
HAL Id: hal-01584989
https://centralesupelec.hal.science/hal-01584989

Submitted on 11 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

GPFinder: Tracking the Invisible in Android Malware
Mourad Leslous, Valérie Viet Triem Tong, Jean-François Lalande, Thomas

Genet

To cite this version:
Mourad Leslous, Valérie Viet Triem Tong, Jean-François Lalande, Thomas Genet. GPFinder: Track-
ing the Invisible in Android Malware. 12th International Conference on Malicious and Unwanted Soft-
ware, Oct 2017, Fajardo, Puerto Rico. pp.39-46, �10.1109/MALWARE.2017.8323955�. �hal-01584989�

https://centralesupelec.hal.science/hal-01584989
https://hal.archives-ouvertes.fr

GPFinder: Tracking the Invisible in Android Malware

Mourad Leslous
EPI CIDRE

Inria, CentraleSupelec, Univ. Rennes 1, CNRS
IRISA UMR 6074,

F-35065 Rennes, France
mourad.leslous@inria.fr

Valérie Viet Triem Tong
EPI CIDRE

CentraleSupelec, Inria, Univ. Rennes 1, CNRS
IRISA UMR 6074,

F-35065 Rennes, France
valerie.viettriemtong@centralesupelec.fr

Jean-François Lalande
INSA Centre Val de Loire

Univ. Orléans
LIFO EA 4022,

F-18020 Bourges, France
jean-francois.lalande@insa-cvl.fr

Thomas Genet
EPI Celtique

Univ. Rennes 1, Inria
IRISA UMR 6074,

F-35065 Rennes, France
thomas.genet@irisa.fr

Abstract

Malicious Android applications use clever techniques to
hide their real intents from the user and avoid detection by
security tools. They resort to code obfuscation and dynamic
loading, or wait for special events on the system like reboot
or WiFi activation. Therefore, promising approaches aim to
locate, study and execute specific parts of Android applica-
tions in order to monitor for suspicious behavior. They rely
on Control Flow Graphs (CFGs) to obtain execution paths
towards sensitive codes. We claim here that these CFGs
are incomplete because they do not take into considera-
tion implicit control flow calls, i.e., those that occur when
the Android framework calls a method implemented in the
application space. This article proposes a practical tool,
GPFinder, exposing execution paths towards any piece of
code considered as suspicious. GPFinder takes the Android
framework into account and considers explicit and implicit
control flow calls to build CFGs. Using GPFinder, we give
global characteristics of application CFGs by studying a
dataset of 14,224 malware and 2,311 goodware samples.
We evaluate that 72.69% of the analyzed malicious samples
have at least one suspicious method reachable only through
implicit calls.

1 Introduction

The smartphone market has known a fast growth in re-
cent years, and these devices become omnipresent in daily

life. Smartphones are mostly governed by the Android op-
erating system (87% of the smartphone market in the sec-
ond quarter of 2016 [12]). Naturally, Android has become a
major target for malware of numerous types [10]. Malware
is, for its authors, a simple way to make money by send-
ing messages to premium numbers, ransoming the user or
remotely controlling the device’s resources. To distribute
their malware, authors use repackaging/piggybacking tech-
niques: they inject malicious code in popular applications
and redistribute them in alternative markets [8, 15].

To counter Android malware spread, many detection ap-
proaches have been proposed. Some of the proposed tech-
niques perform static analysis [6, 18], while others try to ob-
serve malicious behavior [21]. Unfortunately, Android mal-
ware use clever tricks to avoid detection and, in the end, is
able to perform malicious activities. For instance, to avoid
static analysis, malware use code obfuscation [5, 19] and
dynamic code loading from which the malicious code is
downloaded from a remote server or loaded from a local
file. Additionally, Android malware also tries to avoid dy-
namic analysis by executing its malicious code only under
certain circumstances such as checking the country where
the smartphone is located, or waiting for a system event, a
command from a remote server, or a specific duration [9].

Recent approaches try to automatically characterize ma-
licious behavior [2, 20, 24, 26]. They rely on a combination
of static and dynamic analysis. A first static analysis of the
code identifies the most suspicious locations in the code and
then a particular run of the application targets the execution
of the code previously identified as suspicious.

