
HAL Id: hal-01583815
https://centralesupelec.hal.science/hal-01583815v1

Submitted on 7 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Symbolic Operational Semantics for TESL with an
Application to Heterogeneous System Testing

Hai Nguyen Van, Thibaut Balabonski, Frédéric Boulanger, Chantal Keller,
Benoît Valiron, Burkhart Wolff

To cite this version:
Hai Nguyen Van, Thibaut Balabonski, Frédéric Boulanger, Chantal Keller, Benoît Valiron, et al.. A
Symbolic Operational Semantics for TESL with an Application to Heterogeneous System Testing.
15th International Conference on Formal Modelling and Analysis of Timed Systems FORMATS 2017,
Sep 2017, Berlin, Germany. �10.1007/978-3-319-65765-3_18�. �hal-01583815�

https://centralesupelec.hal.science/hal-01583815v1
https://hal.archives-ouvertes.fr

A Symbolic Operational Semantics for TESL
with an Application to Heterogeneous System Testing

Hai Nguyen Van1, Thibaut Balabonski1, Frédéric Boulanger2, Chantal Keller1,
Benoît Valiron2, and Burkhart Wolff1

1 LRI, Université Paris Sud, CNRS, Université Paris-Saclay, France
2 LRI, CentraleSupélec, Université Paris-Sud, Université Paris-Saclay, France

Firstname.Lastname@lri.fr

Abstract. TESL addresses the specification of the temporal aspects of
an architectural composition language that allows the composition of
timed subsystems. TESL specifies the synchronization points between
events and time scales. Methodologically, subsystems having potentially
different models of execution are abstracted to their interfaces expressed
in terms of timed events.
In this paper, we present an operational semantics of TESL for con-
structing symbolic traces that can be used in an online-test scenario:
the symbolic trace containing a set of constraints over time-stamps and
occurrences of events is matched against concrete runs of the system.
We present the operational rules for building symbolic traces and illus-
trate them with examples. Finally, we show a prototype implementation
that generates symbolic traces, and its use for testing.

Keywords: Heterogeneity, Synchronicity, Timed Behaviors

1 Introduction

The design of complex systems involves different formalisms for modeling their
different parts or aspects. The global model of a system may therefore consist
of a coordination of sub-models that use differential equations, state machines,
synchronous data-flow networks, discrete event models and so on. This raises
the interest in architectural composition languages that allow for “bolting the
respective sub-models together”, along their various interfaces, and specifying
the various ways of collaboration and coordination. Figure 1 shows a conceptual
diagram of such a heterogeneous system model.

The Ptolemy project [10] was one of the first to provide support for mixing
heterogeneous models. More recently, the GEMOC initiative [9] has been putting
the focus on the development of techniques, frameworks and environments to fa-
cilitate the creation, integration, and automated processing of heterogeneous
modeling languages. While Ptolemy follows a generic approach to architectural
composition, the BCOoL language [20] is more specifically targeted at coordina-
tion patterns for Domain Specific Events, which define the interface of a domain
specific modeling language.

2 Nguyen Van, Balabonski, Boulanger, Keller, Valiron, Wolff

A
Timed FSM B

Continuous Time (ODEs)

C
Lustre/SCADE

Architectural
glue

in
te

rf
ac

e

interface

interface

Fig. 1. A Heterogeneous Timed System

Our interest in architectural composition has a particular emphasis on sub-
systems involving time and timed behavior. In contrast to BCOoL, which trans-
lates its coordination patterns into CCSL (Clock Constraints Specification Lan-
guage, see [11,15]), we target TESL (Tagged Events Specification Language,
see [6]), a language that we designed to allow the specification of durations as
differences between tags, and not only as a number of occurrences of an event.
This model of time is close to the time in the MARTE [1] profile, or in the
Tagged Signal Model [14]. This allows us to coordinate systems with different
forms of time that flow at different rates.

The TESL language, which was developed in the ModHel’X [12] heteroge-
neous simulation platform, was originally targeted only at the timed coordi-
nation of sub-models during the simulation of heterogeneous models. It allows
sub-systems to live in different “time islands” by supporting the notion of time
scale and of relations between the speed at which time elapses for different clocks.
TESL is totally synchronous and focuses on causality between events and syn-
chronization on time scales. Causality is expressed in statements such as: “event
X should occur now because event Y occurs now”. Synchronization is expressed
in statements such as: “event X should occur because time reaches t on the time
scale of a clock”. This can be used to coordinate the execution of models that
have different notions of time (physical time, angular position, distance) that
flow at different rates, which are in the most general case only loosely coupled
and can even accelerate.

In this paper, we extend our simulation framework to a verification frame-
work: we present a novel test method establishing that the time coordination
of some sub-models, as it is actually implemented in a given system, conforms
to the specification modeled in TESL. Since an enumerative model-checking ap-
proach is impossible for real-time systems and infeasible for practical discrete
time systems, we develop a novel operational semantics geared to the symbolic
execution of TESL specifications. If the latter is run in parallel to a system under
test (SUT), symbolic traces containing variables for instants of time, constraints
over time scale relations, and causal conditions, can be instantiated following the
reactions of the SUT, refining the current constraints to produce a new specifi-
cation conforming to input stimulus. The approach has been implemented in a
novel prototype tool, for which we will present early experimental results.

