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Abstract— The high penetration of Wind Turbine (WT) in the 
grid is a promising solution to increase the electricity 
production with renewable energies. In this work, we propose a 
data-driven methodology for dip voltage fault detection and 
diagnosis. From experimental measurements the current 
vector trajectory deformation in the (αβ) reference frame is 
derived and a statistical-based analysis (first four statistical 
moments) of two relevant features are extracted (the ratio 
between the two axis and the rotation angle) is conducted. 
Thanks to this ratio, the method is robust to load variations. 
The fault isolation is done accurately with the analysis of the 
shift angle. The fault detection performances are evaluated 
with the ROC curves that reveal a probability of detection 
equal to 1 and a null probability of false alarm. 
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I.  INTRODUCTION 
 
According to the collected statistical data, wind 

energy is one of the fastest growing renewable energy 
resources [1]. The most optimistic growth scenario estimates 
that by 2020, wind farms will supply 2.600TWh that 
represents about11.5–12.3 % of global electricity supply [2]. 
In many of these wind farms, doubly fed induction 
generators (DFIG) are used.  
Since the wind farms are connected to the grid, an important 
issue has been discussed in recent years: the dynamic 
behaviour of WT under different grid conditions. New grid 
codes have been adopted. Operating under grid fault also 
known as Low Voltage Ride Through (LVRT) is one of the 
most important issues [3-6]. 

Because of the nuisances due to grid fault occurrence the 
development of a fault detection and isolation (FDI) is 
mandatory [6]. 

In the literature the FDI methods can be split in two 

families: analytical-based methods and data-driven ones 
using either time-based or time-frequency-based processing 
approaches of measurements [7-16]. 

 
Hereafter a data-driven-based method is proposed. It based 
on a data history. Actually, it uses the current measurements 
during a time horizon to extract nonparametric features for 
fault detection and fault isolation.  Using the current vector 
trajectory in the stationary Concordia 2D reference frame, 
two relevant features are extracted and analysed for fault 
detection and isolation. Then, a statistical study is 
developed. The performances of the method are analysed in 
terms of sensitivity. 

The rest of the paper is organized as follows. In section 
II, the model of the WT system is briefly presented. In 
Section III the Fault model is introduced and in Section IV, 
the fault detection and diagnosis method is detailed. In 
Section V, experimental results are presented and discussed. 
A conclusion closes the paper. 
 

II.  WIND TURBINE MODEL 
 
For a high output power production, the variable 

speed Wind Turbine (WT) system is chosen in this study. 
The configuration is displayed in Fig. 1. The stator is 
connected directly to the grid. The rotor circuit is coupled to 
the grid via a partial-scale power converter where the type is 
a back-to-back converter.  
 
According to wind speed change, the kinetic power changes 
too. As a result, the WT output power varies. In order to 
maximize the captured power, the tip speed ratio needs to be 
controlled using a Maximum Power Point Tracking (MPPT) 
algorithm. 
The second is the Machine Side Converter (MSC) control. It 
controls the electromagnetic torque and the stator reactive 
power of the Doubly Fed Induction Generator (DFIG).  The 
third block controls the Grid Side Converter (GSC) to 
regulate the DC bus voltage and the passive R-L filter 



reactive power to zero (unity power factor at the point of 
connection to the grid).  
The details of the modelling can be found in [17]. 
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Fig. 1. Wind Turbine configuration. 

 
 

III.  FAULT DESCRIPTION 
 
With no loss of generality, the only fault type under 

study in this paper consists of a dip for one phase while the 
angle and the two others phases voltage remain unaffected. 
There are three possible configurations. In the following, 
only one subtype is described. It is the dip voltage in phase 
a. The details of the fault modelling can be found in [18]. 

In dip voltage phases a, the three voltage grid expressions 
in the time domain are expressed as:  
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Where d is the voltage dip depth V is the voltage magnitude.  
The phasor representation is illustrated in Fig. 2.  
 

 
 
Fig. 2. Phasor representation in case of dip voltage subtype phase a.  
 
ea, eb, ec are respectively the vector representation in 
healthy condition.  

IV.  FAULT DETECTION AND IDENTIFICATION 
 
    1)  The procedure 
  
Fig. 3 illustrates the WT current vector trajectory in the (αβ) 
stationary reference frame. It is observed that in faulty case, 
the trajectory rotates and changes from a circle to an ellipse. 
The Fault Detection and Identification (FDI) procedure is 
based on the extraction and the analysis of the features (the 
ratio between the two axes and the shift angle).  

Let’s note (iα(t1), iβ(t1)) and (iα(t2), iβ(t2)) the WT 
currents in αβ reference frame measured respectively at time 
instants t1 and t2.O

!
A  is the vector defined with (iα(t1), 

iβ(t1))and O
!
B  is the vector defined with (iα(t2), iβ(t2)). In 

healthy conditions, the ratio R = O
!
A
O
!
B

 is equal to 1 since the 

trajectory is a circle. 
At fault occurrence the ratio R deviates from 1 and the 
trajectory shifts from its initial position. The ratio R under 
healthy function and a dip voltage phase a is illustrated in 
the Fig.4. 
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Fig. 3. Current vector trajectory in αβ reference frame in healthy and 
faulty conditions. 
 
