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Incremental stability of spatiotemporal delayed dynamics and application to neural fields

We propose a Lyapounov-Krasovskii approach to study incremental stability in spatiotemporal dynamics with delays and their capability to be entrained by a periodic input. We then focus on delayed neural fields, which describe the spatiotemporal evolution of neuronal activity. We provide an explicit condition, involving the slope of the activation functions and the strength of coupling, under which delayed neural fields are incrementally stable regardless of communication delays. We finally show how this approach can be used to draw frequency profiles of neuronal populations.

I. INTRODUCTION

Incremental stability characterizes systems whose solutions all converge to one another, with a transient overshoot "proportional" to the distance between initial states. It can be established through the study of an incremental Lyapunov function provided that its derivative along any two solutions of the system is negative as long as they do not coincide [START_REF] Angeli | A Lyapunov approach to incremental stability properties[END_REF].

Incremental stability shares strong similarities with convergent [START_REF] Pavlov | Uniform Output Regulation of Nonlinear Systems: A Convergent Dynamics Approach[END_REF], [START_REF] Demidovich | Lectures on Stability Theory[END_REF] and contractive [START_REF] Lohmiller | On contraction analysis for nonlinear systems[END_REF], [START_REF] Forni | A differential Lyapunov framework for contraction analysis[END_REF] systems. These similarities have been studied in details in [START_REF] Rüffer | Convergent systems vs. incremental stability[END_REF]. A key feature that can be deduced from these properties is the ability of the system to be entrained by its input. More precisely, if any of these properties holds uniformly in the applied input then, under mild conditions, the response of the system to any Tperiodic input is asymptotically T -periodic [START_REF] Lohmiller | On contraction analysis for nonlinear systems[END_REF], [START_REF] Pavlov | Uniform Output Regulation of Nonlinear Systems: A Convergent Dynamics Approach[END_REF], [START_REF] Russo | Global entrainment of transciptional systems to periodic inputs[END_REF], [START_REF] Chaillet | A Razumikhin approach for the incremental stability of delayed nonlinear systems[END_REF], [START_REF] Margaliot | Contraction after small transients[END_REF]. While this property is natural for asymptotically stable linear systems, it is far from granted when dynamics are nonlinear. More precisely, examples of systems that have a globally asymptotically stable equilibrium for each constant value of the input, but for which this entrainment property does not hold, can be found in [START_REF] Yu | A non-quadratic criterion for stability of forced oscillations[END_REF], [START_REF] Russo | Global entrainment of transciptional systems to periodic inputs[END_REF].

As observed in [START_REF] Pavlov | Frequency response functions for nonlinear convergent systems[END_REF], the capacity of a system to be entrained by its input is the key ingredient from which one can derive frequency profiles. These take the form of magnitude Bode plots, reflecting the asymptotic amplification of the system in response to harmonic excitations at various frequencies. Unlike in the linear case, their shape may depend on the input amplitude.

These frequency profiles are especially attractive for neuroscience applications. Indeed, oscillations play a fundamental role in brain coordination [START_REF] Buzsaki | Rhythms of the Brain[END_REF] and altered oscillations in specific structures correlate with pathological symptoms, for instance in Parkinson's disease [START_REF] Hammond | Pathological synchronization in Parkinson's disease: networks, models and treatments[END_REF]. The possibility to predict which frequency band is preferably amplified by a given brain structure would therefore constitute a valuable tool for computational neuroscientists, and could lead to the development of stimulation strategies that aim at restoring healthy frequency profiles.

The spatiotemporal dynamics of brain oscillations can be captured by neural fields models [START_REF] Coombes | Neural Fields: Theory and Applications[END_REF]. These models take the form of integro-differential equations that abstract the brain structure to a continuous medium. Communication delays can be taken into account in this model, giving rise to delayed neural fields [START_REF] Faye | Some theoretical and numerical results for delayed neural field equations[END_REF], [START_REF] Atay | Neural fields with distributed transmission speeds and long-range feedback delays[END_REF], [START_REF] Veltz | Interplay between synaptic delays and propagation delays in neural field equations[END_REF]. This feature is particularly relevant as the non-instantaneous communication between neurons, due to axonal propagation and synaptic delays, is believed to play a significant role in the onset and features of brain oscillations [START_REF] Nevado-Holgado | Conditions for the generation of beta oscillations in the subthalamic nucleus-globus pallidus network[END_REF], [START_REF] Pasillas-Lépine | Delay-induced oscillations in Wilson and Cowan's model: An analysis of the subthalamo-pallidal feedback loop in healthy and parkinsonian subjects[END_REF], [START_REF] Kopell | Gamma rhythms and beta rhythms have different synchronization properties[END_REF].

To the best of our knowledge, no systematic tool to guarantee incremental stability of neural fields (with or without delays) has yet been proposed. Incremental stability of delayed systems can be established using Lyapunov-Krasovskii [START_REF] Pola | Symbolic models for nonlinear time-delay systems using approximate bisimulations[END_REF] or Razumikhin [START_REF] Chaillet | A Razumikhin approach for the incremental stability of delayed nonlinear systems[END_REF], [START_REF] Devane | Delay-independent incremental stability in time-varying monotone systems satisfying a generalized condition of two-sided scalability[END_REF] approaches, but these results have not yet been extended to spatiotemporal dynamics.