ConDroid [20] aims to launch suspicious code in the app
to reveal malicious activities. It lets the definition of sus-
picious code types up to the user, such as dynamic loading
of code. First, ConDroid finds a path from an entry point,
such as lifecycle methods and input events, to the suspicious
code location. Second, it performs an adaptive concolic ex-
ecution by instrumenting the app and setting the necessary
variable values in order to observe its behavior.

Similarly, GroddDroid [2] automatically triggers and
monitors suspicious code. First, it locates code consid-
ered to be suspicious which is protected or hidden (ci-
phered, encoded, obfuscated or dynamically loaded) or
when it calls a sensitive API method identified in [1],
such as sending a SMS. Then, GroddDroid exhibits
execution paths from the entry points, which can be
Activity.onCreate(Bundle) or other similar entry
points, to the suspicious code. Next, the app is instrumented
by forcing the necessary branches in the execution path to
reach the malicious code when the malware is launched.

These approaches strongly rely on the computation of
application global control flow graphs (CFGs) that repre-
sent all execution paths in the program [3]. Such CFGs
are useful only when they are complete, or at least in this
context, when they contain the necessary execution paths
towards suspicious code. Unfortunately, these approaches
do not take into consideration all types of execution paths
because they only analyze the application code, which leads
to missing paths that pass though the Android framework.

The goal of this article is to automatically exhibit exe-
cution paths towards all possible suspicious locations in the
code by computing global CFGs with implicit edges. This
is implemented in GPFinder (for GroddDroid Path Finder)
as the main practical outcome of this work. GPFinder helps
security analysts retrieve execution paths that may trigger
the malicious code, even when they pass through Android
framework’s callbacks. When studying these executions
paths, the security analyst can understand how the suspi-
cious code is protected by triggering conditions. We use
GPFinder to study a collection of 14,224 malware samples
and we show that including implicit calls to build CFGs im-
proves the analysis. We evaluate that 72.69% of the sam-
ples have at least one suspicious code location which is only
reachable through implicit calls. Furthermore, we analyze
the common structures of Android malware, we highlight
their favorite entry points and how they use implicit calls.

The rest of the article is structured as follows. Sec-
tion 2 details the importance of implicit calls in CFGs
and Section 3 discusses the impact for the Android frame-
work. Next, Section 4 details how the implemented tool,
GPFinder, takes advantage of CFGs to study the inner-
structure of an Android malware set. Section 5 discusses the
completeness of malware’s CFGs in the literature. Lastly,
Section 6 and 7 discuss the results and conclude the paper.

2 Execution Paths with Implicit Transitions

Android applications are distributed as archives that con-
tain resource files, native libraries, an application manifest
and the Dalvik bytecode. Essential building blocks of an
Android app cooperate and may have independent lifecy-
cles. Activities manage screens of the user interface; Ser-
vices perform long-running background tasks such as play-
ing music; Content providers manage shared data, such as
SQLite databases; and Broadcast Receivers receive system-
wide broadcasts announcing events such as SMS reception.
Android applications are written mostly in Java and com-
piled to Dalvik bytecode. The bytecode is stored in a .dex
file which is distributed with the resources needed to exe-
cute the application. A program in Dalvik bytecode format
can be easily translated into Jimple intermediate represen-
tation [23] by Soot [22], which makes it easy to compute a
CFG for each method independently at the granularity of a
Jimple statement. In these graphs, an oriented edge between
a node A and a node B indicates that statement B could be
executed immediately after statement A.

Method CFGs constitute an important step towards accu-
rate static analysis. Nevertheless, we are mostly interested
by the global or inter-procedural CFG that represents all
execution scenarios for the whole application. Obtaining
an execution path towards a malicious code location shows
how the malware is executed, and how it is protected by
triggering techniques. The global graph is constructed by
connecting all the method graphs, i.e., by adding edges rep-
resenting inter-procedural calls. There exist two types of
inter-procedural calls: explicit and implicit.