Therefore the ratio R and the shifting angle θ will be the 
features used for fault detection and fault isolation as it can 
be seen in Table I. 
 

TABLE I. FAULT SUBTYPES IDENTIFICATION. 

θ  Fault subtype 

π/2 or -π/2 b & c 

]0, π/2[ or ]-π,-3π/2[ a & c 

]π/2, π[ or ]-3π/2, -2π[ a & b 

vb 

va 

eb 

ea 

ec 

vc 



 
Fig. 4. Evolution of the ratio R under fault B subtype a. 

 
V.  PERFORMANCE EVALUATION RESULTS 

 
    1)  Feature analysis 

  
If we assume a random discrete variable 

1( ,..., ,..., )j NX x x x=  of N samples, let us first recall the 
following definitions : 

1

1 N

jxN
µ = ∑ the mean value, measures the center of the data 

distribution, 2 2

1

1 ( )
N

jxN
σ µ= −∑ the variance measures the 

dispersion within the data dispersion, 

3

1
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jxSkw
N

µ
σ
−

= ∑
 

the skewness measures the dissymetry of the data 

distribution and 4

1

1 ( )
N

jxKur
N

µ
σ
−

= ∑  the kurtosis 

measures the flatness of the data distribution. 
In order to compare the four statistical moments efficiency a 
sensitivity index is computed as follows: 
 

( )
r faulty r healthy

r r healthy

C C
Sensitivity

Max C C
< > − < >

=
− < >

 
where rC  stands for the mean value, the variance, the 
skewness or the kurtosis and rC< >  is the mean value [19].  
For each subtype, 200 realisations are realised (the first 100 
for the healthy case and the last 100 for the faulty case). 
 
The first four statistical moments of the ratio R for the three 
subtypes (a,b,c) are respectively plotted on Figs. 5, 6, 7. 
 
The sensitivity for the first four statistical moments for the 
three subtypes is calculated and presented in Tables II, III 
and IV. 

 
From the values in Table II, we can conclude for this level 
of dip voltage fault that the first four statistical moments can 
be used as fault indicator with a threshold set to 

( )r r healthyMax C C− < > .  
 

TABLE II. SENSITIVITY INDEXES FOR THE FOUR CRITERIA 
 Mean Variance Skewness Kurtosis 

Sensitivity 3.2465e+02 9.7706e+03 2.5214e+02 96.1973 

PMD
 

0 0 0 0 

 
We can also derive from this table that the variance is the 
most sensitive feature for fault subtype a. 
 
 

 
Fig. 5. First four statistical moments for fault subtype a. 

 
TABLE III. SENSITIVITY INDEXES FOR THE FOUR CRITERIA 

 Mean Variance Skewness Kurtosis 

Sensitivity 1.60176e+03 5.6997e+03 4.2407 1.1208e+02 

PMD
 

0 0 0 0 

 
From the sensitivity values in Table III, the first four 

statistical moments are relevant features for subtype fault b 

dip voltage. 

The variance is still the most sensitive feature. 
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Fig. 6. First four statistical moments for fault subtype b. 

 

 

Fig. 7. First four statistical moments for subtype phase c. 

In Table IV, the sensitivity indexes for all the four criteria 
are very high. Therefore each of them can be used as an 
efficient fault detector. However the variance, with the 
highest sensitivity, would be the most relevant feature for 
fault detection. 
 

TABLE IV. SENSITIVITY INDEXES FOR THE FOUR CRITERIA 
 Mean Variance Skewness Kurtosis 

Sensitivity 1.4431e+03 6.0971e+03 1.208e+02 1.0071e+02 

PMD
 

0 0 0 0 

 

In order to evaluate the fault detection performances, the 
probalities of fault detection (PD = 1 – PMD) and false 
alarms (PFA) are computed and the ROC curves are plotted 
in Figs. 8, 9, 10.  
The analysis of these curves shows very good performances 
with PD = 1 and PFA = 0.  
As a consequence, the setting of the fault detection threshold 
to ( )r r healthyMax C C− < > is relevant. This value is easily 
obtained during healthy operation with a reasonable 
computational burden. 
 

 

Fig. 8. ROC curves for the first four statistical moments in case of subtype 
phase a. 

 

 

Fig. 9. ROC curves for the first four statistical moments in case of subtype 
phase b. 
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Fig. 10. ROC curves for the first four statistical moments in case of subtype 
phase c. 

 
VI.  CONCLUSION 

 
In this paper, we have proposed a dip voltage fault 

detection and isolation method for Wind Energy Conversion 
System. The method is based on a data-driven modelling 
using the measured line currents and the relevant features 
are extracted from the current vector trajectory deformation 
in the Concordia reference frame. From the analysis of the 
first four statistical moments, it has been shown that the 
three fault subtypes can be detected reliably with the first 
and second statistical moments (respectively the mean value 
and the variance). In fact they exhibit the highest sensitivity 
values guaranteeing very good fault detection performances. 
This is confirmed with the ROC curves. The other two 
statistical moments (skewness and kurtosis) are less 
sensitive to the fault.  
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