
Sparse Reconstruction Algorithms for Nonlinear

Microwave Imaging

Hidayet Zaimaga

Laboratoire des Signaux et Systèmes

CNRS UMR8506

CentraleSupélec-Univ.Paris-Sud

Aurélia Fraysse

Laboratoire des Signaux et Systèmes

CNRS UMR8506

CentraleSupélec-Univ.Paris-Sud

Marc Lambert

Group of electrical engineering – Paris,

CNRS UMR8507,

CentraleSupélec, Univ. Paris-Sud,

Université Paris-Saclay,

Sorbonne Universités, UPMC Univ Paris 06

Abstract

This paper presents a two-step inverse process which allows sparse recovery of the unknown (complex) dielectric profiles of
scatterers for nonlinear microwave imaging. The proposed approach is applied to a nonlinear inverse scattering problem arising
in microwave imaging and correlated with joint sparsity which gives multiple sparse solutions that share a common nonzero
support. Numerical results demonstrate the potential of the proposed two step inversion approach when compared to existing
sparse recovery algorithm when considering small scatterers.

I. INTRODUCTION

The main goal of microwave imaging is to estimate the location of scatterers in a region of interest by retrieving the distribu-

tion of the dielectric properties. Development of efficient methods and techniques for solving such an inverse electromagnetic

scattering problem has been attracting significant research interest around the world due to its potential in diverse applications

such as material characterization, subsurface prospecting, remote sensing, and non-destructive testing and evaluation [1], [2].

Inverse electromagnetic scattering problems deal with the reconstruction of the contrast field profile of an imaged object.

However, implementation of stable, reliable, and efficient reconstruction algorithms in this context is challenging because of

the nonlinearity and ill-posedness of the problem to be solved [1], [3], [4]. To circumvent the non-linearity or its effects

several methods including global optimization tools, multi-step information retrieval techniques, and qualitative methods have

been introduced. Moreover, first-order approximations such as diffraction tomography, Born and Rytov approximations have

been introduced to linearize the problem [1], [3]. However, these methods are limited to investigation domains involving weak

scatterers and produce a non-negligible error in the reconstruction when applied to configurations in which the weakness of

the scatterers is no longer verified.

On the other hand, sparsity-promoting regularization has become an interesting alternative to overcome the non-uniqueness

and/or numerical instability of the inversion process [5], [6] in recent years. The reason behind this is that many images have

sparse representations with respect to their expansion basis and this yields new developing approaches that minimize the cost

functions with zeroth/first norm penalty terms to enforce sparsity using highly effective iterative shrinkage algorithms. Such

an increased interest is proven by the number of publications in broad domains [4]–[9]. In this framework, sparsity promoting

regularized approaches assume that the unknown functions can be expressed as a sparse set of coefficients with respect to an

appropriate basis. In recent years, sparse methods for microwave imaging have been developed, see [10], [11], using a linear

approximation of the scattered signal. One of the main contributions of the proposed paper is that it is based on joint sparsity.

The principal interest of such a method is to accurately reconstruct the unknown scatterers without linear approximation and

present an efficient recovery algorithm of sparse scatterers by reducing possible ambiguities on the scatterer sparsity deduced

from the null values of the equivalent current [1], [12]. This new approach will be compared to our previous work where the

nonlinear inverse problem is solved by directly enforcing the sparsity on the unknown contrast [13].

In recent years, the problem of joint sparsity regularization has been studied in various areas (multi-task learning, group

Lasso [14], distributed compressive sensing, etc.) [15], [16]. Jointly sparse solutions have a common nonzero support and the

jointly sparse based model takes into account any additional information about the structure of the solutions more than just

sparsity approaches [15].

The paper is structured as follows. The electromagnetic scattering model is briefly recalled in Section II-A. Section III deals

with our proposed imaging method based on the sparsity minimization. Section IV provides numerical examples in order to

assess the features and limitations of the proposed approach while comparing it with the method suggested in [13]. Finally,

some conclusions are reported in Section V.

II. PROBLEM STATEMENT

A. Formulation

Let us consider the scenario as in Fig.1 with reference to a time-harmonic two-dimensional Transverse Magnetic (TM)

problem. A given source generates an incident electric field Einc which is polarized along the z-axis with implicit time factor
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(a) Configuration 1
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(b) Configuration 2

Fig. 1: Measured configuration of actual permittivity profile and source-receiver locations on (x(m), y(m)) axis.

exp(−iωt) where ω is the angular frequency. The object is considered in an investigation domain D and the different media

are characterized by their propagation constant k(r) such that k(r)2 = ω2ε0εr(r)µ0 + iωµ0σ(r), where ε0 and µ0 are the

permittivity and the permeability of air respectively, εr(r) and σ(r) are the relative permittivity and conductivity of the medium

as r ∈ D is an observation point. The dielectric properties of D are described by the inhomogeneous contrast function defined

as χ(r) =
(

k(r)2 − k2B
)

, where k2B = ω2ε0µ0 is the propagation constant of the embedding medium. We assume that sources

and receivers are located at positions ri and rr respectively.

