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Incremental stability of spatiotemporal delayed dynamics and
application to neural fields

Georgios Is. Detorakis and Antoine Chaillet

Abstract— We propose a Lyapounov-Krasovskii approach to
study incremental stability in spatiotemporal dynamics with
delays and their capability to be entrained by a periodic input.
We then focus on delayed neural fields, which describe the
spatiotemporal evolution of neuronal activity. We provide an
explicit condition, involving the slope of the activation functions
and the strength of coupling, under which delayed neural fields
are incrementally stable regardless of communication delays.
We finally show how this approach can be used to draw
frequency profiles of neuronal populations.

I. INTRODUCTION

Incremental stability characterizes systems whose solu-
tions all converge to one another, with a transient overshoot
“proportional” to the distance between initial states. It can
be established through the study of an incremental Lyapunov
function provided that its derivative along any two solutions
of the system is negative as long as they do not coincide [2].

Incremental stability shares strong similarities with con-
vergent [30], [10] and contractive [26], [17] systems. These
similarities have been studied in details in [35]. A key feature
that can be deduced from these properties is the ability of the
system to be entrained by its input. More precisely, if any of
these properties holds uniformly in the applied input then,
under mild conditions, the response of the system to any T -
periodic input is asymptotically T -periodic [26], [30], [36],
[8], [27]. While this property is natural for asymptotically
stable linear systems, it is far from granted when dynamics
are nonlinear. More precisely, examples of systems that have
a globally asymptotically stable equilibrium for each constant
value of the input, but for which this entrainment property
does not hold, can be found in [33], [36].

As observed in [31], the capacity of a system to be
entrained by its input is the key ingredient from which
one can derive frequency profiles. These take the form of
magnitude Bode plots, reflecting the asymptotic amplifica-
tion of the system in response to harmonic excitations at
various frequencies. Unlike in the linear case, their shape
may depend on the input amplitude.

These frequency profiles are especially attractive for neu-
roscience applications. Indeed, oscillations play a fundamen-
tal role in brain coordination [6] and altered oscillations
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in specific structures correlate with pathological symptoms,
for instance in Parkinson’s disease [21]. The possibility to
predict which frequency band is preferably amplified by a
given brain structure would therefore constitute a valuable
tool for computational neuroscientists, and could lead to the
development of stimulation strategies that aim at restoring
healthy frequency profiles.

The spatiotemporal dynamics of brain oscillations can be
captured by neural fields models [9]. These models take the
form of integro-differential equations that abstract the brain
structure to a continuous medium. Communication delays
can be taken into account in this model, giving rise to delayed
neural fields [16], [3], [38]. This feature is particularly
relevant as the non-instantaneous communication between
neurons, due to axonal propagation and synaptic delays, is
believed to play a significant role in the onset and features
of brain oscillations [28], [29], [24].

To the best of our knowledge, no systematic tool to
guarantee incremental stability of neural fields (with or
without delays) has yet been proposed. Incremental stability
of delayed systems can be established using Lyapunov-
Krasovskii [34] or Razumikhin [8], [12] approaches, but
these results have not yet been extended to spatiotemporal
dynamics.

Here, building up on the works [16], [2], we propose a
Lyapunov-Krasovskii approach to establish incremental sta-
bility of spatiotemporal delayed dynamics and provide con-
ditions under which it guarantees the entrainment property.
We then focus on delayed neural fields to show that, under
the stability condition derived in [16], the system happens to
be also incrementally stable. An example motivated by the
study of the brain circuitry involved in the motor symptoms
of Parkinson’s disease demonstrates the possibility to draw
frequency profiles of the dynamics involved, which happen
to exhibit a resonance in the frequency band associated to
motor symptoms.

