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Abstract. In this paper, we propose line current sensor 
fault detection for AC drives. The method is based on 
the measured currents and the features are extracted 
either in the natural reference frame or in the 
transformed Park synchronous rotating frame. The 
features are the first four statistical moments or the 
Kullback Leibler Divergence (KLD) of the Probability 
Density Functions (PDF). For offset fault, we show that 
if the offset is higher than 3% of the current amplitude, 
the mean value is the most relevant value among the first 
four statistical moments that leads to good detection 
performances (low probability of false alarm and low 
probability of miss detection). But for incipient faults 
(offset ranging from 1 to 2%), even the projection in the 
transformed Park reference frame cannot improve the 
fault detection. For these cases, we show that the fault 
information can be retrieved using the PDF and the 
KLD. This is confirmed by the results showing that the 
fault is detected with 100% probability of detection.  
 
Keywords: Current sensor fault, Fault Detection, statistical 
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I- INTRODUCTION 
 
In every process, data are measured through 

sensors. In AC drives, the most usual sensors are current 
sensors, position or speed sensor, temperature sensor, 
voltage sensor, torque transducer and accelerometers. 
Like other components, sensors can be affected by faults 
such as gain fault, offset or bias fault and noise. When the 
measured variables are used in closed loops, the controllers 
can be tuned to be robust against these perturbations. 
However when the fault becomes significant, the outputs of 
the controllers saturate and lead to a degradation of the 
performances e.g. oscillations in the DC bus voltage. 
Moreover for embedded applications the increase of the 
control voltages will increase the power consumption 
thereby reducing the vehicle autonomy. 
 
Therefore health monitoring (fault detection and diagnosis) 
of sensors is required for condition based maintenance 

or/and fault tolerance control using observers, estimators [1-
6].  
Following the general scheme described in figure 1 [7] for 
each of the four steps different approaches can be used. 
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Fig. 1. Fault Detection and Diagnosis general scheme 
 
The requirements for a fault detection and diagnosis method 
are summarized in figure 2 [8]. 
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Fig. 2. Fault Detection and Diagnosis method requirements 
 



They are defined as follows: 
• The simplicity that is defined as the amount of 

information for processing; 
• The sensitivity that is defined as the capability of 

the method to detect a fault at its earliest stage; 
• The robustness that measures the capability of the 

method to perform despite the perturbations. 
• As it can be noticed, the selection of a method will 

be a compromise between: 
The selection of a method is a compromise between these 
requirements. 
 
Using a data-driven approach for the modelling, the current 
sensors fault diagnosis can be envisaged in the machine 
natural reference frame or in a transformed one (Concordia 
or Park) [9] 
In this paper, we are interested in evaluating statistical 
moments as features for current sensor fault detection in the 
machine natural reference frame and in the Park rotating 
reference frame for different fault levels. 

 
II CURRENT SENSOR FAULT MODELLING 

 
The most usual current sensor type used in AC 

drives is the active Hall Effect Sensor. From the actual 
current flowing in the machine winding to the current used 
in the digital control, the measured variable can be affected 
with different faults. The information can be lost (power 
outage of the sensor) degraded with an offset or a bias, a 
gain error or corrupted by significant noise.  
Two faults will be envisaged for the current sensor: a bias or 
a gain fault as represented in figure 3 where x is the actual 
variable and xm the measured one. 
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Fig. 3. Current sensor Fault types (bias and gain) 
 
As a consequence, the current sensor fault can be modelled 
as the relation between the actual and the measured current 
with the following relation: 
Imeasured = (1+G)Iactual +δ Iactual + ε   (1) 
where G is the gain error, δ Iactual  is the offset and ε is the 
noise. 
In the natural (a,b,c) frame, if we assume sinusoidal output 
currents, they can be expressed as : 

ia = I sin(θ )
ib = I sin(θ − 2π 3)
ic = I sin(θ − 4π 3)

    (2) 

 
III CURRENT SENSOR FAULT DETECTION  

A. In the natural reference frame 
 
1) Statistical Moments 
 
If we assume a random discrete variable 
X = (x1,...,x j ,...,xN )  of N samples, let us first recall the 

following definitions: 

µ = 1
N

x j
1

N

∑ the mean value, measures the centre of the data 

distribution, σ 2 = 1
N

(
1

N

∑ x j − µ)2  the variance measures the 

dispersion within the data dispersion, 

Skw = 1
N

(
x j − µ
σ

)3
1

N

∑ the skewness measures the 

dissymetry of the data distribution and 

Kur = 1
N

(
x j − µ
σ

)4
1

N

∑ the kurtosis measures the flatness of 

the data distribution. 
 