The scattered electric field Ediff(rr , ri) measured by a receiver placed at rr due to the incident wave emitted by a source

placed at ri adheres to the following integral equation [2]

Ediff(rr , ri) =

∫

D

G(rr , r
′)J(r′, ri)dr

′ (1)

with

J(r, ri) = χ(r)E(r, ri) (2)

where J(r, ri) and E(r, ri) are the equivalent current and the total electric field respectively, both induced within the object by

the incident wave, G(r, r′) =
−1

4ωε0
H

(1)
0 (kB‖r− r

′‖) and H
(1)
0 is the 0-th order Hankel function of the first kind. Furthermore

E(r, ri) is obtained as

E(r, ri) = Einc(r, ri) +

∫

D

G(r, r′)J(r′, ri)dr
′∀r ∈ D. (3)

The direct problem is defined as the calculation of Ediff(rr , ri) by solving (1) and (3) when χ(r), G(r, r′) and Einc(r, ri)
are known whereas the inverse problem (or imaging problem) is defined as the determination of χ(r) within a prescribed

domain D from the knowledge of Ediff(rr , ri), G(r, r′) and Einc(r, ri) for Ns sources and Nr receivers.

B. Discretization of the problem

Thanks to a classical method of moments using pulse basis/point matching method [17] where the domain under test D is

discretized into N = Nx ×Ny pixels, a discretized version of the previous equations is obtained. In so doing the discretized

version of (1) stands as

E
diff
i = GorJi, i = 1, . . . , Ns (4)

where E
diff
i and Ji are complex vectors of size Nr and N respectively and Gor a complex matrix of size Nr × N . The

discretized version of (2) is then

Ji = diag (χ)Ei, i = 1, . . . , Ns, (5)

where Ei and χ are complex vectors of size N and diag (χ) is a diagonal matrix of size N × N obtained from χ. Finally

the discretized version of (3) is

Ei = E
inc
i +GooJi, i = 1, . . . , Ns (6)



where E
inc
i is a complex vector of size N and Goo a matrix of size N ×N .

By combining (4) and (6) and using J
inc
i = diag (χ)Einc

i i = 1, . . . , Ns the inverse problem can be rewritten as

χ⋆ = argmin
χ

∥

∥

∥
ζi −Gor diag (χ) [I− diag (χ)Goo]

−1
J

inc
i

∥

∥

∥

2
(7)

where ζi is a vector of size Nr which gathered the signal due to the source #i measured by the Nr receivers. It can be seen

from (7) that the inverse problem is nonlinear in χ and ill-posed.

III. TWO-STEP INVERSION PROCEDURE

Instead of directly solving the nonlinear inverse problem given by (7) as we did in [13], we adopt a two-step method which

firstly consists of finding the equivalent current Ji for i = 1, . . . , Ns using (1) and then looking for χ using the combination

of (2) and (3). This approach leads us to have two linear minimization problems solved by exploiting the jointly-sparse aspect

of the sought equivalent currents solution of the first step and a classical l2-minimization of a linear problem for the second

step.

A. First step: reconstruction of the equivalent currents

The following optimization problem is solved

J
⋆
i = argmin

Ji

[

1

2
‖ζi −GorJi‖2

]

i = 1, · · · , Ns. (8)

where ζi is a vector of size Nr which gathered the signal due to the source #i measured by the Nr receivers.

The main idea of the approach is to take into account that, as shown by (5), Ji and χ share the same support, which means

that when χj = 0 then J
j
i = 0, ∀i = 1, . . . , Ni where χj and J

j
i are the j element of χ and Ji respectively. Taking into

account this hypothesis, (8) can be recast as a minimization problem under the constraints that Ji has the same sparse support

for each source i, leading to the use of a (weighted) l2,1-regularization to enforce joint sparsity such as

min
J

‖J‖w,2,1 :=

N
∑

i=1

wi‖J
i‖2 s. t. GorJi = ζi (9)

for all i = 1, · · · , Ns where J
i denotes the i-th row of J while wi is corresponding with the weight [15]. (9) is solved using

the YALL1 Group [15] package which encodes the joint sparsity model.

B. Second step: reconstruction of the contrast function

Once Ji is known, the contrast function is obtained by solving the following minimization problem [18]

χ⋆ = argmin

Ns
∑

i=1

‖Ji − diag (χ)Ei‖2 =

∑Ns

i=1 Ji · Ēi
∑Ns

i=1 Ei · Ēi

, (10)

where Ei has been obtained using (6) and Ēi being its conjugate.

IV. NUMERICAL RESULTS

In this section we consider two examples in order to present our proposed method and compare it with the method based

on Soft Shrinkage algorithm proposed in [13]. The frequency of the emitting wave is f = 300MHz and the measured field

samples are generated by adding 10 dB white Gaussian noise. The various obstacles are embedded in air. The corresponding

wavelength in air is given by λ = 2π
kB

. The direct and inverse problems are solved with different discretization in order to

avoid the so-called “inverse crime”, while Nx and Ny are the number of pixels along the x and y direction respectively.