Explicit Call: A method a() explicitly calls a method
b() when the code of a() contains a call (an invoke
statement) of the method b(). For example, in Listing 1
line 11, the statement run(content) is an explicit
call to the method MailTask.run(String). For
such a case, we build an edge from the node representing
the invoke statement run(content) of the method
doInBackground() towards the node containing the
first statement in the CFG of the method run(String).
This is represented on the right part of Figure 1

Implicit Call: A method a() implicitly calls a method
b() when the following conditions hold:

1. a() contains a call (an invoke statement) of a
method c() which is defined in the Android frame-
work.

2. c() invokes the method b() either directly or
through a sequence of method calls in the framework
that ends by an invocation of b().

1 public class ClientActivity extends
Activity {

2 protected void onCreate(Bundle bundle) {
3 /* ... */
4 MailTask mt = new MailTask("",

((Context) this))
5 mt.execute(new Integer[0]);
6 }
7 }
8 public class MailTask extends AsyncTask {
9 protected String doInBackground

(Integer... args) {
10 /* ... */
11 run(content);
12 return "doInBackground:" +

this.content;
13 }
14 public void run(String arg) {
15 /* ... */
16 String str2 = ((TelephonyManager)

context.getSystemService("phone")).
getDeviceId();

17 ArrayList localArrayList = new
ArrayList();

18 localArrayList.add(new
BasicNameValuePair("imei", str2));

19 localArrayList.add(new
BasicNameValuePair ("count",
Integer. toString(i)));

20 localArrayList.add(new
BasicNameValuePair("notebook",
"Number:" + i + "\r\n" + str1));

21 String url = "######.com/MailTask.php";
22 HttpSend.postData(url, localArrayList);
23 }
24 }

Listing 1. Implicit call in a real malware

For example, the method doInBackground() in
Listing 1 is implemented by the application but invoked by
the Android framework. This method does not have an in-
coming control flow edge starting from the application it-
self, and that is why such methods are called callbacks. If
a malicious code is located in a method which is implicitly
called, it will be considered as unreachable by most exist-
ing static analyzers since they do not take into account the
Android framework.

For example, Listing 1 details an example of code
extracted from a spyware1 that sends sensitive information
like the device ID and the contact list to a remote server.
In this malware, the entry point is ClientActivity.

1malware SHA-256: 45d21e32698d1536a73e42c1e5131c29ca94-
b9d9d1bd5c744bd74ffc2af6853e

onCreate(). The malicious code is mainly the last
statement, namely HttpSend.postData(url,
localArrayList) appearing in the method
run(String). This statement leaks sensitive in-
formation previously retrieved by calling context.
getSystemService("phone").getDeviceId().
The main goal of dynamic analysis is thus to ob-
serve this application executing the suspicious method
run(String). The method doInBackground() is
implicitly called when running MailTask.execute().

Obviously, the CFG of this code which is de-
picted in Figure 1 could be incomplete if one does
not take into consideration the implicit call from
MailTask.execute(new Integer[0]) (line 5)
to MailTask.doInBackground (String...
params) (line 9). Additionally, running directly
MailTask.execute() by instrumenting the applica-
tion without finding a complete path from an entry point is
meaningless since the suspicious method will be isolated
from its context and could not have access to objects built
in ClientActivity.onCreate(). A standalone
analysis of the app code could not reveal the existence
of such a call. Thus, we have to analyze additional code
outside the application, i.e. in the Android framework to
determine implicit calls and build a reliable CFG.

3 Considering the Android Framework

Implicit edges in the global CFG are due to methods im-
plemented by the application but invoked by the Android
framework (callback methods). In EdgeMiner [7], Cao et
al. are already concerned about the lack of these callbacks
in global CFGs. They pointed out that the Android frame-
work is aware of the callbacks existence thanks to the so-
called registration methods. A registration method is de-
fined in the Android framework space and called by the ap-
plication. The registration method calls the callback method
directly or through a sequence of method calls inside the
framework space. Cao et al. have statically analyzed the
24,089 classes of the Android framework and extracted
a list of 5,125,472 registration-callback pairs responsible
of implicit control flow calls. These summaries are un-
der the form registration#callback#position,
where registration and callback point out the in-
volved methods and the integer position denotes the place
of the registration’s argument responsible of call-
ing the callback. For instance, EdgeMiner contains
the following rules that indicates that a call to the method
execute() induces a call to doInBackground().