II. SPATIOTEMPORAL DELAYED DYNAMICS
Throughout this paper, we make use of the following

notation. Ω denotes a compact subset of Rq , q ∈ N≥1.
Given n ∈ N≥1 and d̄ ∈ R≥0, Un := C0(R≥0,Fn),
Fn := L2(Ω,Rn), Cn := C0([−d̄; 0],Fn) if d̄ > 0,
and Cn := Fn if d̄ = 0 . Accordingly, we defined the
norms ‖ · ‖F and ‖ · ‖C as ‖x‖F :=

√∫
Ω
x(r)2dr for all

x ∈ Fn and ‖x‖C := supt∈[−d̄;0] ‖x(t)‖F for all x ∈ Cn.
A continuous function α : R≥0 → R≥0 belongs to class
K if it is increasing and satisfies α(0) = 0. α ∈ K∞ if
α ∈ K and lims→∞ α(s) = ∞. A continuous function



β : R≥0 × R≥0 → R≥0 belongs to class KL if β(·, t) ∈ K
for any t ∈ R≥0 and, given any s ∈ R≥0, β(s, ·) is non-
increasing and tends to zero as its argument tends to infinity.

A. Definition

We consider dynamical systems defined as

ẋ(t) = f(xt, u(t)), (1)

where f : Cn × Fm → Fn and u ∈ Um. x(t) ∈ Fn
represents the instantaneous value of the state: at each time
instant t, it is a function of the space variable rather than
a single point of Rn. xt ∈ Cn represents the history of
this function over the latest time interval of length d̄; in
other words, for each fixed θ ∈ [−d̄; 0], xt(θ) := x(t + θ).
Given any t ∈ R≥0, ẋ(t) ∈ Fn is the function defined as
r 7→ ∂

∂t

(
[x(t)](r)

)
. System (1) is thus rules by a differential

equation over the Banach space Cn. From now on, unless
explicitly stated, Cn, Fn, and Um will be simply written as
C, F , and U . Throughout the paper, we assume the following.

Assumption 1 (Uniform regularity) f is locally Lipschitz
and there exists ρ ∈ K∞ such that, for all φ, ϕ ∈ C and all
v ∈ F , ‖f(φ, v)− f(ϕ, v)‖F ≤ ρ(‖φ− ϕ‖C).

We stress that Assumption 1 ensures that f maps bounded
sets of C × F to bounded sets of F . In other words, f is
completely continuous.

Uniform incremental stability was originally studied in a
finite-dimensional context [2]. A natural extension for the
class of systems (1) is as follows.

Definition 1 (δGAS) The system (1) is uniformly incremen-
tally stable (δGAS) if it is forward complete and there
exists β ∈ KL such that, for any pair of initial conditions
x0, y0 ∈ C and any input u ∈ U , the corresponding solutions
of (1) satisfy, for all t ∈ R≥0,

‖x(t;x0, u)− x(t; y0, u)‖F ≤ β(‖x0 − y0‖C , t). (2)

Similarly to incremental stability for finite-dimensional
systems [2] and time-delay systems [8], [12], δGAS imposes
that any two solutions with the same applied input eventually
converge to one another at a rate uniform in the applied
input, and that the maximum distance between them in the
transients is small if the distance between initial states is
small. Similar ingredients are present in the input-output
formulation of incremental stability [19], [18], [37].

B. Krasovskii-Lyapunov approach for incremental stability

Given V : C → R locally Lipschitz, we indicate its upper-
right Dini derivative along solutions of (1) by

V̇ (1)(t, φ, u) := lim sup
h→0+

V (xt+h)− V (xt)

h
,

on the interval of existence of the solution x(·) of (1) with
initial state φ ∈ C and input u ∈ U . As discussed in [22],
Assumption 1 and the fact that all considered inputs are

continuous in time ensure absolute continuity of the map
t 7→ xt. Consequently, the map t 7→ V (xt) is also absolutely
continuous, ensuring that the negativity of V̇ for almost all t
in an interval [t1; t2] implies V (xt2) < V (xt1). Reasoning as
in [32], it might be possible to extend the results presented
here to merely measurable locally essentially bounded inputs:
see [7] for a spatiotemporal version of this observation.

The following result provides a way to establish δGAS of
spatiotemporal delayed dynamics.

Theorem 1 (Lyapunov-Krasovskii for δGAS) Assume
that there exist α, α ∈ K∞, α ∈ K, and a locally Lipschitz
functional V : C × C → R≥0 such that, for any x0, y0 ∈ C
and any u ∈ U , the corresponding solutions of (1)
x(·) := x(·;x0, u) and y(·) := x(·; y0, u) satisfy, for almost
all t ∈ R≥0,

α(‖x(t)− y(t)‖F ) ≤ V (xt, yt) ≤ α(‖xt − yt‖C) (3)

V̇ (1)(t, x0, y0, u) ≤ −α(‖x(t)− y(t)‖F ). (4)

Then, under Assumption 1, the system (1) is δGAS.

