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Abstract 

Alternative solutions to network reinforcement are now being investigated in distribution network 

planning studies to reduce the costs and periods for integrating renewable energy sources. However, a 

thorough techno-economic analysis of these solutions requires a large number of multi-period load-flow 

calculations, which makes it hard to implement in planning tools. A non-intrusive approximation method 

is therefore proposed to obtain fast and accurate multi-period load-flows. This method builds a surrogate 

model of the load-flow solver using polynomial regression and kriging, combined with Latin hypercube 

sampling. Case studies based on real distribution networks show that the proposed method is more 

efficient for distribution network planning in presence of renewable energy sources than time 

subsampling, line model simplification, and voltage linearization. In particular, accurate 10-minute 

profiles of voltages, currents, and network power losses are obtained in a satisfactory computation time. 

Keywords 

Approximation method; Distribution network planning; Kriging model; Multi-period load-flow; 
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1. Introduction 

To enable the expected intensive development of Renewable Energy Sources (RES) and new 

electrical usages (active demand, electric vehicles, etc.), distribution network planning needs to evolve 

quickly [1,2]. Today, most of the voltage/current constraints due to RES are removed by reinforcing the 

network, i.e., by replacing existing network infrastructures or adding new ones. As these network 

adaptations may be expensive and take time, several alternative solutions, such as Volt-VAR control 

and load/generation curtailment, are now being investigated to reduce the costs and periods for 

integrating RES while ensuring an acceptable level of risk and quality in the network. Unlike network 

https://doi.org/10.1016/j.epsr.2017.08.036
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reinforcement, alternative solutions may have operating limits in energy or duration and important 

operational costs depending on the voltage/current constraints which have been avoided. Therefore, to 

assess the techno-economic impacts of these solutions and find the best ones, network planning methods 

should allow, not only to detect any risk of constraint as it is done today, but also to characterize the 

constraints in terms of depth, duration and frequency. This implies studying multi-year profiles of load 

and generation, and thus performing multi-period load-flow calculations [2].  

The time uncertainty and power variability of intermittent RES must be taken into account in order 

to accurately assess the temporary constraints, and thus the techno-economic performance of the 

solutions. It is thus essential to study a large number of load/generation profiles, with a time step ΔT 

which is as small as possible (no more than 10 minutes, see Section 3.2). This nevertheless leads to an 

intensive use of a time-consuming “load-flow solver” method for solving the nonlinear load-flow 

equations. For instance, if p = 100 yearly load/generation profiles with a time step of ΔT = 10 minutes 

are considered over a period of A = 10 years (≈ 5.3 × 106 minutes), then n = pA / ΔT ≈ 5.3 × 107 load-

flow calculations are required to assess the performance of alternative solutions for a given network. 

This means around seven hours of computation1 when using a Forward-Backward load-flow solver [20] 

under MATLAB for one of the radial 400-bus networks studied in Section 3.2. Such a computation time 

is not acceptable for Distribution System Operators (DSO), who are often responsible for the 

medium/long-term development of several hundred or even thousand primary substations.  

The possible options to reduce the computation time needed for multi-period load-flow calculations 

can be classified into three categories: 1) time subsampling of the load/generation profiles, 2) intrusive 

approximation of the load-flow solver, and 3) non-intrusive approximation of the load-flow solver.  

Time subsampling consists in using only a part of the available input data, by either increasing the 

time step ΔT of the yearly load/generation profiles or, in rarer cases, selecting only a few daily profiles 

for each year. Yearly profiles averaged over a time step of ΔT = 30 minutes or ΔT = 1 hour are commonly 

used to study alternatives to reinforcement [3-6]. Time subsampling is easy to implement, which 

accounts for its popularity, but the results are not very accurate compared to the time savings (see Section 

3.2.3). 

Intrusive approximation consists in simplifying the load-flow equations using physical assumptions 

and/or intrusive approximation techniques. This option is often used to study network stability [7] or the 

statistical impacts of load and generation power variations [8]. The most popular approaches are to 

linearize the load-flow equations at one or several operating points, to simplify the voltage equations by 

assuming voltage angles equal to zero, or to model the electrical lines by series resistances and 

reactances only. The effectiveness of this option strongly depends on the assumptions and intrusive 

approximation techniques used. 