 
2) The Kullback Leibler Divergence 
 
For discrimination between two continuous probability 
distribution functions f(x) and g(x) of a random variable x, 
the Kullback Leibler Information is defined as: 

 I( f / /g) = f (x)log f (x)
g(x)∫ dx    (3) 

The divergence is the symmetric version of the Information 
and is given by [10]: 
KLD( f ,g) = I( f / /g)+ I(g / / f )    (4) 
Let us assume a three phase PMSM drive as displayed in 
figure 4. The three currents are measured, as it is the case in 
sensitive applications (e.g. transportation). 
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Fig. 4. Permanent Magnet Synchronous drive 



 
TABLE I.   MACHINE PARAMETERS 

Symbol Quantity Value and Unit 

Φm Magnetic flux 0.153 Wb 
Ld D axis inductance 3.5 mH 

Lq Q axis inductance 4.5 mH 
Rs Resistance 1.66 Ω 
J Inertia 6*10−3 kg/m2 
f Viscous friction  0.5*10−3 Nm/s 
p Pole pairs 3 
Vn Nominal voltage  200V 
In Nominal current  6A 

 
The flowchart of the methodology is displayed in figure 5. 
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Fig. 5. Flowchart for the FDD of current sensor fault in the natural frame 
 

 
3) Offset fault 
 
In this section, an increasing offset from 1 to10% is 
introduced in the phase a current measure.  
The first four statistical moments are plotted for 100 
realisations (the first 50 for the healthy case and last 500 for 
the faulty case).  
As it can be seen in figure 6, the mean value of the phase a 
is a good fault indicator as soon as the offset is higher than 
3%. 
This is confirmed with the ROC curve plotted in figure 7 for 
the three first offset faults. One can notice that for an offset 
fault of 3% the probability of detection (PD) is almost 100% 
and the probability of false alarm (PFA) is null. 
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Fig. 6. Mean value of the current in phase a 
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Fig. 7. ROC curve for the mean value of the current in phase a 
 
Because of the isolated neutral of the machine, the same 
conclusions can be drawn for the other two phases when 
analysing the mean values.  
 

0 10 20 30 40 50 60 70 80 90 100
Realisations

10.6

10.62

10.64

10.66

10.68

10.7

10.72

10.74

10.76

10.78

10.8

V
ar
ia
nc
e 1%

2%
3%
4%
5%
6%
7%
8%
9%
10%

 
 

a) Variance 
 
Looking at the other statistical moments plotted in figure 8 
confirms that there is no significant variation of the 
variance, the skewness and the kurtosis even for fault levels 
higher than 3%. 
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b) Skewness 
 

0 10 20 30 40 50 60 70 80 90 100
Realisations

1.495

1.5

1.505

1.51

1.515

1.52

K
ur
to
si
s

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

 
 

c) Kurtosis 
 

Fig. 8. Phase a current statistical properties 
 
In order to compare their efficiency a sensitivity index is 
computed as follows: 

Sensitivity =
<Cr > faulty − <Cr >healthy
Max(Cr− <Cr >)healthy   

where Cr  stands for the mean value, the variance, the 

skewness or the kurtosis and <Cr >  is the mean value [7]. 
From its definition, one can retrieve the following 
conclusions: 

• if 1< Sensitivity < 0.5 , 0.5 < PMD < 1 
• if Sensitivity =1 , PMD = 0.5 
• if Sensitivity > 2 , PMD = 0 

where PMD is the probability of miss detection. 
 