A Symbolic Operational Semantics for TESL 3

2 An Introduction to TESL

The Tagged-Event Specification Language (TESL) [6] is a declarative language
designed for the specification of the timed behavior of discrete events and their
synchronization. Event occurrences (aka ticks) are grouped in clocks, which give
them a time-stamp (aka a tag) on their own time scale. Tags represent the oc-
currence of the event at a specific time. The tag domains used for time must be
totally ordered; typically, they are reals, rationals, integers, as well as the single-
ton Unit, which is used for purely logical clocks where time does not progress.

TESL allows for specifying causality and time scales between clocks, basically
by three main classes of constraints.

Event-triggered implications. The occurrence of an event on one clock might
trigger another one: “Whenever clock a ticks, clock b will tick under conditions”.
For instance, to model the fact that the minutes hand of a watch moves every
minute, we will say that the min clock implies the move clock.

Time-triggered implications. This kind of causality enforces the progression of
time. The occurrence of an event triggers another one after a chronometric delay
measured on the time scale of a clock. For instance, in order to specify that the
min clock ticks every minute, we can require that clock min implies itself with
a time delay of 1.0 measured on its time scale. It is important to note that this
delay is a duration (a difference between two tags) and not a number of ticks.

Tag relations. When all clocks are combined in a specification, each of them
lives in its own “time island”, with a potentially independent time scale. The
purpose of tag relations is to link these different time scales. For instance, time
runs 60 times as fast on clock sec as on clock min. This does not mean that the
faster clock has more ticks, it only means that in any given instant, the tags of
these clocks are in a ratio of 60. In general, TESL allows for fairly general tag
relations (permitting even acceleration or slow-down); for the sake of simplicity,
we will present only affine tag relations throughout this paper; this reduces the
complexity of constraint-solving to handling linear equation systems.

Here is a TESL specification for the examples above:

1 rational-clock sec
2 rational-clock min sporadic 0.0
3 unit-clock move
4 tag relation sec = 60.0 * min
5 min implies move
6 min time delayed by 1.0 on min implies min

Lines 1 to 3 declare clocks sec and min with rational tags, and clock move

with the unit tag. The constraint sporadic enforces a tick on min with tag 0.
Line 4 specifies that time on sec flows 60 times as fast as on min. Line 5 requires
that each time the min clock ticks, the move clock ticks as well. Line 6 forces
clock min to be periodic with period 1.0, specifying that it ticks every minute.
The grammar of such expressions is detailed in subsection 3.2.

4 Nguyen Van, Balabonski, Boulanger, Keller, Valiron, Wolff

sec

min

move

0. 60. 120.

0. 1. 2.

() () ()

1 2 3

(a) Returned by simulation engine

sec

min

move

0. 60. 61. 120.

0. 1.
61
60 2.

() () () ()

1 2 3 4

(b) Alternative possibility at instant 3

Fig. 2. Two partially satisfying runs

TESL is a specification language that defines the set of possible execution
traces or runs of a global system. In Figure 2 we present two of them; runs are
presented by ticks (solid rectangles) timestamped with tags (small numbers) on
the time-scales of the clocks sec, min and move; additionally, they are grouped
in a sequence of synchronization instants (dashed rectangles).

Note that an infinity of other runs satisfy this specification, both from an
architectural point of view (runs with additional clocks) and from a behavioral
point of view (runs with additional ticks or instants). For instance, Figure 2(b)
shows a run with an additional tick on move, which may correspond to a move-
ment of the minute hand caused by setting the time on the watch.

The original TESL simulator only computes “minimal” runs, as shown in
Figure 2(a), which makes its interpretation deterministic. Since our objective is
to turn TESL into a specification language for timed behaviors, we consider not
only minimal runs of the system, but any run of a given specification.

For more information about TESL and more application-oriented examples
involving multiform time and heterogeneous time scales, see the TESL gallery;
its engine ignition example3 may be the most illustrative one.

3 Operational Semantics

In this section, we define an operational semantics of TESL for deriving all
possible runs satisfying a given TESL specification. The operational semantics
works with a specification of the future of the run, and instantiates it in the
present instant, which incrementally builds a set of constraints on the runs. This
process also extends the specification of the future when a choice for the present
has consequences in the future because of time delayed implications.

3.1 Runs

We describe the execution of a model as a sequence of instants, each instant
being a map from clocks to event occurrences. The latter are represented by a
3 http://wdi.supelec.fr/software/TESL/ http://wdi.supelec.fr/software/TESL/GalleryEngine

http://wdi.supelec.fr/software/TESL/
http://wdi.supelec.fr/software/TESL/GalleryEngine

A Symbolic Operational Semantics for TESL 5

boolean indicating the occurrence and a time tag which gives the date of the
occurrence. Such a sequence of instants is called a run. More formally, we define:

K set of clocks K1,K2, . . .