Here, building up on the works [START_REF] Faye | Some theoretical and numerical results for delayed neural field equations[END_REF], [START_REF] Angeli | A Lyapunov approach to incremental stability properties[END_REF], we propose a Lyapunov-Krasovskii approach to establish incremental stability of spatiotemporal delayed dynamics and provide conditions under which it guarantees the entrainment property. We then focus on delayed neural fields to show that, under the stability condition derived in [START_REF] Faye | Some theoretical and numerical results for delayed neural field equations[END_REF], the system happens to be also incrementally stable. An example motivated by the study of the brain circuitry involved in the motor symptoms of Parkinson's disease demonstrates the possibility to draw frequency profiles of the dynamics involved, which happen to exhibit a resonance in the frequency band associated to motor symptoms.

II. SPATIOTEMPORAL DELAYED DYNAMICS

Throughout this paper, we make use of the following notation. Ω denotes a compact subset of R q , q ∈

N ≥1 . Given n ∈ N ≥1 and d ∈ R ≥0 , U n := C 0 (R ≥0 , F n ), F n := L 2 (Ω, R n ), C n := C 0 ([-d; 0], F n ) if d > 0, and C n := F n if d = 0 . Accordingly, we defined the norms • F and • C as x F := Ω x(r) 2 dr for all x ∈ F n and x C := sup t∈[-d;0] x(t) F for all x ∈ C n . A continuous function α : R ≥0 → R ≥0 belongs to class K if it is increasing and satisfies α(0) = 0. α ∈ K ∞ if α ∈ K and lim s→∞ α(s) = ∞. A continuous function β : R ≥0 × R ≥0 → R ≥0 belongs to class KL if β(•, t) ∈ K
for any t ∈ R ≥0 and, given any s ∈ R ≥0 , β(s, •) is nonincreasing and tends to zero as its argument tends to infinity.

A. Definition

We consider dynamical systems defined as

ẋ(t) = f (x t , u(t)), (1) 
where f : 1) is thus rules by a differential equation over the Banach space C n . From now on, unless explicitly stated, C n , F n , and U m will be simply written as C, F, and U. Throughout the paper, we assume the following.

C n × F m → F n and u ∈ U m . x(t
= x(t + θ). Given any t ∈ R ≥0 , ẋ(t) ∈ F n is the function defined as r → ∂ ∂t [x(t)](r) . System (
Assumption 1 (Uniform regularity) f is locally Lipschitz and there exists ρ ∈ K ∞ such that, for all φ, ϕ ∈ C and all

v ∈ F, f (φ, v) -f (ϕ, v) F ≤ ρ( φ -ϕ C ).
We stress that Assumption 1 ensures that f maps bounded sets of C × F to bounded sets of F. In other words, f is completely continuous.

Uniform incremental stability was originally studied in a finite-dimensional context [START_REF] Angeli | A Lyapunov approach to incremental stability properties[END_REF]. A natural extension for the class of systems (1) is as follows.

Definition 1 (δGAS) The system (1) is uniformly incrementally stable (δGAS) if it is forward complete and there exists β ∈ KL such that, for any pair of initial conditions x 0 , y 0 ∈ C and any input u ∈ U, the corresponding solutions of (1) satisfy, for all t ∈ R ≥0 , x(t; x 0 , u) -x(t; y 0 , u) F ≤ β( x 0 -y 0 C , t). [START_REF] Angeli | A Lyapunov approach to incremental stability properties[END_REF] Similarly to incremental stability for finite-dimensional systems [START_REF] Angeli | A Lyapunov approach to incremental stability properties[END_REF] and time-delay systems [START_REF] Chaillet | A Razumikhin approach for the incremental stability of delayed nonlinear systems[END_REF], [START_REF] Devane | Delay-independent incremental stability in time-varying monotone systems satisfying a generalized condition of two-sided scalability[END_REF], δGAS imposes that any two solutions with the same applied input eventually converge to one another at a rate uniform in the applied input, and that the maximum distance between them in the transients is small if the distance between initial states is small. Similar ingredients are present in the input-output formulation of incremental stability [START_REF] Fromion | Necessary and sufficient conditions for lur'e system incremental stability[END_REF], [START_REF] Fromion | Asymptotic properties of incrementally stable systems[END_REF], [START_REF] Van De Wouw | Model reduction for delay differential equations with guaranteed stability and error bound[END_REF].

B. Krasovskii-Lyapunov approach for incremental stability

Given V : C → R locally Lipschitz, we indicate its upperright Dini derivative along solutions of (1) by

V (1) (t, φ, u) := lim sup h→0 + V (x t+h ) -V (x t ) h ,
on the interval of existence of the solution x(•) of (1) with initial state φ ∈ C and input u ∈ U. As discussed in [START_REF] Karafyllis | Lyapunov theorems for systems described by retarded functional differential equations[END_REF], Assumption 1 and the fact that all considered inputs are continuous in time ensure absolute continuity of the map t → x t . Consequently, the map t → V (x t ) is also absolutely continuous, ensuring that the negativity of V for almost all t in an interval [t 1 ; t 2 ] implies V (x t2 ) < V (x t1 ). Reasoning as in [START_REF] Pepe | The problem of the absolute continuity for Lyapunov-Krasovskii functionals[END_REF], it might be possible to extend the results presented here to merely measurable locally essentially bounded inputs: see [START_REF] Chaillet | Robust stabilization of delayed neural fields with partial measurement and actuation[END_REF] for a spatiotemporal version of this observation.