AsyncTask AsyncTask.execute(Object[]) #
Object AsyncTask.doInBackground(Object[])
0

Void onCreate(Bundle arg7)
String doInBackground

(Integer... paramVarArgs) void run(String paramString)

mt.execute(new Integer[0])

super.onCreate(arg7) Integer[] arrayOfInteger =
new Integer[1];

run(this.content)

String str1 = ""

HttpSend.postData
(url, localArrayList)

Android
Framework

...

... ...

... ...

Figure 1. Global CFG with implicit calls

The link between the registration (execute()) and
the callback (doInBackground()) is the defining class
AsyncTask of the registration method which is of the
same type as the callback class. This information is given
by the position 0 indicated in the above-mentioned
EdgeMiner rule.

We propose to go one step further than EdgeMiner and
combine the analysis of the Dalvik class hierarchy with the
EdgeMiner rules in order to compute a global CFG with
implicit edges of any Android application. With a global
CFG computed by our tool GPFinder, we intend to find all
execution paths leading towards a specific method in the
application bytecode, especially suspicious ones.

GPFinder computes method graphs and then connects
them with implicit edges. For each pair (invoke(b()),
a()) where b() is a framework method and a() is a
method overridden in the application code, we add an
edge from node invoke(b()) to node a() iff. we find
a rule registration#callback#position
in EdgeMiner summaries where b() equals or
overrides registration and a() overrides
callback. A method x() overrides any callback or
registration when the following conditions hold:

Name: The overriding method in the app code has the same
name as in the EdgeMiner rule.

Defining class: The defining class of x() is a subclass of
the one defining the callback/registration.

Return type: The type returned by x() is a subtype of the
one returned by the callback/registration.

Arguments: Any argument of x() is a sub-
type of the corresponding argument in the
callback/registration.

In addition, if the position p = 0, the callback
class must be a subtype of the registration class. If p > 0,
the callback class must be the same as the pth argument
of the registration method.

4 How to Reach Suspicious Code

In this section, we explain how GPFinder works and we
show two practical experiments performed with it. First,
we detail a complete analysis on a malware sample per-
forming SMS fraud and exfiltrating personal data. This first
experiment explains how GPFinder improves further secu-
rity analysis. In a second part, we detail an analysis that
takes as input a collection of 14,224 applications consid-
ered as known malware. On this malware set we exhibit
all possible execution paths starting form entry points and
leading to malicious code locations. The malicious code
is here automatically located by a heuristic detailed here-
after, which means that the targeted code is malicious or
at least suspicious. The second analysis gives an overview
of the malware features such as favorite entry points, most
frequent malicious code types, the average number of ex-
ecution paths leading to malicious code locations, the av-
erage number of triggering conditions protecting the mali-
cious code from dynamic analysis, and the average number
of implicit calls protecting the malicious code from static
analysis. Lastly, we analyze a collection of 2,311 goodware
samples to emphasis the difference between the character-
istics of malicious and benign applications.

4.1 GPFinder’s Analysis Steps

Suspicious code location. GPFinder automatically iden-
tifies suspicious methods in the application’s bytecode. For
that purpose, it relies on a heuristic explained in [2]. Intu-
itively, the more a method uses sensitive API calls the more
it is suspicious. Sensitive API methods have been split into
categories related to networking, telephony, cryptography,
binary code execution, SMS, and dynamic code loading.
Note that one can remove or add any method or class to
this list. GPFinder sets a score of risk for each category
and computes the total risk for each method. Methods with
non-zero scores become targets for the next analysis step.

Control flow graph computation. GPFinder computes
the global control flow graph with implicit interprocedural
calls and highlights all the execution paths starting from an
entry point and leading to each suspicious method.

GPFinder’s contribution. GPFinder gives valuable in-
formation with a relatively short time of analysis for the se-
curity experts since it automatically locates the most suspi-
cious code, computes all execution paths towards these sus-
picious sites and explains how the malware is protected by
triggering conditions. For example, we analyzed the mal-
ware sample mentioned in Section 2 which performs SMS
fraud and exfiltrates personal data. For this piece of mal-
ware, the analysis took 13.6 seconds, and GPFinder found
a total of 13 suspicious methods and exhibited 22 execution
paths in the global CFG, starting from entry points and lead-
ing to methods considered as suspicious. These execution
paths contains 14 implicit edges. All of them are presented
in the tool’s output which permits to understand how the
malware exploits the framework. Finally, GPFinder details
executions paths one after the other. For each of them it de-
tails the sequence of method calls, and points out how many
conditions protect the malicious code.