B booleans

T =
⊎
K∈K

TK universe of tags, with TK the domain of tags of clock K

Σ = K→
(
B× T

)
set of instants

Σ∝ = N+ → Σ set of runs

ρn nth position (instant) in the run ρ ∈ Σ∝

where
⊎

is the disjoint union operator. Informally, some tag type conditions
apply: for a given instant σ ∈ Σ, a clock K maps to an event occurrence with a
fixed tag domain TK .

Additionally, we define two projections to extract the components of an in-
stant for a given clock:

ticks(σ(K)) ticking predicate of clock K at instant σ ∈ Σ (first projection)
tag(σ(K)) tag value of clock K at instant σ ∈ Σ (second projection)

For instance, if we write ρ as the run in Figure 2(a), we have

ticks(ρ1(sec)) = false ticks(ρ1(min)) = true

tag(ρ1(min)) = 0.0 tag(ρ1(move)) = ()

3.2 TESL Specifications

A TESL specification ϕ is a set of atomic constraints that must all be satisfied
by a conforming run. To simplify notations, we write them as conjunctions, and
we ignore clock types and some operators of the full TESL. Here is a grammar:

ϕ ::= 〈atom〉 ∧ · · · ∧ 〈atom〉
〈atom〉 ::= 〈clock〉 sporadic 〈tag〉

| 〈clock〉 sporadic 〈tag〉 on 〈clock〉
| tag relation 〈clock〉 = 〈tag〉 × 〈clock〉+ 〈tag〉
| 〈clock〉 implies 〈clock〉
| 〈clock〉 time delayed by 〈tag〉 on 〈clock〉 implies 〈clock〉

〈clock〉 ∈ K
〈tag〉 ∈ T

We also define the subset of sporadic specifications as follows:

Sporadic(ϕ) = {ϕatom ∈ ϕ | ϕatom is a sporadic atom}

The expression c1 sporadic τ on c2 is a generalization of the sporadic statement.
It means that clock c1 has to tick in an instant where time is τ on the time scale
of c2. Therefore c1 sporadic τ is the same as c1 sporadic τ on c1.

6 Nguyen Van, Balabonski, Boulanger, Keller, Valiron, Wolff

3.3 Primitives for Run Contexts

Symbolic runs are defined by run contexts constructed from a set of constraint
primitives introduced below. Run contexts may contain variables that can be
arbitrarily instantiated; instances of symbolic runs with ground terms are called
concrete runs.

Definition 1 (Run context). A run context Γ is a set containing constraint
primitives of the following kind:

K ⇑n clock K is ticking at instant index n
K 6⇑n clock K is not ticking (idle) at instant index n
K ⇓n x clock K has timestamp (tag) x at instant index n
x1 = α× x2 + β affine relation between x1 and x2 with constants α, β

where symbols x, x1, x2 can be variables or tag constants in T.

Note that a symbolic run can be instantiated as an infinite number of concrete
runs. We give below the interpretation of symbolic runs as concrete runs:

JΓ K =
⋂
γ∈Γ

JγK

JK ⇑nK =
{
ρ ∈ Σ∝ | ticks(ρn(K)) is true

}
JK 6⇑nK =

{
ρ ∈ Σ∝ | ticks(ρn(K)) is false

}
JK ⇓n τK =

{
ρ ∈ Σ∝ | tag(ρn(K)) = τ

}
Jτ1 = α× τ2 + βK =

{
ρ ∈ Σ∝ | τ1 = α× τ2 + β

}
It is possible to construct run contexts that contain contradictory primitive

constraints. They are interpreted as the empty set reflecting the fact that they
do not denote any concrete run. We observe the following:

Lemma 1. The consistency of a context Γ – i.e. whether JΓ K 6= ∅ – is decidable.

Proof sketch. The affine relations described above belong to the class of linear
arithmetic problems which are known to be decidable for integers and rationals,
using Fourier-Motzkin elimination. The propositional part is a SAT problem and
their combination remain decidable.

3.4 Configurations of the Execution Process

We now define the machinery for constructing symbolic runs. We chose to treat
TESL as a logic of resources, where some TESL formulae (such as sporadic,
which denotes a single event occurrence) are consumed, while others (such as
implies, which denotes a permanent constraint) are persistent. Processing these
formulae produces additional constraint primitives, which refine the shape of
satisfying symbolic runs.

A Symbolic Operational Semantics for TESL 7

The rules of our operational semantics relate configurations of our symbolic
execution process, similarly to triples in a Hoare logic. Configurations consist of:

n current simulation step index
Γ run context containing primitives, describing the “past”
ψ TESL-formula to satisfy in the “present”
ϕ TESL-formula to satisfy in the “future” of the process

and are formally introduced in:

Definition 2 (Configuration). A configuration is a tuple (Γ, n, ψ, ϕ) that we
write as Γ |=n ψ . ϕ

The operational semantics can be seen as an abstract machine, in which a
configuration corresponds to an abstract state comprising the past (Γ), present
(ψ) and future (ϕ) of the symbolic run under construction. Intuitively, the ab-
stract machine constructs a symbolic run by refining the current configuration
via the actions:

1. moving or duplicating parts from the future to the present (introduction)
2. then, consuming the present to produce the past (elimination)

3.5 Execution Rules

The execution rules of our abstract machine are defined by the→ relation, which
we decompose into →i and →e to identify introduction and elimination rules.