The following result provides a way to establish δGAS of spatiotemporal delayed dynamics.

Theorem 1 (Lyapunov-Krasovskii for δGAS) Assume that there exist α, α ∈ K ∞ , α ∈ K, and a locally Lipschitz functional V : C × C → R ≥0 such that, for any x 0 , y 0 ∈ C and any u ∈ U, the corresponding solutions of (1)

x(•) := x(•; x 0 , u) and y(•) := x(•; y 0 , u) satisfy, for almost all t ∈ R ≥0 , α( x(t) -y(t) F ) ≤ V (x t , y t ) ≤ α( x t -y t C ) (3) V (1) (t, x 0 , y 0 , u) ≤ -α( x(t) -y(t) F ). (4) 
Then, under Assumption 1, the system (1) is δGAS.

A specificity of the above result lies in the fact that the dissipation rate in (4) involves the F-norm of the incremental state error, rather than its C-norm. In other words, it depends on the current value of the incremental state error rather than its prehistory. If the right-hand side of (4) was -α( x t -y t C ), then it would hold that V (1) ≤ -α•α -1 (V ) and uniform incremental stability would readily follow from the comparison lemma. Here, the proof is slightly more involved, but follows along the lines of the original Lyaponov-Krasovskii approach [START_REF] Hale | Theory of functional differential equations[END_REF], [START_REF] Krasovskii | Problems of the theory of stability of motion[END_REF]: see Section VI-A.

C. Entrainment

One interesting feature of δGAS systems is their capability to be entrained by their input.

Definition 2 (Entrainment) The system (1) is said to be entrained by its input if, given any T ≥ 0 and any Tperiodic 1 u ∈ U, there exists a T -periodic solution xu : R ≥0 → F of (1) such that, for any

x 0 ∈ C, lim t→∞ x(t; x 0 , u) -xu (t) F = 0.
The entrainment property thus ensures that, after transients, the system evolves in a periodic fashion at the rhythm of the applied input. We stress that entrainment ensures in particular that, in response to any constant input, there exists a unique equilibrium to which all solutions converge.

In line with [START_REF] Chaillet | A Razumikhin approach for the incremental stability of delayed nonlinear systems[END_REF] with an incremental stability approach, [START_REF] Yu | A non-quadratic criterion for stability of forced oscillations[END_REF], [START_REF] Pavlov | Uniform Output Regulation of Nonlinear Systems: A Convergent Dynamics Approach[END_REF] with a convergent systems approach, and [START_REF] Russo | Global entrainment of transciptional systems to periodic inputs[END_REF], [START_REF] Lohmiller | On contraction analysis for nonlinear systems[END_REF] with a contraction approach, the following result provides a condition under which δGAS ensures entrainment.

Theorem 2 (Entrainment by periodic inputs) Assume that Assumption 1 holds and that (1) is δGAS. If there exists

1 When T = 0, u is called T -periodic if it is constant.
a continuous function σ : R ≥0 → R ≥0 such that, given any x 0 ∈ C and any periodic u ∈ U, the solution of (1) satisfies

lim sup t→∞ x(t) F ≤ σ sup t≥0 u(t) F , (5) 
then (1) is entrained by its input u.

The proof of Theorem 2, provided in Section VI-C, relies on the following result.

Lemma 1 (Existence of a periodic solution) Let X := C([-d; 0], X) be a Banach space and let g : R × X → X be a completely continuous function, locally Lipschitz in its second argument, for which there exists T > 0 such that g(t + T, φ) = g(t, φ) for all φ ∈ X and all t ∈ R. If there exists a bounded set A ⊂ X attracting all solutions of

ẋ(t) = g(t, x t ), (6) 
then (6) admits a T -periodic solution.

Thus, δGAS ensures entrainment provided that a compact set, whose size may depend on the input magnitude, attracts all solutions. The proof of this result, provided in Section VI-B, is derived from [START_REF] Hale | Theory of functional differential equations[END_REF].

III. DELAYED NEURAL FIELDS

A. Considered dynamics

We now focus on a particular class of spatiotemporal dynamics for which the entrainment property constitutes an interesting feature. Delayed neural fields are integrodifferential equations representing the spatiotemporal activity of neuronal populations and accounting for the noninstantaneous communication between neurons. They read:

τ i ∂z i ∂t (r, t) = -z i (r, t)+ (7) 
S i n j=1 Ω w ij (r, r )z j (r , t -d j (r, r ))dr + I ext i (r, t) ,
for each i ∈ {1, . . . , n}. Ω is a compact set of R q , q ∈ {1, 2, 3}, representing the physical support of the populations. r, r ∈ Ω are the space variables, whereas t ∈ R ≥0 is the time variable. z i (r, t) ∈ R represents the neuronal activity of population i at position r and at time t. τ i > 0 is the time decay constant of the activity of population i. w ij (r, r ) describes the synaptic strength between location r in population j and location r in population i; it is assumed that Neural fields have been introduced in [START_REF] Amari | Dynamics of pattern formation in lateral-inhibition type neural fields[END_REF], originally without considering delays. Since then, they have been employed in a number of computational neuroscience studies, ranging from the understanding of brain functions to the development of neuromorphic architectures [START_REF] Bressloff | Spatiotemporal dynamics of continuum neural fields[END_REF]. A reason explaining this success probably stands in the good compromise they offer between richness of possible behaviors and mathematical tractability. In particular, a Lyapunov framework has been developed to study the stability of stationary patterns [START_REF] Faugeras | Absolute stability and complete synchronization in a class of neural fields models[END_REF], [START_REF] Faugeras | Persistent neural states: stationary localized activity patterns in nonlinear continuous n-population, q-dimensional neural networks[END_REF]. Qualitative behavior can also be assessed through bifurcation theory [START_REF] Beim Graben | Attractor and saddle node dynamics in heterogeneous neural fields[END_REF], [START_REF] Veltz | Local/global analysis of the stationary solutions of some neural field equations[END_REF]. Delayed neural fields have also been the subject of stability and robustness studies, using linearization techniques [START_REF] Atay | Neural fields with distributed transmission speeds and long-range feedback delays[END_REF] and a spatiotemporal extension of the Lyapunov-Krasovskii approach [START_REF] Faye | Some theoretical and numerical results for delayed neural field equations[END_REF], [START_REF] Veltz | Stability of the stationary solutions of neural field equations with propagation delays[END_REF], [START_REF] Chaillet | Robust stabilization of delayed neural fields with partial measurement and actuation[END_REF]. This mathematical background constitutes a fertile ground for the analysis of incremental stability of delayed neural fields, and particularly their ability to be entrained by a periodic input.

w ij ∈ L 2 (Ω × Ω, R). I ext i : Ω × R ≥0 → R is a

B. Delay-independent condition for δGAS

Let [x(t)](•) := z(•, t), [u(t)](•) := I ext (•, t), and f = (f 1 , . . . , f n ) T where each f i , i ∈ {1, . . . , n}, is defined for all all φ ∈ C and all v ∈ F as

f i (φ, v) := 1 τ i -φ(0) (8) 
+ S i n j=1 Ω w ij (•, r)[φ j (-d j (•, r))](r)dr + v i .
Then the delayed neural fields (7) take the form [START_REF] Amari | Dynamics of pattern formation in lateral-inhibition type neural fields[END_REF]. Applying Theorem 1 to this particular dynamics leads to the following explicit condition for the δGAS of delayed neural fields.

Theorem 3 (δGAS of delayed neural fields) For each i ∈ {1, . . . , n}, let S i be globally Lipschitz with Lipschitz constant i . Then, under the condition n i,j=1

2 i Ω Ω w ij (r, r ) 2 dr dr < 1, (9) 
the delayed neural fields (7) are δGAS.

To the best of our knowledge, this result is new even in the non-delayed case ( d = 0). Roughly speaking, condition (9) can be interpreted as follows: δGAS holds if the L 2 norm of the synaptic gains distributions is below the inverse of the Lipschitz constant of the activation functions. It therefore imposes a trade-off between synaptic strength (as measured through w ij ) and excitability (as measured through i ).

The exact same condition was proposed in [START_REF] Faye | Some theoretical and numerical results for delayed neural field equations[END_REF] to establish the existence of a globally asymptotically stable equilibrium configuration for any given constant input. In view of Theorem 2, the above statement allows to go beyond that conclusion by considering periodic inputs.

Corollary 1 (Entrainment of neural fields) Assume that the assumptions Theorem 3 hold and that the activation functions S i , i ∈ {1, . . . , n}, are bounded. Then the delayed neural fields [START_REF] Chaillet | Robust stabilization of delayed neural fields with partial measurement and actuation[END_REF] are entrained by their input I ext .

The proof of this result, provided in Section VI-E, relies on Theorems 2 and 3 by observing that the boundedness of S i ensures ultimate boundedness of solutions.

IV. EXAMPLE

In order to illustrate our theoretical findings, we make use of the model introduced in [START_REF] Detorakis | Closed-loop stimulation of a delayed neural fields model of parkinsonian STN-GPe network: a theoretical and computational study[END_REF]. This model involves two brain structures: the subthalamic nucleus (STN), mostly excitatory, and the external part of the globus pallidus (GPe), mostly inhibitory. These two structures are believed to be involved in the generation of beta oscillations (13-30Hz), the intensity of which correlates with the severity of parkinsonian motor symptoms [START_REF] Hammond | Pathological synchronization in Parkinson's disease: networks, models and treatments[END_REF]. More precisely, [START_REF] Nevado-Holgado | Conditions for the generation of beta oscillations in the subthalamic nucleus-globus pallidus network[END_REF] and [START_REF] Pasillas-Lépine | Delay-induced oscillations in Wilson and Cowan's model: An analysis of the subthalamo-pallidal feedback loop in healthy and parkinsonian subjects[END_REF] showed that too strong coupling between STN and GPe may yield beta oscillations through an instability process. Here, we advocate that another mechanism might be at work that relies on entrainment: the preferential amplification of exogenous oscillations in the beta band. The spatiotemporal dynamics of these two structures can be grasped by: ci , for all r, r ∈ Ω, where c i denotes the conductance velocity for neurons projecting from population i (c 1 = 2.5 m/s and c 2 = 1.4 m/s). The synaptic weights are taken as