Most of the conditions that are in the execution paths
are just ordinary, nevertheless some of them are interest-
ing from a security point of view. Indeed, some conditions
are used by malware to trigger malicious actions. Listing 2
shows a triggering condition example where the IMEI of the
device is sent to a remote server when a SMS is received.
This condition is extracted from the previous malware sam-
ple.

4.2 Experiment on a Dataset of Malware

We led a similar experiment on a collection of 14,224 de-
tected malware samples randomly chosen from a database
provided by koodous.com. The global CFG computation
takes an average time of 94.23 seconds per sample of an av-

1 public void onReceive(Context
paramContext, Intent intent) {

2 if(!intent.getAction().equals("android.
provider.Telephony.SMS_RECEIVED")) {

3 /* ... */
4 localArrayList.add(new

BasicNameValuePair("imei",
"IMEI"));

5 new HttpSend("http://up.#######.com/",
localArrayList).execute(new
Integer[0]);

6 }
7 /* ... */
8 }

Listing 2. Triggering condition

Figure 2. Ratio of APKs calling a considered
category of suspicious API

erage APK size of 190 kB. We show below the synthesis of
this experiment.

Suspicious code type. In the whole malware set, we
found 159,053 suspicious methods, which correspond to
4.5% of the total methods in the collection. This means an
average of 11.18 suspicious methods per application. Fig-
ure 2 depicts the ratio of APKs (in orange) found in the
malware collection that have a positive score risk divided
by categories of suspicious code (cf. Section 4.1 for suspi-
cious code categories).

Entry points. Android applications can be launched
by a number of events, such as when the app launcher
is pressed, an Intent is received, etc. Consequently,
an Android application does not have only one entry
point but a set of entry points like lifecycle callbacks
(onX() methods). There exist mainly seven entry life-
cycle callbacks belonging to three main categories: Call-
backs allowing to create, start or resume an Activity,
those enabling to create, start or bind a Service,

Figure 3. Use of entry points for reaching
suspicious methods

and lastly a callback (BroadcastReceiver: void
onReceive) that wakes up the application when it is no-
tified by a system event.

Among these entry points, we evaluate which
ones are the most used to reach the suspicious
code. Results are detailed in Figure 3 (in or-
ange). Our experiments reveal that malware prefer
BoadcastReceiver.onReceive(Context,
Intent) and Activity.onCreate(Bundle) over
other entry points. The use of the latter is common as
it enables to launch applications using their launcher
icon. Nevertheless, the heavy usage of onReceive()
permits to trigger malicious actions whenever the app
receives an Intent broadcast like BOOT COMPLETED or
SMS RECEIVED. These entry points permit to easily
add malicious code to a benign application without much
because the malicious code tends to be independent from
the benign one.

Implicit transitions leading to suspicious code Implicit
edges in the application’s global CFG prevent security anal-
ysis tools that rely on CFGs from reaching some malicious
code if the Android framework code is not taken into ac-
count.

Our results shows that 61.34% of all suspicious meth-
ods are reachable (they have at least one path leading to
them from an entry point.) We found also that 47.82% (al-
most half) of the reachable suspicious methods are reach-
able only through implicit interprocedural calls. More glob-
ally, 72.69% of malware have at least one suspicious piece
of code hidden behind implicit calls without any alternative
execution path. These results show the importance of in-
cluding implicit interprocedural calls in the phase of build-

ing application CFGs, since they almost double the num-
ber of reached suspicious methods in our analyzed malware
dataset. Obviously, an analysis tool that relies on applica-
tion CFGs to reach targeted code without taking into consid-
eration this type of calls could miss a part of the malicious
behavior.