A specificity of the above result lies in the fact that the
dissipation rate in (4) involves the F-norm of the incre-
mental state error, rather than its C-norm. In other words,
it depends on the current value of the incremental state error
rather than its prehistory. If the right-hand side of (4) was
−α(‖xt−yt‖C), then it would hold that V̇ (1) ≤ −α◦α−1(V )
and uniform incremental stability would readily follow from
the comparison lemma. Here, the proof is slightly more in-
volved, but follows along the lines of the original Lyaponov-
Krasovskii approach [20], [25]: see Section VI-A.

C. Entrainment

One interesting feature of δGAS systems is their capability
to be entrained by their input.

Definition 2 (Entrainment) The system (1) is said to be
entrained by its input if, given any T ≥ 0 and any T -
periodic1 u ∈ U , there exists a T -periodic solution x̄u :
R≥0 → F of (1) such that, for any x0 ∈ C,

lim
t→∞

‖x(t;x0, u)− x̄u(t)‖F = 0.

The entrainment property thus ensures that, after tran-
sients, the system evolves in a periodic fashion at the rhythm
of the applied input. We stress that entrainment ensures in
particular that, in response to any constant input, there exists
a unique equilibrium to which all solutions converge.

In line with [8] with an incremental stability approach,
[33], [30] with a convergent systems approach, and [36], [26]
with a contraction approach, the following result provides a
condition under which δGAS ensures entrainment.

Theorem 2 (Entrainment by periodic inputs) Assume
that Assumption 1 holds and that (1) is δGAS. If there exists

1When T = 0, u is called T -periodic if it is constant.



a continuous function σ : R≥0 → R≥0 such that, given any
x0 ∈ C and any periodic u ∈ U , the solution of (1) satisfies

lim sup
t→∞

‖x(t)‖F ≤ σ
(

sup
t≥0
‖u(t)‖F

)
, (5)

then (1) is entrained by its input u.

The proof of Theorem 2, provided in Section VI-C, relies
on the following result.

Lemma 1 (Existence of a periodic solution) Let X :=
C([−d̄; 0], X) be a Banach space and let g : R × X → X
be a completely continuous function, locally Lipschitz in its
second argument, for which there exists T > 0 such that
g(t + T, φ) = g(t, φ) for all φ ∈ X and all t ∈ R. If there
exists a bounded set A ⊂ X attracting all solutions of

ẋ(t) = g(t, xt), (6)

then (6) admits a T -periodic solution.

Thus, δGAS ensures entrainment provided that a compact
set, whose size may depend on the input magnitude, attracts
all solutions. The proof of this result, provided in Section
VI-B, is derived from [20].

III. DELAYED NEURAL FIELDS

A. Considered dynamics

We now focus on a particular class of spatiotemporal
dynamics for which the entrainment property constitutes
an interesting feature. Delayed neural fields are integro-
differential equations representing the spatiotemporal activ-
ity of neuronal populations and accounting for the non-
instantaneous communication between neurons. They read:

τi
∂zi
∂t

(r, t) = −zi(r, t)+ (7)

Si

( n∑
j=1

∫
Ω

wij(r, r
′)zj(r

′, t− dj(r, r′))dr′ + Iext
i (r, t)

)
,

for each i ∈ {1, . . . , n}. Ω is a compact set of Rq , q ∈
{1, 2, 3}, representing the physical support of the popula-
tions. r, r′ ∈ Ω are the space variables, whereas t ∈ R≥0

is the time variable. zi(r, t) ∈ R represents the neuronal
activity of population i at position r and at time t. τi > 0
is the time decay constant of the activity of population i.
wij(r, r

′) describes the synaptic strength between location
r′ in population j and location r in population i; it is
assumed that wij ∈ L2(Ω × Ω,R). Iext

i : Ω × R≥0 → R
is a continuous function describing the external input of
population i, arising either from the influence of exogenous
cerebral structures or from an artificial stimulation device.
The function dj : Ω × Ω → [0; d̄], d̄ ≥ 0, is continuous;
dj(r, r

′) represents the axonal, dendritic and synaptic delays
between a pre-synaptic neuron at position r′ in population j
and a post-synaptic neuron at position r. It typically depends
on the distance separating the two considered positions,
namely |r−r′|. Si : R→ R is a globally Lipschitz function,
known as the activation function of the neural population i.