τ 1 ∂z 1 ∂t (r, t) = -z 1 (r, t)+ (10a) S 1 Ω w 12 (r, r )z 2 (r , t -d 2 (r, r ))dr + I ext 1 (r, t) , τ 2 ∂z 2 ∂t (r, t) = -z 2 (r, t)+ (10b) 
w 12 (r, r ) = -g 12 (|r -r -µ 2 |), ∀r ∈ Ω 1 , r ∈ Ω 2 w 21 (r, r ) = g 21 (|r -r -µ 1 |), ∀r ∈ Ω 2 , r ∈ Ω 1 , w 22 (r, r ) = -|r -r |g 22 (|r -r |), ∀r, r ∈ Ω 2 ,
and zero anywhere else, where µ 1 = 1.25 mm and µ 2 = 13.25 mm correspond the centers of STN and GPe respectively, and the functions g ij are Gaussian functions: g ij (x) := k ij exp(-x 2 /2σ ij ) with σ 12 = σ 21 = 0.03, and σ 22 = 0.015. All these parameters are spatiotemporal extensions of those in [START_REF] Nevado-Holgado | Conditions for the generation of beta oscillations in the subthalamic nucleus-globus pallidus network[END_REF], that were derived based on experimental evidence: please refer to [START_REF] Detorakis | Closed-loop stimulation of a delayed neural fields model of parkinsonian STN-GPe network: a theoretical and computational study[END_REF] for more details.

By picking I ext 1 (r, t) = I * 1 (r) and I ext 2 (r, t) = I * 2 (r) + v(r, t), where I * 1 and I * 2 are chosen in such a way that the system exhibits an equilibrium at the point where the slopes of S 1 and S 2 are maximum, this dynamics can be reformulated, after a change of variables, as

τ 1 ∂z 1 ∂t = -z 1 + S 1 Ω w 12 (r, r )z 2 (r , t -d 2 )dr , (11a) 
τ 2 ∂z 2 ∂t = -z 2 + S 2 Ω w 21 (r, r )z 1 (r , t -d 1 )dr + Ω w 22 (r, r )z 2 (r , t -d 2 )dr + v(r, t) , ( 11b 
)
where some variables have been omitted for the sake of notation compactness. For each i ∈ {1, 2},

S i (x) := S i (x - a i ) -S i (a i )
, where a i is the point at which the slope of S i is maximum. For simulation purposes, we discretize the space Ω in 60 segments of equal length. By picking k 12 = 7, k 21 = 10.5 and k 22 = 3.0, the quantity

w := Ω Ω
w 12 (r, r ) 2 + w 21 (r, r ) 2 + w 22 (r, r ) 2 dr dr, equals 0.97, thus making (9) fulfilled. Theorem 3 then ensures that ( 11) is δGAS and Corollary 1 guarantees that the dynamics are entrained by the striatal input v. We let v(r, t) = U sin(ωt) and we compute the ratio z2 (ω)/U in dB, for various frequencies ω between 1 and 1000 rad/s, where z2 (ω) denotes the steady-state magnitude of the oscillations of the spatial average of the GPe activity

1 #Ω 2 Ω2 z 2 (r, t) 2 dr
, where # Ω2 = 2.5 denotes the measure of Ω 2 . We obtain the frequency profiles depicted in Figure 1 (solid lines). Varying the amplitude U of the striatal input, different frequency profiles are obtained due to the nonlinear nature of the dynamics. For U = 10, a slight resonance appears at around 150 rad/s, corresponding to the beta band. Increasing the synaptic coupling (k 12 = 21.5, k 21 = 22.5, and k 22 = 20.5) simulations indicate that [START_REF] Detorakis | Closed-loop stimulation of a delayed neural fields model of parkinsonian STN-GPe network: a theoretical and computational study[END_REF] remains entrained by its input although w = 6 > 1 thus violating condition [START_REF] Coombes | Neural Fields: Theory and Applications[END_REF]. The corresponding frequency profiles appear in dashed lines, for the same input magnitudes as before. The beta resonance is much more pronounced.

When synaptic coupling is increased even more (k 12 = 23.5, k 21 = 26, and k 22 = 20.5), corresponding to w = 7.5, the spatiotemporal response of Figure 2 shows that endogenous oscillations take place (still in the beta band) even though the applied input is constant (v(r, t) = 50). Consequently, the system is no longer entrained by its input and, in view of Theorem 2, δGAS does not hold anymore.

V. CONCLUSION

Incremental stability is thus a powerful tool to ensure that a system is entrained by its input, and to derive frequency profiles, even for spatiotemporal delayed dynamics. The sufficient condition proposed for δGAS of delayed neural fields can easily be tested based on the system parameters. However, simulations indicate that this condition is not tight. In the future, deriving delay-dependent condition for δGAS of spatiotemporal dynamics may help reducing this conservatism. The results of this paper also plead for the development of control tools to tune the frequency profiles of the system, for instance to reduce amplification in a targeted frequency band.