The sensitivity of the four criteria is plotted in figure 9 and 
confirms that the most sensitive is the mean value. 
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Fig. 9. Sensitivity index for the current in phase a 
 
 
B. In the transformed Park reference frame 
 
The flowchart is depicted in figure 10. 
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Fig. 10. Flowchart for the FDD of current sensor fault in the Park reference 
frame 
 
Following the Park transform, the currents (id, iq, i0) in 
healthy conditions are DC variables: 
idh = 0

iqh =
3
2
I

i0h = 0

     (3) 

In the following, the homopolar component i0 will no longer 
be considered even it may contain relevant information. 
Only the d and q currents will be studied. 
In case of gain fault (G ≠ 0), the transformed currents 
become: 

idf = idh +
1
6
GI sin(2ν )+ζ

iqf = iqh −
1
6
GI(1+ cos(2ν ))+ζ

   (4) 

In case of offset fault, the transformed currents are: 



idf = idh +
2
3
δ I cos(ν )+ζ

iqf = iqh −
2
3
δ I sin(ν )+ζ

   (5) 

where ζ is the noise and ν =θ,θ −π 3,θ − 2π 3  depending 
of which phase is corrupted. 
For the same offset fault range (1% to 10%), the mean 
value, the variance, the skewness and the kurtosis of the 
torque current iq are plotted in Fig. 11. Because of the 
current controllers, the evolution is non monotonic as it 
could have been derived from the analysis of (5). 
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a) Mean value 
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b) Variance 
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c) Skewness 
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d) Kurtosis 

Fig. 11. First four statistical moments of the iq current  
 
The sensitivity criteria are computed for all the first four 
statistical moments are displayed in Fig. 12. 
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Fig. 12. Sensitivity criteria for the iq current  
 
For all the four moments, the absolute value of the 
sensitivity criteria is ≤ 2 (except for the mean value when 
the fault severity is 10%), which means that the probability 
of miss detection PMD > 0.  
The variance has a very low sensitivity with a corresponding 
PMD > 50%. The mean value and the skewness have the 
higher sensitivity to the offset fault. However even for the 
mean value, for the lowest fault levels (1 to 3%), the fault 
detection performances are very poor with a probability of 
miss detection PMD ≈  0.5. And the situation is worse with 
the skewness because its sensitivity is lower than 0.5 
meaning that the PMD ≈  1. 
 
Even if the controllers can mitigate the fault very low 
severity (incipient fault), for efficient condition-based 
maintenance, it is desirable to address this issue. 
 
 

IV  INCIPIENT CURRENT SENSOR FAULT DETECTION 
USING KULLBACK LEIBLER DIVERGENCE 

 
In the former paragraph, we have shown that for 

incipient fault meaning the fault level is lower than 3%, 
none of the four statistical moments can be used as reliable 



fault detection feature. For these lower fault levels, while 
the Signal to Noise Ratio (SNR) is equal to 40dB, the Fault 
to Noise Ratio (FNR) is -10.3dB for 1% fault and -4.3dB for 
2%. If the noise level is higher (SNR < 40dB), the FNR will 
be lower and the fault detection more tricky. 
Therefore it’s obvious that another feature is required to 
perform reliable incipient fault detection. 
The Kullback Leibler Divergence (KLD) has shown its 
superiority for detecting incipient fault [11]. This 
divergence has been proved to be an upper bound to several 
distance measures [12]. 
The corresponding flowchart is displayed in figure 13. 
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Fig. 13. Flowchart for the FDD of current sensor fault in the natural 
reference frame using the KLD 
 
For these two fault levels, after the computation of the 
Probability Density Functions (PDF), the KLD is plotted in 
figure 14. The first 60 realizations are for the healthy case 
while the last 60 ones are for the faulty cases. Despite the 
fault effect is not severe, there is still a significant variation 
of the KLD that allows the fault detection at its early 
occurrence. 
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Fig. 14. KLD of the current ia for the two incipient fault levels  
 
The sensitivity criteria are respectively 15.7 and 48.5 for the 
two fault levels. This means that the PMD is null. 
 

IV. CONCLUSION 

In this paper, we have proposed line current sensor fault 
detection using the measured currents either in the natural 

reference frame or in the transformed Park synchronous 
rotating frame in an AC drive. We have shown that if the 
offset fault is higher than 3%, the mean value is the most 
relevant value among the first four statistical moments in 
order to have good detection performances (low probability 
of false alarm and low probability of miss detection). But 
for incipient faults (offset ranging from 1 to 2%), even the 
projection in the transformed Park reference frame (with 
continuous variables) cannot improve the fault detection. 
We show that the fault information can be retrieved using 
the PDF and the Kullback Leibler Divergence (KLD). The 
results confirm the fault detection with 100% probability of 
detection.  
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