Non-intrusive approximation consists in building a surrogate model for the load-flow solver using 

                                                      
1 All the computation times presented in this paper are obtained with a laptop with a 2.50-GHz processor (Intel Core i7 4710MQ) and a 16-

GB RAM.  
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approximation techniques that treat the load-flow solver as a “black box”. The effectiveness of this 

option depends on the sampling methods used to select the operating points where the exact model (the 

load-flow solver here) is evaluated, and on the approximation methods used to build a surrogate model 

based on the evaluation results. To our knowledge, non-intrusive approximation has rarely been used in 

network studies and, if so, only in a simple form like nearest-neighbor interpolation [9,10]. Smooth 

approximation techniques, such as polynomial regression or kriging, seem not to have been investigated 

in network planning studies so far. 

This paper investigates the latter option, i.e., non-intrusive approximation, to obtain fast and 

accurate multi-period load-flows. The proposed method builds a surrogate model of the load-flow solver 

using polynomial regression and kriging combined with Latin hypercube sampling. The paper is 

organized as follows. Section 2 describes a generic approximation procedure to estimate any function, 

then presents the proposed method for multi-period load-flows. Section 3 illustrates the performance of 

the proposed method, in terms of computation time and approximation errors, through several case 

studies based on real distribution networks and 10-minute profiles of load/generation. The effectiveness 

of the proposed method is compared with four other methods commonly used in network planning: the 

use of 30-minute averaged load/generation profiles, the computation of a single load-flow iteration, the 

modelling of electric lines by series resistances and reactances only, and the linearization of the voltage 

load-flow equations. Finally, Section 4 discusses the validity area of the proposed method.  

2. Proposed method for the approximation of the load-flow solver 

2.1. A generic non-intrusive approximation procedure 

Let us consider a real s-dimensional variable y = [y1 … ys], which is the result of a function f when 

applied to the real m-dimensional variable x = [x1 … xm]: y = f(x). The purpose is to calculate the n values 

of y, gathered in the matrix Y: 
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Let us assume that: 1) the number of points n and the output dimension s are very large, and 2) the 

evaluation of f is time-consuming, which makes it difficult or even impossible to compute Y using f and 

X directly. An approximation procedure is therefore required to estimate Y precisely in an acceptable 

computation time. 

https://doi.org/10.1016/j.epsr.2017.08.036
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Table 1 details a generic non-intrusive approximation procedure to estimate the output-value matrix 

Y. Different variants of this procedure have already been used in several application fields [11–13]. This 

procedure is based on a sampling method, a dimension reduction method, and an approximation method.  

The sampling method selects a small set of input points, called design of experiments, so as to 

guarantee a high-quality approximation (step 2 in Table 1).  

The dimension reduction method decreases the dimension of the output variable y, and thus reduces 

the number of times the approximation method is used in the procedure (step 4 in Table 1). We detail 

here the Principal Component Analysis (PCA), which is one of the most commonly used dimension 

reduction methods [14]. This unsupervised linear dimension reduction method eliminates the variables 

that are interdependent from f and keeps only q (<< s) linearly-uncorrelated non-physical variables, 

called principal components, for the approximation procedure.  

The approximation method builds a fast surrogate model for each principal component (step 5 in 

Table 1). The value of y is finally computed based on the approximate values of its principal components 

(step 7 in Table 1). 

The generic procedure detailed in Table 1 can be tailored to different application fields thanks to 

three degrees of freedom: the sampling method used in step 2, the approximation method used in step 5, 

and the number q of principal components from the PCA in step 4. The choice of the sampling and 

approximation methods largely depends on the properties of the function f to approximate (e.g., if its 

inputs/outputs are continuous or discrete, if its response is smooth or not, etc.). The number of principal 

components can be chosen in different ways, e.g., to represent a certain share of the total variance of y. 

Another degree of freedom, which is less obvious, is the set of variables to which the PCA is applied. 

More precise results can sometimes be obtained if the approximation procedure is applied to different 

sets of f outputs [15].  

https://doi.org/10.1016/j.epsr.2017.08.036
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1) Select a sampling method and an approximation method.  