We have also focused on the nature of implicit calls. We
discovered that one of the most used implicit calls is due
to the pair of registration-callback: (Thread.start(),
Runnable.run()). Such callback are used to launch
a thread from the main application. They can be used to
perform heavy asynchronous tasks like downloading data
from Internet or encrypting files, which may slow down ac-
tivities and affect the user experience or force Android to
kill the application. We find also that many callbacks from
the Handler class are used. A Handler can be used
to schedule messages and runnables to be executed later
and to enqueue an action to be performed on a different
thread. Once again, using an handler helps create an execu-
tion separated from the main thread. We also found a call-
back of a different nature: (setOnClickListener(),
onClick()) which is related to elements of the graphical
interface suggesting that malware may be triggered by ac-
tions performed by the end user.

Triggering condition In this experiment, we found an
average of 12.34 conditions per path leading to suspi-
cious code location. These conditions are a mix of nec-
essary checks for the app to work, and of triggering
conditions that protect the malicious behavior in order
to run only under certain circumstances. Some condi-
tional branches are directly related to the malicious behav-
ior such as if(sms.getMessageBody().equals
("GetBook")) that checks the received attacker message
and sends the phone address book to a remote server.

4.3 What about Benign Applications?

To emphasize the difference between malicious and be-
nign applications structure, we analyzed a set of 2,311 ap-
plications considered as benign, and provided by Andro-
Zoo [4]. The analysis took an average time of 86.29 seconds
per app, and the apps have an average size of 80 Kb.

We did the same analysis on these benign applications as
the one performed on the malicious ones. Figure 2 shows
the usage of sensitive API calls in the analyzed benign ap-
plication set (in blue). We can see that malicious applica-
tions have more suspicious calls than the benign ones. The
proportions are bigger for suspicious API calls such as those
used for encryption. These methods are often used by mal-
ware to decrypt binary code in order to load it dynamically
and to encrypt personal data before sending it to remote
servers.

Figure 3 shows the usage of entry points by the set of an-
alyzed goodware samples (in blue). The main information
that we can extract from this figure is the difference in us-
age of BroadcastReceiver: void onReceive
(Context, Intent) between benign and malicious
apps. As mentioned before, malware rely a lot on system
events to launch malicious actions unbeknownst to the user.

5 Related Work

Being able to take into account implicit calls appears to
be a key point for improving recent works on static analysis
of Android malware. For instance Flowdroid [6] achieves
static taint-analysis of Android applications and relies on
CFGs which are computed from various sources, includ-
ing layout XML files, executable code and the manifest
file. This work should benefit from our computation of a
global CFG that takes the framework into account. In the
same way, Lillack et al. [16] use taint analysis to know
which parts of an Android application are influenced by the
platform’s configuration, e.g. when Bluetooth is activated.
Klieber et al. [14] rely on FlowDroid for intra-component
taint analysis, and on Epicc [17] for inter-component analy-
sis. This work handles calls that occur when an Activity
calls another one to propagate the taint. Nevertheless, au-
thors do not propose a solution for other types of implicit
calls, which leads to imprecise results. Graa et al. [11] tried
to get FlowDroid handle the control flows that leak infor-
mation implicitly. They mainly focus on implicit flows that
occur due to conditional branches. Nevertheless, they also
do not also take in consideration implicit calls generated by
the Android framework.

Some approaches have made attempts to handle some
callbacks. Wu et al. [25] build callback graphs for
synchronous callbacks, like for classes AsyncTask
and Handler, in addition to application components,
namely Activity, Service, Broadcast Receiver, and Content
Provider. Authors focus only on main classes and methods,
and neglect other callbacks that may be called by the frame-
work. In [13], authors use lifecyle callbacks of Android ap-
plications to build a model of the application and then detect
malicious behaviors. This approach focuses only on lifecyle
callbacks and does not handle other types of implicit calls.

None of the works cited above are able to handle most of
the implicit calls due to the Android framework itself. As
shown in Section 4, malware can easily hide behind implicit
calls which implies that these approaches suffer from a lack
of precision.

6 Discussion

To connect different method CFGs, GPFinder uses API
summaries generated by EdgeMiner which is built for An-

droid version 4.2. Thus, for a better results, it should be up-
dated. Nevertheless, as we showed in Section 4.2, the most
used implicit calls are related to multitasking and message
exchange, which have not changed a lot since Android 4.2
as far as we know.

Our experiments show that we can almost double the
coverage of suspicious code by including implicit calls
while building global CFGs, although, there is no other ac-
curate implicit calls tool to compare GPFinder to. Thus, we
do not have statistics about the accuracy of our tool, but it
depends on the used summaries, in this case EdgeMiner’s.