Introduction Rule for Instant Initialization We build a run by adding
instants to it. Initializing an instant makes time progress by copying constraints
(defined in subsection 3.2) from the future to the present. Sporadic constraints
are moved (consumed) rather than copied. Initializing an instant consists of:

– checking that the present constraints of the previous instant have been con-
sumed (i.e. ψ = ∅)

– copying permanent constraints from ϕ to ψ
– moving sporadic constraints from ϕ to ψ

This is defined by rule instanti, whose goal is to initialize a new instant.

Γ |=n ∅ . ϕ →i Γ |=n+1 ϕ .
(
ϕ− Sporadic(ϕ)

)
(instanti)

As an instant has been created, ψ contains instantaneous constraints that
are pending to be instantiated into Γ . We now give reduction rules to eliminate
formulae from ψ, adding constraints in Γ for the current instant n.

8 Nguyen Van, Balabonski, Boulanger, Keller, Valiron, Wolff

Elimination Rules for sporadic-on Formula K1 sporadic τ on K2 con-
strains K1 to tick when the time on K2 is τ . K sporadic τ is syntactic sugar for
K sporadic τ on K. Such a constraint can be satisfied in the current instant,
or postponed to a future instant. We therefore have two elimination rules for it:

Γ |=n ψ ∧ (K1 sporadic τ on K2) . ϕ

→e Γ |=n ψ . ϕ ∧ (K1 sporadic τ on K2)

(sporadic− one1)

Γ |=n ψ ∧ (K1 sporadic τ on K2) . ϕ

→e Γ ∪
{
K1 ⇑n
K2 ⇓n τ

}
|=n ψ . ϕ

(sporadic− one2)

Elimination Rule for tag relation An affine tag relation has to be satisfied
at every instant by adding a constraint on the tags of the corresponding clocks:

Γ |=n ψ ∧ (tag relation K1 = α×K2 + β) . ϕ

→e Γ ∪

K1 ⇓n tagnK1

K2 ⇓n tagnK2

tagnK1
= α× tagnK2

+ β

 |=n ψ . ϕ
(tagrele)

where tagnK1
and tagnK2

are symbolic values, which will be instantiated with
ground values in concrete runs.

Elimination Rules for implies An implication is satisfied at every instant,
either by forbidding a tick on the master clock (rule impliese1), or by making the
slave clock tick also (rule impliese2):

Γ |=n ψ ∧ (K1 implies K2) . ϕ →e Γ ∪
{
K1 6⇑n

}
|=n ψ . ϕ (impliese1)

Γ |=n ψ ∧ (K1 implies K2) . ϕ →e Γ ∪
{
K1 ⇑n
K2 ⇑n

}
|=n ψ . ϕ (impliese2)

Elimination Rules for time delayed implication
K1 time delayed by δt on K2 implies K3 means that whenever K1 ticks, K3

will tick after a delay of δt measured on the time scale of K2. It can be satisfied
either by forbidding a tick on K1 (with primitive K1 6⇑n), or by making K1 tick
and adding the corresponding sporadic-on constraint to the future formula ϕ:

Γ |=n ψ ∧ (K1 time delayed by δt on K2 implies K3) . ϕ

→e Γ ∪
{
K1 6⇑n

}
|=n ψ . ϕ

(time− delayede1)

Γ |=n ψ ∧ (K1 time delayed by δt on K2 implies K3) . ϕ

→e Γ ∪
{

K1 ⇑n
K2 ⇓n tagnK2

}
|=n ψ . ϕ ∧

(
K3 sporadic (tagnK2

+ δt) on K2

)
(time− delayede2)

A Symbolic Operational Semantics for TESL 9

3.6 Termination of a Simulation Step

A simulation step consists in building the next instant of the symbolic run by:

1. initializing an instant with reduction →i (uniquely defined by rule instanti);
2. eliminating all ψ-subformulae using →e elimination rules until ψ = ∅.

A simulation step is more formally defined as a reduction rule, with · the com-
position of relations, and →∗e the reflexive transitive closure of →e:

→ := {(Γ1 |=n ∅ . ϕ1)→i · →∗e (Γ2 |=n ∅ . ϕ2) | Γ1 and Γ2 are consistent}
(simulation)

Note that we add a consistency constraint on Γ -contexts as we are interested
in symbolic runs that have concrete instances. Indeed, reductions given by →
are purely syntactical and do not take into account the constraints in Γ . For
instance, →e allows adding K1 ⇑n to a context that already contains K1 6⇑n.

The termination of the computation of one simulation step→ is ensured by
the termination of →e, because the number of formulae in ψ strictly decreases
when a rule is applied. Moreover, whenever ψ is not empty, there is at least one
applicable elimination rule, so when →∗e terminates, ψ is necessarily empty and
we can proceed with the next simulation step.