2) Apply the sampling method to build a design of experiments: 
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substantially smaller than n. 

3) Compute the output Y* associated with X* using the exact model f: 
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4) Perform the Principal Component Analysis (PCA) to convert Y* into a reduced set of the q first 

principal components:  
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where  syyY 1  is the empirical mean vector of Y*, 1
 
is the  n* × 1 vector of ones and W is the 

s × q matrix composed of the weighting coefficients from the PCA (i.e., the columns of W are the 

orthonormal eigenvectors of the empirical covariance matrix corresponding to the q largest 

eigenvalues). 

5) Create a surrogate model for each principal component: f1*, …, fq*. For each principal component 

k, estimate the parameters of the surrogate model fk* based on the pair (X*, Zk*).  

6) Compute the matrix Z
~

 of approximate principal components associated with X using the surrogate 

models f1*, …, fq*: 
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7) Perform the inverse PCA, i.e., compute the matrix 
TWZYY .

~
.

~
 1 of approximate output values, 

where 1
 
is the n × 1 vector of ones. 

Table 1. Generic non-intrusive approximation procedure to estimate any s-dimensional variable 

y = f(x). 

2.2. Interest of a non-intrusive approximation procedure for multi-period load-flows in 

distribution network planning 

As explained in Section 1, a thorough study of the solutions to integrate RES requires a large number 

of load-flow calculations, which is time-consuming. There is therefore a real need to use fast surrogate 

models instead of the load-flow solver.  

The function to approximate f is the input-output mapping associated to the load-flow solver. This 

function f provides an abstract view of the resolution of the load-flow equations by the load-flow solver, 

for a given set of input parameters x. The output y = f(x) depends not only on x but also, implicitly, on 

the definition of the network under study and the assumptions about power dispatching. 

https://doi.org/10.1016/j.epsr.2017.08.036
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A large number s of load-flow outputs is involved in the techno-economic analysis of alternatives 

to reinforcement: the voltages at the Medium-Voltage (MV) buses U, the real and reactive powers in the 

MV lines Pl and Ql, the real and reactive powers at the High-Voltage/Medium-Voltage (HV/MV) 

transformer P0 and Q0, the overall real power losses in the MV network Ploss. A dimension reduction 

method like the PCA is thus suitable. 

Smooth approximation methods are appropriate here since the load-flow outputs are relatively 

smooth. Moreover, the number m of load-flow inputs is generally limited in planning network studies, 

thanks to assumptions about power dispatching (see Sections 3.1 and 4.2 for examples). Consequently, 

advanced smooth approximation methods, such as kriging, can be considered here. 

2.3. The proposed non-intrusive approximation procedure 

The proposed Non-Intrusive Approximation procedure (NIA) results from a thorough comparative 

study of different variants of the generic procedure applied to different distribution networks [15]. NIA 

includes three steps to reach a satisfactory trade-off between computation time and accuracy (Fig. 1).  

Step 1: surrogate models of the load-flow solver are built using a n*-point maximin Latin Hypercube 

Sample (LHS) [16,17] as a design of experiments and Polynomial Regression of order 3 (PR3) [17] as 

an approximation method. To do this, the procedure in Table 1 is applied four times, to estimate 

separately P0, Q0, Ploss and yupq = [U, Pl, Ql]. Applying the procedure to these subsets of outputs leads to 

more accurate results than to y = [U, Pl, Ql, P0, Q0, Ploss], in return for a short increase in time [15]. The 

PCA is performed on the non-scalar output only, i.e., on yupq. Before performing the PCA on yupq, each 

set of outputs of the same nature (U, Pl, and Ql) is centered around zero by subtracting its empirical 

mean, then is divided by the square root of its total empirical variance. The number q of principal 

components is set so as to represent more than α percent of the total variance of the variable to estimate. 

The accuracy of the surrogate models is assessed on a k-point test sample. The surrogate models are 

considered precise if the errors committed on the test sample are smaller than thresholds defined for 

each output: εU, εPl, εP0, εQ0, and εPloss.  If the surrogate models are precise, they can be used instead of 

the load-flow solver to estimate the output profiles.  