Neural fields have been introduced in [1], originally with-
out considering delays. Since then, they have been employed
in a number of computational neuroscience studies, ranging
from the understanding of brain functions to the development
of neuromorphic architectures [5]. A reason explaining this
success probably stands in the good compromise they offer
between richness of possible behaviors and mathematical
tractability. In particular, a Lyapunov framework has been
developed to study the stability of stationary patterns [14],
[15]. Qualitative behavior can also be assessed through
bifurcation theory [4], [39]. Delayed neural fields have also
been the subject of stability and robustness studies, using
linearization techniques [3] and a spatiotemporal extension
of the Lyapunov-Krasovskii approach [16], [40], [7]. This
mathematical background constitutes a fertile ground for the
analysis of incremental stability of delayed neural fields, and
particularly their ability to be entrained by a periodic input.

B. Delay-independent condition for δGAS

Let [x(t)](·) := z(·, t), [u(t)](·) := Iext(·, t), and f =
(f1, . . . , fn)T where each fi, i ∈ {1, . . . , n}, is defined for
all all φ ∈ C and all v ∈ F as

fi(φ, v) :=
1

τi

[
− φ(0) (8)

+ Si

( n∑
j=1

∫
Ω

wij(·, r)[φj(−dj(·, r))](r)dr + vi

)]
.

Then the delayed neural fields (7) take the form (1). Applying
Theorem 1 to this particular dynamics leads to the following
explicit condition for the δGAS of delayed neural fields.

Theorem 3 (δGAS of delayed neural fields) For each i ∈
{1, . . . , n}, let Si be globally Lipschitz with Lipschitz con-
stant `i. Then, under the condition

n∑
i,j=1

`2i

∫
Ω

∫
Ω

wij(r, r
′)2dr′dr < 1, (9)

the delayed neural fields (7) are δGAS.

To the best of our knowledge, this result is new even in the
non-delayed case (d̄ = 0). Roughly speaking, condition (9)
can be interpreted as follows: δGAS holds if the L2 norm of
the synaptic gains distributions is below the inverse of the
Lipschitz constant of the activation functions. It therefore
imposes a trade-off between synaptic strength (as measured
through wij) and excitability (as measured through `i).

The exact same condition was proposed in [16] to establish
the existence of a globally asymptotically stable equilib-
rium configuration for any given constant input. In view of
Theorem 2, the above statement allows to go beyond that
conclusion by considering periodic inputs.

Corollary 1 (Entrainment of neural fields) Assume that
the assumptions Theorem 3 hold and that the activation
functions Si, i ∈ {1, . . . , n}, are bounded. Then the delayed
neural fields (7) are entrained by their input Iext.



The proof of this result, provided in Section VI-E, relies
on Theorems 2 and 3 by observing that the boundedness of
Si ensures ultimate boundedness of solutions.

IV. EXAMPLE

In order to illustrate our theoretical findings, we make
use of the model introduced in [11]. This model involves
two brain structures: the subthalamic nucleus (STN), mostly
excitatory, and the external part of the globus pallidus
(GPe), mostly inhibitory. These two structures are believed
to be involved in the generation of beta oscillations (13-
30Hz), the intensity of which correlates with the severity of
parkinsonian motor symptoms [21]. More precisely, [28] and
[29] showed that too strong coupling between STN and GPe
may yield beta oscillations through an instability process.
Here, we advocate that another mechanism might be at work
that relies on entrainment: the preferential amplification of
exogenous oscillations in the beta band. The spatiotemporal
dynamics of these two structures can be grasped by:

τ1
∂z1

∂t
(r, t) = −z1(r, t)+ (10a)

S1

(∫
Ω

w12(r, r′)z2(r′, t− d2(r, r′))dr′ + Iext
1 (r, t)

)
,

τ2
∂z2

∂t
(r, t) = −z2(r, t)+ (10b)

S2

(∫
Ω

w21(r, r′)z1(r′, t− d1(r, r′))dr′

+

∫
Ω

w22(r, r′)z2(r′, t− d2(r, r′))dr′ + Iext
2 (r, t)