Following the specification given as an example in section 2 (denoted as ϕ0),
we illustrate the use of our operational rules in Figure 3. We start with an empty
symbolic run and show the two first simulation steps on the left hand-side. Then
we focus on the first step and provide the underlying reduction details on the
right-hand side. This step is decomposed into the application of the introduction
rule instanti, then a sequence of elimination reductions (sporadic− one2, tagrele,
impliese2, time− delayede1), until irreducibility.

4 Heron: a Solver for TESL Specifications

Since the operational semantics can be seen as an abstract execution machine, its
implementation is conceptually straightforward. The resulting prototype solver,
called Heron4, is more general than the original deterministic TESL solver since
it is not restricted to “minimal” runs. It consists of approximately 2500 lines
of Standard ML code, and is compiled with MLton [22]. Heron is a standalone
command-line interpreter, which takes a TESL specification as input and pro-
duces prefixes of satisfying symbolic runs, written in the Value-Change Dump
format [3]. The solver is complete in the sense discussed in subsection 3.6, i.e. it
produces all satisfying runs up to a fixed step index. Assuming that the ‘future’
formula contains no contradiction, this means that the satisfying symbolic runs
have instances which are exactly the prefixes of all satisfying concrete runs.

Heron can be used in four modes:
4 Heron is distributed as free software at https://github.com/heron-solver/heron

https://github.com/heron-solver/heron

10 Nguyen Van, Balabonski, Boulanger, Keller, Valiron, Wolff

|=0 ∅ . ϕ0

0.0

0.0

1

|=1 ∅

0.0

0.0

60.0

1.0

1 2

|=2 ∅

1

|=1

min sporadic 0.0
sec = 60.0×min
min implies move
min time delayed by 1.0

on min implies min

0.0

1

|=1

sec = 60.0×min
min implies move
min time delayed by 1.0

on min implies min

0.0

0.0

1

|=1

min implies move
min time delayed by 1.0

on min implies min

0.0

0.0

1

|=1

{
min time delayed by 1.0

on min implies min

}
. . . .

(instanti)

(sporadic− one2)

(tagrele)

(impliese2)

(time− delayede2)

i

e

e

e

e

(simulation)

(simulation)

Fig. 3. Detail of the reduction steps of the operational semantics

A Symbolic Operational Semantics for TESL 11

Exhaustive exploration. The non-deterministic nature of our semantics allows
multiple choices for deriving runs. By default, they are all explored when no
specific simulation policy is given. In this mode, state-space explosion emerges
quickly.

Minimal fast simulation. Several heuristic policies are provided to restrict the
state-space, among them, the “minimal run strategy” mimics the original TESL
simulator by making events occur as early as possible, and only when mandatory
(a clock does not tick unless an implication or a sporadic constraint forces it to
tick). These policies turn Heron into an execution engine targeted at specific
kinds of runs.

Scenario monitoring. The state-space can also be restricted by the behavior of a
concrete system under test (SUT) observed at its interfaces (see Figure 1). The
observed behavior — both from the interface of system components and from
the architectural glue — is checked against the TESL specification.

Scenario testing. For testing, scenario monitoring is extended with the concept of
distinguished driving-clocks, for which Heron can produce tagged event instances
that are consistent with the current constraint-set (it essentially picks an instance
at each instant among the consistent instances). These event-instances can be
converted into suitable stimuli for the SUT (however, we have currently not yet
implemented a driver for this).

In the following, we discuss the monitoring scenario in more detail and then
refine it into a kind of input-output conformance [19] test scenario.

4.1 Conformance Monitoring and Error Detection

The Heron solver can be used as an online monitoring tool, permitting to tackle
the infinite number of possibilities for concrete test-runs at all possible instants.
The conformance monitoring scenario makes the following assumptions:

1. we assume the monitor has an access to the SUT interfaces (see Figure 1)
via a driver that abstracts observations into tagged events on clocks;

2. we assume that the computing time of the driver and of Heron can be ne-
glected with regard to the execution time of the SUT, and

3. we assume that the system is output deterministic; i.e after an initialization
of the SUT by the tester, it is possible to track the state of the SUT by only
observing its inputs and outputs [8].

The idea for the monitoring scenario is to filter out the branches in the set of
runs maintained by Heron that are no longer compatible with the behavior of the
system, as observed through the interfaces. If the SUT produces a behavior that
does not conform to the specification, the solver will fail to produce a satisfying
configuration and abort.

A monitoring sequence is illustrated in Figure 4. The solver first starts by
generating all satisfying states (circled |=). It then keeps the states that are

12 Nguyen Van, Balabonski, Boulanger, Keller, Valiron, Wolff

compatible with the observed behavior of the SUT (plain circles), while dropping
the other ones (dashed grey circles). When the SUT produces a bad behavior
(circled 6|=), the solver drops all of its states and finds none that match the
behavior of the SUT. No further simulation is possible.