Step 2: if the surrogate models are not precise enough, new surrogate models are built as in step 1, 

but using Ordinary Kriging with a 5/2 Matérn covariance (OK52) [17-19] instead of PR3. OK52 is used 

in step 2 because it is generally slower but more accurate than PR3 [15]. The parameters of the Matérn 

covariance function are estimated by the approximation method itself so as to maximize the likelihood 

of the output values from the design of experiments in the covariance model. The surrogate models are 

assessed on the same test sample. 

Step 3: in the rare case where the surrogate models built in step 2 are not precise enough, the output 

profiles are computed using the exact load-flow solver. 

https://doi.org/10.1016/j.epsr.2017.08.036
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Fig. 1. The proposed non-intrusive approximation procedure to approximate multi-period load-

flows. 

If NIA stops at step 1 or 2, only (n* + k) exact load-flow calculations are required.  

The accuracy-time ratio for building and validating the surrogate models strongly depends on n*, α, 

and k. Increasing n* or α enhances the accuracy of the surrogate models but also raises the computation 

time required for building them. Increasing k improves the assessment of the models’ accuracy but, at 

the same time, leads to more exact load-flow calculations to validate the models.  

NIA can also be used to estimate other load-flow outputs, e.g., the currents in all the MV lines I and 

the apparent power at the HV/MV transformer S0. Because of power flow reversing, I and S0 are not 

smooth, which makes them difficult to approximate accurately using polynomial regression or kriging. 

In order to build precise surrogate models for these outputs, it is actually better to approximate Pl, Ql, 

P0, and Q0 rather than I and S0, and then to compute approximations of I and S0 as follows:  

  line or transformer i, ,22

iii QPS   (1) 

   line i, jii USI  , where Uj is the end bus of the line i. (2) 

3. Case studies: comparing the proposed method with four commonly used methods to 

speed up load-flow calculations 

3.1. General information about the case studies presented in Sections 3.2 and 3.3 

The purpose is to compute the 10-minute profiles of load-flow outputs quickly and accurately for 

different radial distribution networks. This means performing n = 52 560 exact load-flow calculations 

per year. A Forward-Backward algorithm is used as a benchmark for solving load-flow equations [20]. 

This load-flow solver is especially efficient for radial networks. It takes 25 seconds on average to 

compute n = 52 560 load-flow calculations under MATLAB for the radial 400-bus networks studied in 

Section 3.2.  

For techno-economic issues, four sets of load-flow outputs have to be estimated: U, I, Ploss, and S0. 

For the radial 400-bus networks studied in Section 3.2, this means estimating s = 1201 output variables 
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(since Pl, Ql, P0, and Q0 have to be approximated to compute I and S0, see Eq. 1-2). The load-flow solver 

takes m = 4 inputs here: the overall wind generation Pw, the overall photovoltaic generation Ppv, the 

overall consumption Pc, and the busbar voltage Uref. Powers Pw, Ppv, and Pc are respectively dispatched 

between all the generators and loads proportionally to their rated real power (for producers) or peak 

apparent power (for consumers). Reactive powers are computed using power factors.  

NIA is set to reach a satisfactory trade-off between speed and accuracy: n* = 200, α = 99.999 and k 

= 200 [15]. This means that only 400 exact load-flow calculations are required if NIA stops at step 1 or 

2. The maximal errors tolerated on the test sample are: εU = 0.0025 pu, εI = 5 A (i.e., < 5 % of rated 

currents of the MV lines), εS0 = 100 kVA (i.e., < 1 % of rated apparent powers of HV/MV transformers), 

and εPloss = 1 % of yearly energy losses. 

The performance of NIA is compared with four other methods commonly used in network planning: 

1) 30-minute Subsampling (S30), which consists in performing exact load-flows after averaging 

load/generation profiles over a 30-minute range, 2) Single load-flow Iteration (SI), which consists in 

setting the initial values of voltage at the final values from the last load-flow calculation and performing 

only one iteration of the exact load-flow solver, 3) Line Model simplification (LM), which consists in 

modeling the electric lines by series resistances and reactances only (without considering shunt 

capacitances), and 4) Voltage Linearization (VL), which consists in linearizing the voltage equations at 

the mid-range operating point and applying the resulting approximate load-flow solver on the 10-minute 

profiles of load/generation. The case studies below have been implemented in MATLAB using the STK 

toolbox for kriging [21].  