VI. PROOFS

A. Proof of Theorem 1

Given any x 0 , y 0 ∈ C and u ∈ U, let x(•) and y(•) denote the corresponding solutions of [START_REF] Amari | Dynamics of pattern formation in lateral-inhibition type neural fields[END_REF]. By assumptions, these solutions exist at all times t ∈ [-d; +∞). First observe that, in the non-delayed case ( d = 0), it holds that x(t) -y(t) F = x t -y t C . It then holds from (3)-(4) that V (1) ≤ -α • α(V ) at almost all t ∈ R ≥0 and uniform incremental stability follows by recalling that t → V (x t , y t ) is absolutely continuous 2 and invoking standard comparison lemmas (see [START_REF] Khalil | Nonlinear systems[END_REF]Lemmas 3.4 and 4.4]). So, from now on, we consider d > 0. Note that (4) implies in particular that V (1) ≤ 0 at almost all times. Due to absolute continuity, it follows in particular that V (x t , y t ) ≤ V (x 0 , y 0 ) for all t ≥ 0. Consequently, in view of (3), [START_REF] Devane | Delay-independent incremental stability in time-varying monotone systems satisfying a generalized condition of two-sided scalability[END_REF] thus ensuring global uniform boundedness and uniform stability of the incremental state error. We next proceed to showing that x(•) -y(•) F uniformly tends to zero. To that aim, we start by showing that, given any ∆, ε > 0, there exists a time T ≥ 0 such that

x(t) -y(t) F ≤ α -1 • α( x 0 -y 0 C ), ∀t ≥ 0,
x T -y T C ≤ ε (13) 
for all x 0 -y 0 C ≤ ∆. To that end, assume on the contrary that (13) does not hold, meaning that there exists an unbounded time sequence {t k } k∈N satisfying t k+1 -t k ∈ [0; d], some constants ∆, ε > 0, some bounded input u ∈ U, and some initial states x 0 , y 0 ∈ C satisfying x 0 -y 0 C ≤ ∆ such that

x(t k ) -y(t k ) F > ε, ∀k ∈ N. (14) 
From this sequence {t k } k∈N , let us extract a subsequence {τ k } k∈N satisfying

2 d ≤ τ k+1 -τ k ≤ 4 d, ∀k ∈ N. (15) 
In view of Assumption 1 and [20, Lemma 2.1, p. 38] (which can be readily extended to systems as ( 1)), the functional t → f (x t , u(t)) is continuous. Consequently, x(•) and y(•) are continuously differentiable over R ≥0 . We may thus apply Leibniz rule to get that d dt x(t) -y(t) F ≤ ẋ(t) -ẏ(t) F . Indeed, let e := x -y. Then, using both Leibniz rule and Cauchy-Schwarz inequality 12) that, for all t ≥ 0,

d dt x(t) -y(t) F = ẋ(t) -ẏ(t) F = f (x t , u(t)) -f (y t , u(t)) F ≤ ρ( x t -y t C ) ≤ ρ • α -1 • α( x 0 -y 0 C ) ≤ ρ • α -1 • α(∆) ≤ , (16) 
where

:= max ρ • α -1 • α(∆) ; ε 2 d . (17) 
Combining ( 14) and ( 16), we get that, for all k ∈ N,

x(τ k ) -y(τ k ) F > ε 2 , ∀t ∈ τ k - ε 2 ; τ k + ε 2 .
Moreover, [START_REF] Forni | A differential Lyapunov framework for contraction analysis[END_REF] ensures that d ≥ ε/2 , which implies by [START_REF] Faugeras | Persistent neural states: stationary localized activity patterns in nonlinear continuous n-population, q-dimensional neural networks[END_REF] that the intervals [τ k -ε/2 ; τ k + ε/2 ], k ∈ N, do not overlap. It follows from ( 3)-(4) that V (x t , y t ) ≤ V (x 0 , y 0 ) -

K(t) k=0 α(ε/2) ε ≤ α(∆) -α(ε/2) ε (K(t) + 1),
where K(t) := max{k ∈ N : τ k ≤ t}. In view of [START_REF] Faugeras | Persistent neural states: stationary localized activity patterns in nonlinear continuous n-population, q-dimensional neural networks[END_REF], it holds that τ k ≥ τ 0 + 2k d ≥ 2k d, from which we get that

K(t) + 1 ≥ t/2 d. Therefore V (x t , y t ) ≤ α(∆) -α(ε/2) εt 2 d , For t > 2α(∆) d εα(ε/2)
, this leads to V (x t , y t ) < 0 which is impossible. This establishes that x t -y t C eventually takes values below ε.

Furthermore, this reasoning shows that, given any ∆, ε > 0, the time needed for x t -y t C to reach a value smaller than ε from any initial states satisfying x 0 -y 0 ≤ ∆ is at most T = 2α(∆) d εα(ε/2) , thus independent of the applied input u. In addition, [START_REF] Devane | Delay-independent incremental stability in time-varying monotone systems satisfying a generalized condition of two-sided scalability[END_REF] show that if x t0 -y t0 C ≤ ε for some t 0 ≥ 0, then x(t) -y(t) F ≤ α -1 • α(ε) for all t ≥ t 0 . Since ε and ∆ are arbitrary, this shows that x(•)-y(•) F globally tends to zero, uniformly in the input u. Combining this fact with [START_REF] Devane | Delay-independent incremental stability in time-varying monotone systems satisfying a generalized condition of two-sided scalability[END_REF] and proceeding 3 as in [START_REF] Khalil | Nonlinear systems[END_REF]Appendix C.6], we conclude that there exists β ∈ KL such that, for all x 0 , y 0 ∈ C and all u ∈ U, x(t) -y(t) F ≤ β( x 0 -y 0 C , t) for all t ≥ 0, which establishes Theorem 1.