• First example (Fig. 1a): Five objects of physical characteristics described in Tab. I are embedded in a l = 6λ-sided square

investigation domain D. The discretization size is Nx = Ny = 80 for the forward problem and Nx = Ny = 30 for the

inverse problem. The number of transmitters and receivers located around the investigation area is Ns = Nr = 36 evenly

distributed on a circle of radius r = 7λ.

• Second example (Fig. 1b): A single square obstacle of λ-side length is embedded in a of l = 3λ-sided square investigation

domain D, the direct problem being solved using Nx = Ny = 36 pixels and the inverse problems with Nx = Ny = 18.

The number of transmitters and receivers located around the investigation area is Ns = Nr = 29 evenly distributed on a

circle of radius r = 3λ.

We choose the primal-based solver where the linear system is exactly solved for the parameters of YALL1 algorithm. The

weights have been chosen as wi = 1 (i = 1, · · · , N ) and the initialization is J ≡ 0 (no prior information).



TABLE I: Description of the five obstacles, x, y being the coordinate of the center of the obstacle (in m), Lx, Ly its lengths

(in m) and εr and σ its relative permittivity and conductivity (the latter in Sm−1)

.

# x y Lx Ly εr σ

1 −1.5 −1.5 0.5 0.5 1.5 0.0022

2 −0.33 0.44 0.5 0.5 2.25 0

3 1.5 −1.5 0.5 0.33 2 0.004 45

4 0 1.5 0.5 0.33 2 0.022 25

5 1 1.33 0.5 0.5 1 0.022 25
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(b) Soft Shrinkage Alg.
α = 1× 10
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(c) Soft Shrinkage Alg.
α = 5× 10
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(d) Jointly-sparse model

Fig. 2: Retrieval of permittivity (εr, top) and conductivity (σ, bottom) by using sparsity with 10 dB noise data.

The relative error norm on χ as a comparison criterion is expressed as

errχ =
Tr (‖diag(χ)− diag(χtrue)‖2)

Tr (‖diag(χtrue)‖2)
, (11)

where χtrue is the true contrast to be found and Tr (A) stands for the trace of the matrix A. The discrepancy between the

model and the measurement is as following:

errEdiff =

∑Ni

i=1

∥

∥ζi −E
diff
i (χ)

∥

∥

2
∑Ni

i=1 ‖ζi‖2
, (12)

where E
diff(χ) is computed by solving the direct problem with the reconstructed χ.

It is worthwhile to mention that sparseness is a relative concept with respect to a basis [1]. In the case of a pixel basis, a

fast way to estimate the sparsity of our problem is to define it as the ratio of the obstacle’s areas to the investigation domain

D area. Following this, the sparseness of the first example is around 3% whereas the one of the second example is around

11%. One of the key points of our examples is that in the first one the scatterers are sparse with respect to their expansion

basis while in the second one the scatterer is less sparse and our proposed approach in this paper performs differently for these

two cases.

It can be observed that when we have sparse scatterers (as in Fig. 1a) the two-step inversion approach gives better

reconstruction in terms of quality of χ and processing time compared to the soft shrinkage algorithm as shown in Tab. II. On

the other hand, even if the two-step inversion approach is faster in the reconstruction of the scatterer in Fig. 1b, soft shrinkage

algorithm achieves a better reconstruction quality with an appropriate regularization parameter.

V. CONCLUSION

A two-step inversion approach has been proposed in order to solve a nonlinear inverse problem by applying joint sparsity to

get the equivalent current, then the unknown contrast. Furthermore, the proposed approach has been compared with the approach

that directly yields the contrast through enforcement of sparsity by soft shrinkage thresholding. Both approaches produce sharp

and good reconstruction of dielectric profiles in sparse domains and keep their convergence during the reconstruction.
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(d) Jointly-sparse model

Fig. 3: Retrieval of permittivity (εr, top) and conductivity (σ, bottom) by using sparsity with 10 dB noise data.

TABLE II: Error and average simulation time in seconds for the proposed methods

Scatterer Scenario Time (s) errχ err
Ediff

Without sparsity 367.1 0.1754 0.1350
Fig. 1a Soft Shrinkage Alg. 131.8 0.1413 0.1206

Jointly-sparse model 25.1 0.1375 0.1995

Without sparsity 64.5 0.2527 0.1045
Fig. 1b Soft Shrinkage Alg. 16.2 0.0631 0.0790

Jointly-sparse model 8.3 0.1720 0.5684

This method as proposed consumes less time and ensures better imaging quality compared to an iterative method with soft

thresholding in the reconstruction of sparse scatterers as exhibited in Tab.II.

Even though the results are promising and advantageous, a distinctive feature of the proposed methods is to use the wavelet

transform in order to expand the contrast function characterizing scatterers with respect to the surrounding medium and advance

inversion reliability [19], [20].
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