3.2. General performance in terms of speed and accuracy 

3.2.1. Purpose of the study 

This study aims at analyzing the general performance of S30, SI, LM, VL, and NIA over 100 

different scenarios. Each scenario is composed of a 20-kV 400-bus radial network and a set of 10-minute 

profiles of Pw, Ppv, and Pc, and Uref over one year. All the studied networks are possible evolutions of a 

same real network after accommodating from 0 to 20 MW of RES (see Ref. [22] for an example). 

3.2.2. Performance indicators 

Speed is assessed using the computation time T, i.e., the total time of the considered method for 

building surrogate models and computing the 10-minute profiles of U, I, S0, and Ploss over one year. 

Another speed indicator used here is the time efficiency GT of the method, i.e., the ratio between 

computation time from the exact load-flow solver (around 25 seconds for n = 52 560 load-flows) and 

computation time from the method. 

Accuracy is assessed using the output errors, i.e., the absolute deviations between the 10-minute 

output profiles from the considered method and the ones from the exact load-flow solver. For each set 

of output variables (U, I, S0, or Ploss), three error indicators are introduced to characterize the distribution 

of absolute errors for each scenario: the mean of absolute errors errmean, the 90-percent quantile of 

https://doi.org/10.1016/j.epsr.2017.08.036
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absolute errors errQ90, and the maximum of absolute errors errmax over all the time steps and, for 

voltage/current errors, over all the buses/lines. 

3.2.3. Results of the study 

Fig. 2 focuses on six randomly chosen hours of the voltage at a given bus i and the associated 

absolute errors obtained by S30, VL, and NIA with respect to the exact load-flow solver. This example 

shows clearly that the voltage profiles obtained by VL and NIA are closer to the exact one than that of 

S30.  

 

Fig. 2. Top: examples of voltage computed by the exact load-flow solver (black line on a, b and c), 

S30 (blue line on a), VL (green line on b), and NIA (red line on c). Bottom: voltage error from S30 

(blue line on a), VL (green line on b), and NIA (red line on c) with respect to the exact load-flow 

solver. Note that the nominal voltage is 20 kV here. 

Table 2 depicts the averages of time efficiency and of mean/quantile/max absolute errors over the 

100 scenarios for S30, SI, LM, VL, and NIA. It turns out that: 

 S30 and LM are the worst methods. They are time-consuming (Fig. 3.a) in addition to generally 

committing the highest errors on the load-flow outputs (Fig. 3.b and Table 2).  

 SI obtains accurate outputs (Fig. 3.b and Table 2) but it is rather slow (Fig 3.a). 

 VL and NIA get high accuracy on the outputs in a satisfactory computation time.  

 NIA is the most efficient method. It gets the highest accuracy on the outputs (Table 2). 

Moreover, it is 18 times faster than 10-minute exact load-flows whereas the other methods are 

only 2 to 4 times faster. Note that building the surrogate models by PR3 (step 1) and by PR3 

then OK52 (steps 1-2) takes respectively around 81 % and 98 % of the total computation time 

here. 

This case study over 100 scenarios (with n = 52 560) highlights the high performance of the 

proposed method to approximate multi-period load-flows. With n* = 200, α = 99.999 and k = 200, NIA 

performs fast and accurate load-flow calculations for several variations of a radial network with different 

overall generation and power dispatching. Although commonly used in network planning studies, time 

https://doi.org/10.1016/j.epsr.2017.08.036
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subsampling is not efficient to estimate 10-minute profiles of load-flow outputs.  