B. Proof of Lemma 1

Given any t 0 ∈ R and any x 0 ∈ X , let x(•; t 0 , x 0 ) denote the solution of (6) such that x(t 0 ; t 0 , x 0 ) = x 0 . The regularity assumption on g ensures in view of [START_REF] Driver | Analysis tools with applications[END_REF]Theorem 6.10] that this solution is uniquely defined. Moreover, the fact that, by assumption, x t (t 0 , x 0 ) tends to A as t tends to infinity guarantees that x(t; t 0 , x 0 ) exists at all times t ≥ t 0 by [START_REF] Driver | Analysis tools with applications[END_REF]Proposition 6.16]. Defining ξ : R × X × R ≥0 → X as ξ(t 0 , x 0 , t) := x t+t0 (t 0 , x 0 ), the time-periodicity of g ensures that ξ is a T -periodic process, as defined in [ 

C. Proof of Theorem 2

First consider T > 0. Given any T -periodic u ∈ U, let g(t, φ) := f (φ, u(t)) for all φ ∈ C and all t ≥ 0. Then it holds that g(t + T, φ) = g(t, φ). Moreover, by Assumption 1, g is locally Lipschitz in its second argument and completely continuous. Moreover, letting ū := sup t≥0 u(t) F = max t∈[0;T ] u(t) F , (5) ensures that the bounded set A := {φ ∈ C : φ C ≤ σ(ū)} is globally attractive. We can thus apply Lemma 1 with X = F (hence, X = C), to ensure the existence of a T -periodic solution of ẋ(t) = g(t, x t ), which in turn ensures the existence of a T -periodic solution xu : R ≥-d → F for (1). Let ϕ ∈ C be defined as ϕ(s) := xu (s) for all s ∈ [-d; 0]. Then the solution of (1) defined with ϕ as initial state coincides with xu at all times. The assumption of δGAS ensures that (2) holds for some β ∈ KL. Applying this bound with this particular ϕ, we conclude that the solution of (1) starting from any x 0 ∈ C satisfies x(t; x 0 , u) -xu (t) F ≤ β( x 0 -ϕ C , t), ∀t ≥ 0, and the conclusion follows. By convention, in the case when T = 0, u is constant. Repeating the above reasoning for any arbitrary T > 0 shows that xu is then constant too, which ends the proof.

D. Proof of Theorem 3

First observe that Assumption 1 is satisfied since the functions S i , i ∈ {1, . . . , n}, are globally Lipschitz. We consider the functional V defined, for all φ, ϕ ∈ C, as

V (φ, ϕ) = 1 2 n i=1 τ i φ i (0) -ϕ i (0) 2 F + n i=1 Ω γ(r) Ω 0 -di(r,r ) [φ i (θ)](r ) -[ϕ i (θ)](r ) 2 dθdr dr,
where γ is a bounded function to be chosen latter. Given any continuous I ext , let u ∈ U be defined as u(t) := I ext (t, •). Consider any x 0 , y 0 ∈ C and let x(•) and y(•) denote the corresponding solutions of [START_REF] Chaillet | Robust stabilization of delayed neural fields with partial measurement and actuation[END_REF]. Elementary computations show that

c x(t) -y(t) 2 F ≤ V (x t , y t ) ≤ c x t -y t 2 C ,
where c := 1 2 min i=1,...,n τ i and c := max i=1,...,n τ i + # 2 Ω max r∈Ω γ(r). This establishes (3). In view of [16, Theorem 3.2.1], x(•) and y(•) are uniquely defined and continuously differentiable on R ≥0 . It follows that the map V : t → V (x t , y t ) is continuously differentiable on R ≥0 . Consequently, its upper-right Dini derivative coincides with its classical derivative, which reads

V(t) = n i=1 Vi (t) + Ẇi (t), (18) 
with

V i (t) := τ i 2 x i (t) -y i (t) 2 F W i (t) := Ω γ(r) Ω t t-di [x i (θ)](r ) -[y i (θ)](r ) 2 dθdr dr,
where the spatial dependency of the delays d i has been omitted in the notation. In order to lighten the notation, we let e i := x i -y i . The derivative of [e i (t -d i )](r ) 2 dr dr.

V i reads Vi = d dt τ i 2 Ω |[x i (t)](r) -[y i (t)](
Combing ( 18), [START_REF] Fromion | Necessary and sufficient conditions for lur'e system incremental stability[END_REF], and [START_REF] Hale | Theory of functional differential equations[END_REF], we obtain that w ij (r, r ) 2 dr dr < 1, which corresponds to condition [START_REF] Coombes | Neural Fields: Theory and Applications[END_REF].

V(t) ≤ - 1 

E. Proof of Corollary 1

Recall that (7) can be written in the form (1) with f defined as [START_REF] Chaillet | A Razumikhin approach for the incremental stability of delayed nonlinear systems[END_REF]. Given any i ∈ {1, . . . , n}, let Si := sup s∈R |S i (s)|. Then it can easily be checked that, for all x 0 ∈ C and any u ∈ U, the solution of the latter system satisfies lim sup t→∞ x i (t) F ≤ Si √ # Ω where # Ω := Ω dr. It follows that ( 5) is satisfied, and the conclusion follows from Corollary 1.

  continuous function describing the external input of population i, arising either from the influence of exogenous cerebral structures or from an artificial stimulation device. The function d j : Ω × Ω → [0; d], d ≥ 0, is continuous; d j (r, r ) represents the axonal, dendritic and synaptic delays between a pre-synaptic neuron at position r in population j and a post-synaptic neuron at position r. It typically depends on the distance separating the two considered positions, namely |r -r |. S i : R → R is a globally Lipschitz function, known as the activation function of the neural population i.