Implicit calls can easily be used by Android malware to
hide their code. This is not specific to Android malware nor
to Android, but it is a feature of the Java language. How-
ever, Android heavily uses event-driven callbacks, a charac-
teristic that can be easily exploited by malware authors.

7 Conclusion

This article proposes GPFinder, a practical solution to
help security experts to understand and analyze Android
malware. GPFinder determines the suspicious code loca-
tions in Android applications. Then, for each method in
the bytecode considered as suspicious, GPFinder exhibits
all execution paths that start from an entry point and lead
to that method. For that purpose, GPFinder is the first ap-
proach able to take the Android framework itself into ac-
count by computing a global control flow graph with im-
plicit edges related to the callback mechanism.

We have evaluated, on a collection of 14,224 Android
malware samples, how implicit interprocedural calls are
used by malware. Our experiments show that 72.69% of
malware have at least one suspicious piece of code hidden
behind implicit calls without any alternative execution path.
We demonstrated that we can easily almost double the cov-
erage of suspicious code by including implicit calls while
building global CFGs. We have evaluated that malware uses
an average of 12.45 conditions, including triggering ones, to
protect malicious code from dynamic analysis.

Acknowledgements

This work has received a French government sup-
port granted to the COMIN Labs excellence labora-
tory and managed by the National Research Agency in
the ”Investing for the Future” program under reference
ANR-10-LABX-07-01.

All the code described here, and experiments’ inputs
and outputs are available at http://kharon.gforge.
inria.fr/gpfinder.html.

http://kharon.gforge.inria.fr/gpfinder.html
http://kharon.gforge.inria.fr/gpfinder.html

References

[1] Y. Aafer, W. Du, and H. Yin. Droidapiminer: Mining api-
level features for robust malware detection in android. In Se-
curity and Privacy in Communication Networks, pages 86–
103. Springer International Publishing, 2013.

[2] A. Abraham, R. Andriatsimandefitra, A. Brunelat, J.-F. La-
lande, and V. Viet Triem Tong. Grodddroid: a gorilla for
triggering malicious behaviors. In 10th International Con-
ference on Malicious and Unwanted Software. IEEE Com-
puter Society, 2015.

[3] F. E. Allen. Control flow analysis. In Proceedings of a Sym-
posium on Compiler Optimization, pages 1–19, New York,
NY, USA, 1970. ACM.

[4] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon. An-
drozoo: Collecting millions of android apps for the research
community. In Proceedings of the 13th International Con-
ference on Mining Software Repositories, pages 468–471.
ACM, 2016.

[5] A. Apvrille and R. Nigam. Obfuscation
in android malware, and how to fight back.
https://www.virusbulletin.com/virusbulletin/2014/07/obfus-
cation-android-malware-and-how-fight-back, 2014. Ac-
cessed: 2017-06-27.

[6] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel,
J. Klein, Y. Le Traon, D. Octeau, and P. McDaniel. Flow-
droid: Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for android apps. In Pro-
ceedings of the 35th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI ’14,
pages 259–269, New York, NY, USA, 2014. ACM.

[7] Y. Cao, Y. Fratantonio, A. Bianchi, M. Egele, C. Kruegel,
G. Vigna, and Y. Chen. Edgeminer: Automatically detecting
implicit control flow transitions through the android frame-
work. In NDSS, 2015.

[8] P. Faruki, A. Bharmal, V. Laxmi, V. Ganmoor, M. S. Gaur,
M. Conti, and M. Rajarajan. Android security: A survey of
issues, malware penetration, and defenses. IEEE Communi-
cations Surveys Tutorials, 17(2):998–1022, Secondquarter
2015.

[9] Y. Fratantonio, A. Bianchi, W. Robertson, E. Kirda,
C. Kruegel, and G. Vigna. Triggerscope: Towards detecting
logic bombs in android applications. 2016 IEEE Symposium
on Security and Privacy (SP), pages 377–396, 2016.

[10] Google. Android security : 2016 year in review.
https://source.android.com/security/reports/Google Andro-
id Security 2016 Report Final.pdf, March 2017. Accessed:
2017-06-27.