 

  S30 SI LM VL NIA 

CPU time [s]  T 8.3 11.7 19.3 7.5 1.3 

Time efficiency [-] GT 3.0 2.1 1.3 3.3 18.4 

Voltage errors [pu] errmean(U) 1.3E-3 <1E-4 7.9E-4 <1E-4 <1E-4 

 errQ90(U) 3.2E-3 <1E-4 1.5E-3 2.2E-4 <1E-4 

 errmax(U) 1.4E-2 8.3E-4 2.2E-3 1.5E-3 1.3E-4 
Current errors [A] errmean(I) 0.4 < 0.1 0.7 < 0.1 < 0.1 

 errQ90(I) 0.7 < 0.1 2.3 < 0.1 < 0.1 
 errmax(I) 110.8 0.5 15.4 0.2 0.3 

App. power errors [kVA] errmean(S0) 224.3 3.6 729.6 0.4 < 0.1 
 errQ90(S0) 530.5 7.3 1248.4 0.9 < 0.1 

 errmax(S0) 4 860.4 47.5 1466.7 4.7 0.1 
Power loss errors [kW] errmean(Ploss) 4.3 3.0 3.6 0.4 < 0.1 

 errQ90(Ploss) 11.6 5.7 6.7 0.9 < 0.1 
 errmax(Ploss) 131.2 13.8 10.6 4.0 0.1 

Table 2. Average performance of S30, SI, LM, VL, and NIA over 100 scenarios with n = 52 560. 

Note that the Forward-Backward load-flow solver used as a benchmark takes 25 s.  

 

Fig. 3. a) Average of time efficiency and b) mean voltage error over 100 scenarios with n = 52 560 

for S30, SI, LM, VL, and NIA with respect to the exact load-flow solver. 

3.3. Illustration of approximation-error impacts on a generation curtailment case 

According to EN 50160 [23], 10-minute averages of any delivery point voltage in distribution 

networks must remain within ± 10 % of the nominal value for 95 % of the week. A good accuracy of 

load-flow outputs at a small time step (ΔT ≤ 10 minutes) seems thus necessary to estimate the voltage 

constraints and the techno-economic performance of the alternatives to reinforcement, regardless of the 

network study duration. This case study aims to support this statement and to show the interest of using 

a precise approximation method for load-flow calculations through a simple example. 

In this case study, we suppose that a 5-MW wind producer requests to be connected to a 20-kV 126-

bus feeder (part of one of the networks studied in Section 3.2). This feeder has already hosted 3.39 MVA 

of loads, a 1-MW MV wind producer and 0.15 MW of Low-Voltage (LV) photovoltaic producers. The 

study of the worst-case scenario “low consumption and high production” shows that the new producer 

may cause overvoltage on the existing feeder. Consequently, the DSO proposes two connection 
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solutions to remove this voltage problem: 1) a firm-connection solution, which consists in reinforcing 

the feeder to totally remove the overvoltage risk (Fig. 4.a), and 2) a non-firm connection solution, which 

consists in curtailing the producer’s real power to avoid overvoltage in real-time if need be (Fig. 4.b). 

For the latter solution, the DSO is assumed to contract with the producer a maximal annual curtailed 

energy (or curtailment duration). It is essential to assess accurately the contractual value of curtailment 

since, on the one hand, the producer uses it to carry out his cost-benefit analysis and to find the cheapest 

connection solution, and, on the other hand, the DSO has to compensate the producer for any extra 

curtailment. That is why the annual curtailed energy (or curtailment duration) should be sized on several 

profiles of load and generation. We assume here that the DSO studies 100 sets of 10-minute profiles of 

load/generation over one year (n = 52 560) and chooses, as a contractual value, the annual curtailed 

energy (or curtailment duration) that removes overvoltage for 90 % of the profiles.  

To illustrate the interest of a precise approximation method, the contractual curtailment 

energy/duration is computed using the exact load-flow solver and three of the five approximation 

methods presented above: S30, VL, and NIA.  

 

Fig. 4. Studied MV feeder with the new producer connected through: a) a firm connection (with 

network reinforcement), b) a non-firm connection (with generation curtailment). 

The results of the study clearly show that the more accurate the approximation method is, the more 

precise the generation curtailment is on a 10-minute scale. Indeed, as depicted in Fig. 5, a voltage error 

may lead to under/overestimating the violations of high voltage limit (fixed to 1.05 pu here) and thus 

the curtailment duration/energy required to remove these violations.  