Paths generated by Heron

|=

|= |=

|= |= |=

|= |= |=

SUT

|=

|=

|=

6|=

Step 0
Conformance

Step 1
Conformance

Step 2
Conformance

Step 3
Violation

Fig. 4. Executing Heron and the SUT in parallel

Example: based on the specification shown in Listing 2 on page 3, we use the
@scenario directive to feed Heron with the observed behavior, and the @step
directive to take this behavior into account and update the reachable states:

7 @scenario strict 1 min move
8 @step
9 @scenario strict 2 min move

10 @step
11 @scenario strict 3 move
12 @step
13 @scenario strict 4 min move
14 @step

For instance in Line 7, we tell Heron that we observed that clocks min and
move tick at instant 1. The strict option indicates that only the given clocks
tick, all the others remain idle in that instant. Alternatively, we could use:

9 @scenario strict 2 (min-> 1.0) move

to indicate that the tag on clock min at this instant is 1.0. This instantiates
the symbolic tag variable in the symbolic run with a concrete tag for clock min.
Thus, the observations on the concrete run of the SUT can be used to prune
execution branches that are not relevant for the future of the run.

A Symbolic Operational Semantics for TESL 13

In the above example, the solver finds 24 symbolic runs, among them the one
shown in Figure 2(b):

@print
Simulation result:

sec min move
[1] � ↑ 0.0 ↑
[2] � ↑ 1.0 ↑
[3] � � ↑
[4] � ↑ 2.0 ↑

The output shows a run containing four instants, with a timeline for each of
the specified clocks (sec, min, move). A ticking clock is depicted by the upwards
arrow (↑) with the associated time tag on the right. An idle clock is depicted by
the circled slash (�). If nothing is specified for a clock, it can either tick or not.

Property violation. As long as the SUT produces behaviors for which the
solver does not detect a contradiction, the observed run “potentially conforms”
to the TESL specification. However, if a non-conforming behavior occurs, the
solver detects a contradiction in its constraint set. For instance, if in step 3,
clock min ticks but clock move does not, we have:

7 @scenario strict 1 min move
8 @step
9 @scenario strict 2 min move

10 @step
11 @scenario strict 3 min
12 @step

In this case, the solver detects the violation of the min implies move formula.

4.2 Input/output Conformance Testing

We consider online testing as an extension of online monitoring with a policy
for generating input stimuli on the fly. This policy explores the state space with
respect to a particular coverage criterion.

In order to use Heron as an online testing tool, the clocks that are considered
as inputs must be declared as driving-clocks:

7 @driving-clock move

After this declaration, Heron may be instrumented by:

8 @event-solve 2

which leads to the invocation of a constraint solver (lemma 1) for step 2, which
by default choses for the driving clocks, an input that satisfies the constraints.
More sophisticated generation policies could be implemented.

14 Nguyen Van, Balabonski, Boulanger, Keller, Valiron, Wolff

Conformance: if the future of a configuration (see subsection 3.4) becomes
empty or stable, the observed run “fully conforms” to the TESL specification. A
(future) specification is stable, if it represents a Buchi-automaton producing an
infinite behaviour such as:

min time delayed by 1.0 on min implies min

which represents an infinite stream of event occurrences, each separated from
the previous one by a 1.0 time delay measured on the time scale of clock min.
For the moment, we only have an incomplete set of patterns to characterize
stable specifications. Moreover, we cannot conclude if we do not reach such a
configuration during the test, which corresponds to the classical inconclusive
situation in conformance testing.