S 2 Ω

 2 w 21 (r, r )z 1 (r , t -d 1 (r, r ))dr + Ω w 22 (r, r )z 2 (r , t -d 2 (r, r ))dr + I ext 2 (r, t) , where I ext 1 denotes the cortical input, whereas I ext 2 represents inputs from the striatum. The physical space Ω = [0, 15] mm is divided in two regions: Ω 1 = [0, 2.5] mm corresponding to STN, and Ω 2 = [12.5, 15] mm corresponding to GPe. The time constants are picked as τ 1 = 6 ms and τ 2 = 14 ms. The activation functions S i , i ∈ {1, 2}, are taken as sigmoids, namely S i (x) = m i b i /(b i +(m i -b i )e -4x/mi ), where m 1 = 300, b 1 = 17, m 2 = 400 and b 2 = 75. These functions are bounded and globally Lipschitz with Lipschitz constants i = 1. The delays d i are given by d i (r, r ) = |r-r |

Fig. 1 .

 1 Fig. 1. Frequency responses of (11) for w = 0.97 (solid lines) and w = 6 (dashed lines), and for different input amplitudes U .

Fig. 2 .

 2 Fig. 2. spatiotemporal evolution of (11) with constant input for w = 7.5.
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  x(•) and y(•) are absolutely continuous by the definition of solutions.

  , d dt x(t)y(t) F = d dt e(t) F = d dt Ω [e(t)](r) 2 dr/2 e(t) F = Ω [e(t)](r)[ ė(t)](r)dr/ e(t) F ≤ [ ė(t)](r) 2 dr = ė(t) F . Moreover, let ū := sup t≥0 u(t) F . It then follows from Assumption 1 and (

  20, Definition 1.1, p. 76]. Moreover, by assumption, R × A attracts all points of X , meaning that ξ is point dissipative in the sense of [20, Definition 5.3, p. 96]. The conclusion then follows from [20, Theorem 6.2, p. 98].

2 Ω

 2 [e j (t -d j )](r ) 2 dr dr.So the assumptions of Theorem 1 are fulfilled provided that Ω γ(r) < 1/2 and γ(r) ≥

  ) ∈ F n represents the instantaneous value of the state: at each time instant t, it is a function of the space variable rather than a single point of R n . x t ∈ C n represents the history of this function over the latest time interval of length d; in other words, for each fixed θ ∈ [-d; 0], x t (θ) :

  r)| 2 dr ij [y j (t -d j )](r )dr + [u(t)](r) dr. Using the fact that |S i (a -b)| ≤ i |a -b| for all a, b ∈ R and Cauchy-Schwarz inequality, it follows that Vi ≤ -e i (t) 2where we used the fact that ab ≤ (a 2 + b 2 )/2 to get the last bound. Using again Cauchy-Schwarz inequality, we get that Similarly, the derivative of W i reads (t)](r ) 2 -[e i (t -d i )](r ) 2 dr dr = e i (t) 2 (t -d i )](r ) 2 dr dr.

							Ẇi (t) :=	d dt Ω	γ(r)	Ω	t t-di	[e i (θ)](r ) 2 dθdr dr
	=τ i	Ω	[e i (t)](r) [ ẋi (t)](r) -[ ẏi (t)](r)| dr	=	Ω γ(r)
	= -				F	γ(r)dr -
						n	Ω
		S i				w ij [x j (t -d j )](r )dr + [u(t)](r)	It follows that
					j=1 Ω n	n	Ẇi (t) = e(t) 2 F	γ(r)dr	(20)
		-S i	j=1 Ω	i=1	-	Ω γ(r)	n
							Ω	i=1 Ω
							F
							n
		+ i				|[e i (t)](r)|
					Ω	j=1 Ω
							2
							dr
	≤ -	1 2		e i (t) 2 F +	2 i 2 Ω	n j=1 Ω
	Vi ≤ -	1 2		e i (t) 2 F
		+	2 i 2 Ω	j=1 n	Ω	w 2 ij dr	2 dr
	≤ -	1 2		e i (t) 2 F
			2			n	n
		+	i 2 Ω	j=1 Ω w 2 ij dr	j=1 Ω	[e j (t -d j )](r ) 2 dr dr
	≤ -	1 2		e i (t) 2 F
		+	1 2 Ω	wi (r)	n j=1 Ω [e j (t -d j )](r ) 2 dr dr,
	where wi (r) := 2 i	n j=1 Ω w ij (r, r ) 2 dr . It follows that
	n i=1	Vi (t) ≤ -	1 2	e(t) 2 F
		+	1 2	n i=1 Ω	wi (r)	n j=1 Ω	[e j (t -d j )](r ) 2 dr dr
		≤ -	1 2	e(t) 2 F	(19)
		+	1 2 Ω	n i=1	wi (r)

Ω

[e i (t)](r)

2 

dr + Ω [e i (t)](r)× w w ij [e j (t -d j )](r )dr dr ≤ -e i (t) 2 F + i e i (t) F Ω n j=1 Ω w ij [e j (t -d j )](r )dr w ij [e j (t -d j )](r )dr

2 dr, Ω [e j (t -d j )](r ) 2 dr n j=1 Ω [e j (t -d j )](r ) 2 dr dr. Ω [e i Ω γ(r) Ω [e i

This KL function construction is made in a finite dimensional context in[START_REF] Khalil | Nonlinear systems[END_REF], but extends readily here.
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