As shown in Table 3, S30 obtains a good estimation of the mean annual constraint rate but also gets 

high positive and negative constraint detection errors. VL tends to overestimate the risk of overvoltage; 

it detects overvoltage periods very well but also finds overvoltage when there is no one. The proposed 

method, NIA, is effective to detect whether overvoltage occurs or not. 

(a) Firm connection (b) Non-firm connection

Primary substation

Secondary substation

S MV consumer

MV producer

Upgraded MV line

New MV line

Network 

reinforcement

Generation 

curtailment

Pprod Pprod
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Fig. 5. Examples of voltage (top), generation power (middle) and curtailed power (bottom) 

computed by the exact load-flow solver (black lines on a, b and c), S30 (blue lines on a), VL (green 

lines on b), and NIA (red lines on c) before/after generation curtailment (dashed/solid lines).  

 

 Ref. S30 VL NIA 

Mean constraint rate over the year [%] 8.49 8.22 10.17 8.46 

Mean share of true constraints [%] - 86.5 100 99.6 

Mean share of false constraints [%] - 10.4 19.9 0.1 

Table 3. Average overvoltage detection performance of S30, VL, and NIA over 100 

load/generation profiles with n = 52 560. 

Tables 4 and 5 show the curtailment values obtained from the three methods. “Error cost” refers to 

the share of curtailment cost due to the error on the contractual curtailment energy/duration. The closer 

to zero the error costs are, the more effective the approximation method is. Indeed, on the one hand, 

positive error costs mean that the DSO is more likely to compensate the producer at the end of each year 

due to unplanned extra curtailed energy. On the other hand, negative error costs mean that the producer 

is more likely to refuse a non-firm connection, which is actually cheaper than a firm one.  

The error costs depicted in Tables 4 and 5 result from just one connection study and should be 

appreciated with respect to the increasing total number of RES connections required year by year. Given 

the expected intensive development of RES, it is therefore crucial to use an approached load-flow solver 

that is as fast and as accurate as possible. In this case study, NIA has proven to be more efficient than 

S30 and VL. 
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 Ref. S30 VL NIA 

Contractual curtailed energy [MWh] 510.3 461.5 732.5 510.1 

Curtailed energy error [%] - −9.6 +43.5 −0.1 

Error cost [€ with ccurt = 40 €/MWh] - 1953 −8888 8 

Error cost [€ with ccurt = 80 €/MWh] - 3907 −17777 15 

Table 4. Curtailed energy errors and associated error costs obtained by S30, VL, and NIA to 

remove all the constraints for 90 % of cases, with respect to the exact load-flow solver. 

 

 Ref. S30 VL NIA 

Contractual curtailment duration [h] 809 779 973 806 

Curtailment duration error [%] - −3.7 +20.2 −0.4 

Error cost [€ with ccurt = 40 €/MWh] - 2910 −12732 334 

Error cost [€ with ccurt = 80 €/MWh] - 5821 −25464 668 

Table 5. Curtailment duration errors and associated error costs obtained by S30, VL, and NIA to 

remove all the constraints for 90 % of cases, with respect to the exact load-flow solver. 

4. Discussion 

4.1. Influence of the number of load-flows to approximate 

As shown in Fig. 6, the interest of using a specific method to approximate the load-flow solver 

depends on the number of load-flows n to compute.  

Firstly, it is better to perform exact load-flow calculations when n is small. Methods for 

approximating the load-flow solver are appropriate when building the surrogate models and computing 

them n times are faster than performing n exact load-flow calculations (i.e., when GT > 100). For instance, 

for the 400-bus radial networks studied in Section 3.2, NIA with n* = 200 becomes time-effective from 

n = 500 to 10 000 load-flows, depending on the need to use OK52 for accuracy (Fig. 6).  

Secondly, the time-efficiency GT of the methods depends on n. This stems from the allocation of 

computation time between the building and computing phases of the surrogate models. NIA certainly 

needs a great investment in the model building phase, but its surrogate models are faster than the exact 

load-flow solver. As a result, NIA is a suitable option when a large number n of load-flows has to be 

computed (Fig. 6). 
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Fig. 6. Time efficiency of VL (green line), NIA with n* = 200 and 400 using PR3 models only 

(dashed red lines), and NIA with n* = 200 and 400 using both PR3 and OK52 models (solid red 

lines) depending on the number of load-flows to approximate, for the networks studied in Section 

3.2. 