4.3 Performance

We give some benchmarks that were made on a conventional laptop computer
with an Intel Core™ i5-2520M CPU @ 2.50GHz and 8 GB of RAM. They are
based on examples provided by the official gallery of TESL and fully logged in
Table 1. They highlight the state-space explosion for exhaustive paths, while
depicting the feasibility of scenario monitoring of a SUT.
```````````Example

Policy and steps Exhaustive Minimal Run SUT Monitoring
1 2 3 4 1 2 3 4 1 2 3 4

HandWatch Time 0.02 0.00 0.01 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02
Memory 2412 3124 6464 10264 2592 2512 3220 3220 2496 3236 3892 5768

LightSwitch Time 0.00 0.06 3.20 10:02.81 0.00 0.00 0.01 0.02 0.00 0.02 0.04 0.11
Memory 3132 9872 288120 4029676 3172 5300 7088 7064 3180 7080 8140 12444

ConcurrentComp Time 0.00 1.77 10:26.32 Timeout 0.02 0.06 0.08 0.06 0.02 0.23 1.19 3.27
Memory 7064 145208 4029688 7120 7916 7856 7860 7136 15956 68864 121884

LeapYears Time 0.01 3.24 15:12.41 Timeout 0.05 0.06 0.07 0.08 0.01 0.52 1.12 1.53
Memory 8320 217688 4029792 8356 8384 8260 8360 8332 39832 39820 39884

Engine Time 0.00 0.03 0.32 8.34 0.00 0.01 0.01 0.01 0.00 0.02 0.04 0.08
Memory 3212 7752 20728 342240 3300 4780 6628 7196 3252 7384 8044 8460

Table 1. Time (in sec or min:sec) and memory usage (in kB) with respect to a given
policy and a fixed number of simulation steps for several examples of the TESL gallery

5 Conclusion

We have presented the Tagged Event Specification Language (TESL) to specify
the timing behavior at the interfaces of components of an heterogeneous system.
We have defined its operational semantics by a set of symbolic evaluation rules,
permitting the construction of symbolic representations of infinite sets of timed
behaviors (runs). We have shown how our semantics leads naturally to an im-
plementation of a solver that can be used to monitor and test the architectural
glue of heterogeneous systems with timed behavior.

The introduction of driving-clocks (see subsection 4.2) paves the way for the
distinction between mere observations of the SUT (and their relative check of



A Symbolic Operational Semantics for TESL 15

conformance) and the stimulation by timed inputs consistent with the constraint
set that is monitored in a particular symbolic run. This gives TESL the flavor of
an input-output automaton or labelled transition system for which a well-known
theoretic testing framework exists [19] which also has been extended to timed
behavior [17,13]. Due to their proximity to model-checking, these frameworks are
usually restricted to discrete time and cannot treat causality. To overcome the
former limitation, an entire research community emerged under the label online
testing [2] which discusses techniques based on symbolic execution in parallel to
test execution. Our work can be seen as a form of online testing for heterogeneous
timed systems with arbitrary linear relations between time scales.

Related work. The TESL language is sourced from different ideas. It origi-
nally started as a complementary approach to the CCSL specification language,
by keeping purely synchronous logical clocks, while adding support for time tags
and time scale relations as described in the Tagged Signal Model [14], which al-
lows specifying the occurrence of events after a chronometric delay. The original
solving algorithm relies on a constructive semantics in the style of the Esterel
synchronous language [5]. Compared to CCSL, the restriction to purely syn-
chronous constraints in TESL comes from the necessity to compute time tags,
which is not possible when asynchronous relations give only precedence con-
straints on event occurrences. The style of executable semantics we give in this
article is similar to [23] but we abstract time with symbols while preserving the
bounded computability of the run state-space.

The idea of a timed architectural composition language is conceptually simi-
lar to orchestration languages for web-services, for example BPEL [4] and more
formal treatments thereof such as [21]. BPEL is designed to organize and syn-
chronize a set of communication threads, called conversations. In contrast to
TESL, BPEL-like languages allow for dynamic thread creation and therefore a
dynamic evolution of channels and interfaces; however, they are not designed to
treat time, duration, and causality of possibly periodic events.

Future Work. A strengthening of both foundational as well as practical aspects
of the TESL language is desirable. Although the operational semantics has been
carefully designed, there is no formal proof of the inherent logical consistency
of the rule set: to this end, a denotational version is currently under develop-
ment (which assures consistency by construction) in Isabelle/HOL [16] which
could serve as a reference in a validity proof of these rules (which thus become
derived). This would allow also pave the way to describe the exchange of data
between sub-components, either process-oriented [18] or program-oriented [7].
Furthermore, the conformity of a SUT to a spec S can only be established when
the possible futures becomes either trivial or stable. For now, this can only by
decided for certain patterns based on an automata-based reasoning. The deno-
tational semantics may help to find a less ad-hoc characterization of “stability”
based on co-induction. On the practical side, we wish to explore more refined
heuristics to monitor and test heterogeneous systems with Heron.



16 Nguyen Van, Balabonski, Boulanger, Keller, Valiron, Wolff

References

1. UML profile for MARTE™: Modeling and analysis of real-time embedded systems™,
http://www.omg.org/spec/MARTE/1.1/