[11] M. Graa, N. Cuppens-Boulahia, F. Cuppens, and A. Cavalli.
Detecting Control Flow in Smarphones: Combining Static
and Dynamic Analyses, pages 33–47. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2012.

[12] IDC. Smartphone os market share, 2016 q2.
http://www.idc.com/prodserv/smartphone-os-market-
share.jsp, 2016. Accessed: 2016-10-21.

[13] M. Junaid, D. Liu, and D. Kung. Dexteroid: Detecting ma-
licious behaviors in android apps using reverse-engineered
life cycle models. Computers and Security, 59:92 – 117,
2016.

[14] W. Klieber, L. Flynn, A. Bhosale, L. Jia, and L. Bauer. An-
droid taint flow analysis for app sets. In Proceedings of the
3rd ACM SIGPLAN International Workshop on the State of
the Art in Java Program Analysis, SOAP ’14, pages 1–6,
New York, NY, USA, 2014. ACM.

[15] L. Li, D. Li, T. F. Bissyande, J. Klein, Y. Le Traon, D. Lo,
and L. Cavallaro. Understanding Android App Piggy-
backing: A Systematic Study of Malicious Code Grafting.
IEEE Transactions on Information Forensics and Security,
12(6):1269–1284, jun 2017.

[16] M. Lillack, C. Kästner, and E. Bodden. Tracking load-
time configuration options. In Proceedings of the 29th
ACM/IEEE International Conference on Automated Soft-
ware Engineering, ASE ’14, pages 445–456, New York, NY,
USA, 2014. ACM.

[17] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden,
J. Klein, and Y. Le Traon. Effective inter-component com-
munication mapping in android with epicc: An essential
step towards holistic security analysis. In Proceedings of
the 22Nd USENIX Conference on Security, SEC’13, pages
543–558, Berkeley, CA, USA, 2013. USENIX Association.

[18] S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel, and
G. Vigna. Execute this! analyzing unsafe and malicious
dynamic code loading in android applications. In NDSS,
volume 14, pages 23–26, 2014.

[19] V. Rastogi, Y. Chen, and X. Jiang. Droidchameleon: Eval-
uating android anti-malware against transformation attacks.
In Proceedings of the 8th ACM SIGSAC Symposium on In-
formation, Computer and Communications Security, ASIA
CCS ’13, pages 329–334, New York, NY, USA, 2013. ACM.

[20] J. Schütte, R. Fedler, and D. Titze. Condroid: Targeted
dynamic analysis of android applications. In 2015 IEEE
29th International Conference on Advanced Information
Networking and Applications, pages 571–578, March 2015.

[21] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro. Copper-
droid: Automatic reconstruction of android malware behav-
iors. In Network and Distributed System Security (NDSS)
Symposium, 2015.

[22] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and
V. Sundaresan. Soot - a java bytecode optimization frame-
work. In Proceedings of the 1999 Conference of the Centre
for Advanced Studies on Collaborative Research, CASCON
’99, pages 13–. IBM Press, 1999.

[23] R. Vallee-Rai and L. J. Hendren. Jimple: Simplifying java
bytecode for analyses and transformations, 1998.

[24] M. Y. Wong and D. Lie. Intellidroid: A targeted input gen-
erator for the dynamic analysis of android malware. In Pro-
ceedings of the Annual Symposium on Network and Dis-
tributed System Security (NDSS), 2016.

[25] T. Wu, J. Liu, Z. Xu, C. Guo, Y. Zhang, J. Yan, and J. Zhang.
Light-weight, inter-procedural and callback-aware resource
leak detection for android apps. IEEE Transactions on Soft-
ware Engineering, 42(11):1054–1076, Nov 2016.

[26] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and
W. Zou. Smartdroid: an automatic system for revealing ui-
based trigger conditions in android applications. In Proceed-
ings of the second ACM workshop on Security and privacy
in smartphones and mobile devices, pages 93–104. ACM,
2012.

	Introduction
	Execution Paths with Implicit Transitions
	Considering the Android Framework
	How to Reach Suspicious Code
	GPFinder's Analysis Steps
	Experiment on a Dataset of Malware
	What about Benign Applications?

	Related Work
	Discussion
	Conclusion