4.2. Influence of the number of load-flow inputs 

As power variations are generally measured at the primary substations, assumptions about power 

dispatching are made for distribution network planning studies. Thus the load-flow solver takes only a 

small number of inputs (m = 4 in Section 3), which makes the building of the surrogate models easier.  

Considering a large number of load-flow inputs (m ≥ 20) may strongly impact:  

- the number n* of exact load-flow calculations required for building the surrogate models (see 

Fig. 6 to compare time efficiencies obtained by NIA with n* = 200 and n* = 400);  

- the number q of principal components from the PCA, which is equal to the number of surrogate 

models to be built;  

- computation time needed to fit the parameters of the surrogate models.  

If so, NIA may take much more time and/or commit higher approximation errors. Therefore, NIA is not 

appropriate if a specific power profile is defined at each delivery bus. However NIA is usable if loads 

and generators in the network under study can be modeled by about twenty different real/reactive power 

profiles, which is generally satisfactory for MV distribution network planning studies. 

4.3. Network reconfigurations 

The surrogate models obtained from NIA are valid for a given network configuration. It is therefore 

necessary to build as many approximate load-flow solvers as network configurations to study in planning 

studies. NIA is suitable when many load-flow calculations are required for a given network 

reconfiguration. For instance, it can speed up calculations to provide a probabilistic diagnosis of network 

constraints in a normal situation (as in Section 3.3) as well as the empirical probability distribution of 

non-distributed energy when a fault occurs in the primary substation (by taking into account different 
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levels of load and generation). On the other hand, NIA is not appropriate when many network 

configurations with few load-flow calculations have to be studied. 

4.4. Non-smooth input-output mappings 

NIA is accurate when load-flow variables are smooth. However, some network equipment, such as 

fusegears and automatic reclosers, and alternatives to reinforcement, such as Volt-VAR control and 

load/generation curtailment, make some load-flow outputs non-smooth. Indeed, the (de)activation of 

these levers to remove constraints may cause a cusp of the load-flow outputs. Smooth approximation 

methods have difficulty in estimating such cusps. Further work is therefore necessary to consider the 

non-smooth effects of these levers from the design of the surrogate models. 

4.5.Parallel computing 

Parallel computing is a common practice to reduce computation time. It consists in carrying out 

independent tasks simultaneously after dispatching them over several cores, processors or computers. 

The two most expensive tasks of NIA, which are the n* exact load-flow calculations on the design of 

experiments and the building of the q surrogate models of the principal components, can easily be 

parallelized. As a result, if only a moderate number of parallel computers are available (typically smaller 

than n* and q), NIA remains faster than the parallelization of the n exact load-flow calculations. 

5. Conclusion 

Alternative solutions to network reinforcement are now being investigated in distribution network 

planning studies to reduce the costs and periods for the integration of RES. However, a thorough techno-

economic analysis of these solutions requires a large number of multi-period load-flow calculations, 

which makes it hard to implement in DSO’s planning tools.  

A non-intrusive approximation method has therefore been proposed to obtain fast and accurate 

multi-period load-flows. This method builds a surrogate model of the load-flow solver using polynomial 

regression and kriging, combined with Latin hypercube sampling. The case studies presented in Section 

3 highlight the fact that the proposed method is more efficient for distribution network planning in 

presence of RES than time subsampling, line model simplification, and voltage linearization. In 

particular, accurate 10-minute profiles of load-flow outputs are obtained in a satisfactory computation 

time.  

In addition to the results presented in this paper, the proposed method has also proven to be effective 

for the techno-economic analysis of some alternatives to reinforcement over several hundred 10-year 

scenarios of RES integration [15,22]. 

With the proposed parameter values, the method performs fast and accurate load-flow calculations 

for several variations of a radial network with different overall generation and power dispatching. The 

proposed parameter values are now to be tested on more distribution networks of different sizes, 
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structures, and characteristics.  

Further work will focus on the extension of the proposed method to consider the non-smooth effects 

of alternatives to reinforcement from the design of the surrogate models.  
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