2. International online testing symposion (1995-2017), http://tima.imag.fr/
conferences/iolts/

3. IEEE standard verilog hardware description language. IEEE Std 1364-2001 (2001),
https://doi.org/10.1109/IEEESTD.2001.93352

4. Specification: Business process execution language for web services version
1.1 (2003), http://www-106.ibm.com/developerworks/webservices/library/
ws-bpel/

5. Berry, G.: The constructive semantics of pure Esterel (1996)
6. Boulanger, F., Jacquet, C., Hardebolle, C., Prodan, I.: TESL: a language for recon-

ciling heterogeneous execution traces. In: Twelfth ACM/IEEE International Con-
ference on Formal Methods and Models for Codesign (MEMOCODE 2014). pp.
114–123. Lausanne, Switzerland (Oct 2014), http://ieeexplore.ieee.org/xpl/
articleDetails.jsp?arnumber=6961849

7. Brucker, A.D., Wolff, B.: An extensible encoding of object-oriented data models in
HOL. J. Autom. Reasoning 41(3-4), 219–249 (2008), https://doi.org/10.1007/
s10817-008-9108-3

8. Brucker, A.D., Wolff, B.: Monadic sequence testing and explicit test-refinements.
In: Tests and Proofs - 10th International Conference, TAP 2016, Held as Part
of STAF 2016, Vienna, Austria, July 5-7, 2016, Proceedings. pp. 17–36 (2016),
http://dx.doi.org/10.1007/978-3-319-41135-4_2

9. Combemale, B., Cheng, B.H., France, R.B., Jezequel, J.M., Rumpe, B.: Global-
izing Domain-Specific Languages, LNCS, Programming and Software Engineer-
ing, vol. 9400. Springer International Publishing (2015), https://hal.inria.fr/
hal-01224096

10. Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S.,
Sachs, S., Xiong, Y.: Taming heterogeneity - the Ptolemy approach. In: Proceedings
of the IEEE. pp. 127–144 (2003)

11. Garcés, K., Deantoni, J., Mallet, F.: A Model-Based Approach for Reconciliation of
Polychronous Execution Traces. In: SEAA 2011 - 37th EUROMICRO Conference
on Software Engineering and Advanced Applications. IEEE, Oulu, Finland (Aug
2011), https://hal.inria.fr/inria-00597981

12. Hardebolle, C., Boulanger, F.: Exploring multi-paradigm modeling techniques.
SIMULATION: Transactions of The Society for Modeling and Simulation Inter-
national 85(11/12), 688–708 (November/December 2009), /software/downloads/
ModHelX/2009MPMSimulation.pdf

13. Krichen, M., Tripakis, S.: Conformance testing for real-time systems. Form.
Methods Syst. Des. 34(3), 238–304 (Jun 2009), http://dx.doi.org/10.1007/
s10703-009-0065-1

14. Lee, E.A., Sangiovanni-Vincentelli, A.: A framework for comparing models of com-
putation. IEEE Trans. CAD 17(12) (1998)

15. Mallet, F., Deantoni, J., André, C., De Simone, R.: The Clock Constraint Spec-
ification Language for building timed causality models. Innovations in Systems
and Software Engineering 6(1-2), 99–106 (Mar 2010), https://hal.inria.fr/
inria-00464894

16. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, LNCS, vol. 2283. Springer (2002)

http://www.omg.org/spec/MARTE/1.1/
http://tima.imag.fr/conferences/iolts/
http://tima.imag.fr/conferences/iolts/
https://doi.org/10.1109/IEEESTD.2001.93352
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6961849
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6961849
https://doi.org/10.1007/s10817-008-9108-3
https://doi.org/10.1007/s10817-008-9108-3
http://dx.doi.org/10.1007/978-3-319-41135-4_2
https://hal.inria.fr/hal-01224096
https://hal.inria.fr/hal-01224096
https://hal.inria.fr/inria-00597981
/software/downloads/ModHelX/2009MPMSimulation.pdf
/software/downloads/ModHelX/2009MPMSimulation.pdf
http://dx.doi.org/10.1007/s10703-009-0065-1
http://dx.doi.org/10.1007/s10703-009-0065-1
https://hal.inria.fr/inria-00464894
https://hal.inria.fr/inria-00464894


A Symbolic Operational Semantics for TESL 17

17. Schmaltz, J., Tretmans, J.: On Conformance Testing for Timed Systems, pp. 250–
264. Springer Berlin Heidelberg, Berlin, Heidelberg (2008), http://dx.doi.org/
10.1007/978-3-540-85778-5_18

18. Tej, H., Wolff, B.: A corrected failure divergence model for CSP in Isabelle/HOL.
In: FME ’97: Industrial Applications and Strengthened Foundations of Formal
Methods, 4th International Symposium of Formal Methods Europe, Graz, Austria,
September 15-19, 1997, Proceedings. pp. 318–337 (1997), https://doi.org/10.
1007/3-540-63533-5_17

19. Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence. Soft-
ware - Concepts and Tools 17(3), 103–120 (1996)

20. Vara Larsen, M.E., Deantoni, J., Combemale, B., Mallet, F.: A Behavioral Co-
ordination Operator Language (BCOoL). In: 18th International Conference on
Model Driven Engineering Languages and Systems (MODELS 2015) (Aug 2015),
https://hal.inria.fr/hal-01182773

21. Viroli, M.: A core calculus for correlation in orchestration languages. The Jour-
nal of Logic and Algebraic Programming 70(1), 74 – 95 (2007), http://www.
sciencedirect.com/science/article/pii/S1567832606000300

22. Weeks, S.: Whole-program Compilation in MLton. In: Proceedings of the 2006
Workshop on ML. pp. 1–1. ML ’06, ACM, New York, NY, USA (2006), http:
//doi.acm.org/10.1145/1159876.1159877

23. Zhang, M., Mallet, F.: An Executable Semantics of Clock Constraint Specifica-
tion Language and Its Applications, pp. 37–51. Springer International Publishing,
Cham (2016), http://dx.doi.org/10.1007/978-3-319-29510-7_2

http://dx.doi.org/10.1007/978-3-540-85778-5_18
http://dx.doi.org/10.1007/978-3-540-85778-5_18
https://doi.org/10.1007/3-540-63533-5_17
https://doi.org/10.1007/3-540-63533-5_17
https://hal.inria.fr/hal-01182773
http://www.sciencedirect.com/science/article/pii/S1567832606000300
http://www.sciencedirect.com/science/article/pii/S1567832606000300
http://doi.acm.org/10.1145/1159876.1159877
http://doi.acm.org/10.1145/1159876.1159877
http://dx.doi.org/10.1007/978-3-319-29510-7_2

	A Symbolic Operational Semantics for TESL

