi ḡi = − 1
2

∥∥Eij∥∥2 + 1
2g
T
i gi +

1
2 ḡ
T
i ḡi. Injecting it with (24) in (23)

V̇ ≤
1

2

N∑
i=1

[
− (ks − 1) sTi si − kss̄

T
i s̄i +

(
ksk

2
p + kgkp

)∥∥Ei
j

∥∥2
−kpkggTi gi − kpkg ḡ

T
i ḡi +D2

max + 2kg q̇
T
i E

i
j

]
+

1

2
V̇1 (25)

Using the property xT y ≤ 1
2

(
bix

Tx+ 1
bi
yT y

)
for some

bi > 0, one shows that 2q̇Ti (gi − ḡi) ≤ bi ‖q̇i‖2 + 1
bi

∥∥Eij∥∥2.
Injecting it in (25) and using ke = ksk

2
p + kgkp +

kg
bi

one
gets

V̇ ≤ 1

2
V̇1 +

1

2

N∑
i=1

[
− (ks − 1) sTi si − kss̄Ti s̄i + ke

∥∥Eij∥∥2
+bikg ‖q̇i‖2 − kpkggTi gi − kpkg ḡTi ḡi +D2

max

]
(26)

Consider now V̇1. Using the property xT y ≤ 1
2x

Tx +
1
2y
T y, Mi is symmetric positive definite and the fact that

xTMix ≤ kMxTx, one shows that

V̇1 ≤
N∑
i=1

kp

(
(kM + 1) sTi si +

[
kM Ė

iT
j Ėij + EiTj CTi CiE

i
j

])
The terms εi = EiTj CTi CiE

i
j may be summed as

N∑
i=1

εi =

N∑
i=1

N∑
j=1

N∑
`=1

ki`kije
iT
j ‖Ci‖

2
ei` (27)

Remind xTCix ≤ kc ‖q̇i‖xTx and using

xT y ≤ 1
2

(
xTx+ yT y

)
, one gets

N∑
i=1

εi ≤
1

2

N∑
i=1

N∑
j=1

N∑
`=1

ki`kij

(
eiTj ‖Ci‖

2
eij + eiT` ‖Ci‖

2
ei`

)

≤
N∑
i=1

αi

N∑
j=1

kij

(
eiTj e

i
jk

2
C ‖q̇i‖

2
)

Since there is no communication delay, eij = ejj . As a
consequence,
N∑
i=1

N∑
j=1

kij
∥∥eij∥∥2 =

N∑
i=1

N∑
j=1

kij

∥∥∥ejj∥∥∥2 =

N∑
i=1

N∑
j=1

kji
∥∥eii∥∥2 .

(28)
Since kij = kji, using the second CTC (16) leads to

N∑
i=1

εi ≤
N∑
i=1

αMk
2
C

∥∥eii∥∥2 N∑
j=1

kij

(∥∥∥ ˙̂qij

∥∥∥+ η3

)2 .

In the same way, one shows that∑N
i=1E

iT
j Eij ≤

∑N
i=1 α

2
M

∥∥eii∥∥2 and
∑N
i=1 Ė

iT
j Ėij ≤∑N

i=1 α
2
Mė

iT
i ė

i
i. Using this result in (26), one gets



V̇ ≤ 1

2

N∑
i=1

[
−ks2sTi si − kss̄Ti s̄i +D2

max − kpkggTi gi

−kpkg ḡTi ḡi + kgbi ‖q̇i‖2 + kpkMα
2
M
∥∥ėii∥∥2

+α2
Mke

∥∥eii∥∥2 + αMkpk
2
C

∥∥eii∥∥2 N∑
j=1

kji

[∥∥∥ ˙̂qij

∥∥∥+ η3

]2
with ks2 = (ks − 1− kp (kM + 1)). The CTC (15) leads to

V̇ ≤ 1

2

N∑
i=1

[
−ks2sTi si − 2kgkpg

T
i gi +D2

max + η
]

One deduces that V̇ is negative if

‖gi‖2 >
D2

max + η

2kgkp
(29)

The candidate Lyapunov function V is lower-bounded by
zero. V̇ is continuous and negative semi-definite since (29)
is respected. Using LaSalle principle, it can be concluded
that V̇ → 0 when t → ∞ and limt→∞ ‖gi‖2 → D2

max+η
2kgkp

.
Thus V converges to a bounded value.

One will deduce from ‖gi‖2 → D2
max+η
2kgkp

some conditions on
Dmax and η to show the convergence bound η2 on P (q, t).

Conditions on Dmax and η One first try to express gi as
a function of P (q, t):

N∑
i=1

gTi gi =

N∑
i=1

N∑
j=1

kij
(
rij − r∗ij

)T
gi (30)

The inequality
∣∣xT y∣∣ ≤ bi

2 x
Tx+ 1

2bi
yT y is used to get, for

some bi = αi
N∑
i=1

‖gi‖2 ≤
1

2

N∑
i=1

N∑
j=1

kij

(
αi
∥∥rij − r∗ij∥∥2 +

1

αi
‖gi‖2

)
(31)

Since αi =
∑N
j=1 kij , one obtains

1

2

N∑
i=1

‖gi‖2 ≤
N∑
i=1

N∑
j=1

αikij
∥∥rij − r∗ij∥∥2 = αMP (q, t)(32)

Then, it can be deduced that P (q, t) converges within a
domain bounded by η2 provided that limt→∞

∑N
i=1 ‖gi‖

2 ≤
limt→∞ 2αMP (q, t). Then, one should have

N∑
i=1

D2
max + η

2kgkp
≤ 2αMη2 (33)

D2
max ≤

4kgkpαMη2
N

− η (34)

Since D2
max has to be positive, this provides a condition

on η.
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