)
,

where Iext
1 denotes the cortical input, whereas Iext

2 represents
inputs from the striatum. The physical space Ω = [0, 15] mm
is divided in two regions: Ω1 = [0, 2.5] mm corresponding
to STN, and Ω2 = [12.5, 15] mm corresponding to GPe. The
time constants are picked as τ1 = 6 ms and τ2 = 14 ms. The
activation functions Si, i ∈ {1, 2}, are taken as sigmoids,
namely Si(x) = mibi/(bi+(mi−bi)e−4x/mi), where m1 =
300, b1 = 17, m2 = 400 and b2 = 75. These functions
are bounded and globally Lipschitz with Lipschitz constants
`i = 1. The delays di are given by di(r, r

′) = |r−r′|
ci

, for
all r, r′ ∈ Ω, where ci denotes the conductance velocity
for neurons projecting from population i (c1 = 2.5 m/s and
c2 = 1.4 m/s). The synaptic weights are taken as

w12(r, r′) = −g12(|r − r′ − µ2|), ∀r ∈ Ω1, r
′ ∈ Ω2

w21(r, r′) = g21(|r − r′ − µ1|), ∀r ∈ Ω2, r
′ ∈ Ω1,

w22(r, r′) = −|r − r′|g22(|r − r′|), ∀r, r′ ∈ Ω2,

and zero anywhere else, where µ1 = 1.25 mm and µ2 =
13.25 mm correspond the centers of STN and GPe re-
spectively, and the functions gij are Gaussian functions:
gij(x) := kij exp(−x2/2σij) with σ12 = σ21 = 0.03,
and σ22 = 0.015. All these parameters are spatiotemporal
extensions of those in [28], that were derived based on
experimental evidence: please refer to [11] for more details.

By picking Iext
1 (r, t) = I∗1 (r) and Iext

2 (r, t) = I∗2 (r) +
v(r, t), where I∗1 and I∗2 are chosen in such a way that

the system exhibits an equilibrium at the point where the
slopes of S1 and S2 are maximum, this dynamics can be
reformulated, after a change of variables, as

τ1
∂z1

∂t
= −z1 + S1

(∫
Ω

w12(r, r′)z2(r′, t− d2)dr′
)
,

(11a)

τ2
∂z2

∂t
= −z2 + S2

(∫
Ω

w21(r, r′)z1(r′, t− d1)dr′

+

∫
Ω

w22(r, r′)z2(r′, t− d2)dr′ + v(r, t)
)
, (11b)

where some variables have been omitted for the sake of
notation compactness. For each i ∈ {1, 2}, Si(x) := Si(x−
ai) − Si(ai), where ai is the point at which the slope of
Si is maximum. For simulation purposes, we discretize the
space Ω in 60 segments of equal length. By picking k12 = 7,
k21 = 10.5 and k22 = 3.0, the quantity

w̄ :=

∫
Ω

∫
Ω

(
w12(r, r′)2 + w21(r, r′)2 + w22(r, r′)2

)
dr′dr,

equals 0.97, thus making (9) fulfilled. Theorem 3 then
ensures that (11) is δGAS and Corollary 1 guarantees that
the dynamics are entrained by the striatal input v. We let
v(r, t) = U sin(ωt) and we compute the ratio z̄2(ω)/U
in dB, for various frequencies ω between 1 and 1000
rad/s, where z̄2(ω) denotes the steady-state magnitude of
the oscillations of the spatial average of the GPe activity√

1
#Ω2

∫
Ω2
z2(r, t)2dr, where #Ω2

= 2.5 denotes the mea-
sure of Ω2. We obtain the frequency profiles depicted in
Figure 1 (solid lines). Varying the amplitude U of the striatal
input, different frequency profiles are obtained due to the
nonlinear nature of the dynamics. For U = 10, a slight
resonance appears at around 150 rad/s, corresponding to
the beta band. Increasing the synaptic coupling (k12 = 21.5,
k21 = 22.5, and k22 = 20.5) simulations indicate that (11)
remains entrained by its input although w̄ = 6 > 1 thus
violating condition (9). The corresponding frequency profiles
appear in dashed lines, for the same input magnitudes as
before. The beta resonance is much more pronounced.

When synaptic coupling is increased even more (k12 =
23.5, k21 = 26, and k22 = 20.5), corresponding to w̄ =
7.5, the spatiotemporal response of Figure 2 shows that
endogenous oscillations take place (still in the beta band)
even though the applied input is constant (v(r, t) = 50).
Consequently, the system is no longer entrained by its input
and, in view of Theorem 2, δGAS does not hold anymore.

V. CONCLUSION

Incremental stability is thus a powerful tool to ensure that
a system is entrained by its input, and to derive frequency
profiles, even for spatiotemporal delayed dynamics. The
sufficient condition proposed for δGAS of delayed neural
fields can easily be tested based on the system parameters.
However, simulations indicate that this condition is not
tight. In the future, deriving delay-dependent condition for
δGAS of spatiotemporal dynamics may help reducing this
conservatism. The results of this paper also plead for the



Fig. 1. Frequency responses of (11) for w̄ = 0.97 (solid lines) and w̄ = 6
(dashed lines), and for different input amplitudes U .

Fig. 2. spatiotemporal evolution of (11) with constant input for w̄ = 7.5.

development of control tools to tune the frequency profiles of
the system, for instance to reduce amplification in a targeted
frequency band.

VI. PROOFS

A. Proof of Theorem 1

Given any x0, y0 ∈ C and u ∈ U , let x(·) and y(·)
denote the corresponding solutions of (1). By assumptions,
these solutions exist at all times t ∈ [−d̄; +∞). First
observe that, in the non-delayed case (d̄ = 0), it holds that
‖x(t) − y(t)‖F = ‖xt − yt‖C . It then holds from (3)-(4)
that V̇ (1) ≤ −α ◦ α(V ) at almost all t ∈ R≥0 and uniform
incremental stability follows by recalling that t 7→ V (xt, yt)
is absolutely continuous2 and invoking standard comparison
lemmas (see [23, Lemmas 3.4 and 4.4]). So, from now on,
we consider d̄ > 0.

2x(·) and y(·) are absolutely continuous by the definition of solutions.

Note that (4) implies in particular that V̇ (1) ≤ 0 at almost
all times. Due to absolute continuity, it follows in particular
that V (xt, yt) ≤ V (x0, y0) for all t ≥ 0. Consequently, in
view of (3),

‖x(t)− y(t)‖F ≤ α−1 ◦ α(‖x0 − y0‖C), ∀t ≥ 0, (12)

thus ensuring global uniform boundedness and uniform sta-
bility of the incremental state error. We next proceed to
showing that ‖x(·)−y(·)‖F uniformly tends to zero. To that
aim, we start by showing that, given any ∆, ε > 0, there
exists a time T ≥ 0 such that

‖xT − yT ‖C ≤ ε (13)

for all ‖x0 − y0‖C ≤ ∆. To that end, assume on the
contrary that (13) does not hold, meaning that there exists
an unbounded time sequence {tk}k∈N satisfying tk+1− tk ∈
[0; d̄], some constants ∆, ε > 0, some bounded input u ∈ U ,
and some initial states x0, y0 ∈ C satisfying ‖x0−y0‖C ≤ ∆
such that

‖x(tk)− y(tk)‖F > ε, ∀k ∈ N. (14)

From this sequence {tk}k∈N, let us extract a subsequence
{τk}k∈N satisfying

2d̄ ≤ τk+1 − τk ≤ 4d̄, ∀k ∈ N. (15)

In view of Assumption 1 and [20, Lemma 2.1, p. 38]
(which can be readily extended to systems as (1)), the
functional t 7→ f(xt, u(t)) is continuous. Consequently, x(·)
and y(·) are continuously differentiable over R≥0. We may
thus apply Leibniz rule to get that d

dt‖x(t) − y(t)‖F ≤
‖ẋ(t) − ẏ(t)‖F . Indeed, let e := x − y. Then, using
both Leibniz rule and Cauchy-Schwarz inequality, d

dt‖x(t)−
y(t)‖F = d

dt‖e(t)‖F = d
dt

∫
Ω

[e(t)](r)2dr/2‖e(t)‖F =∫
Ω

[e(t)](r)[ė(t)](r)dr/‖e(t)‖F ≤
√

[ė(t)](r)2dr =
‖ė(t)‖F . Moreover, let ū := supt≥0 ‖u(t)‖F . It then follows
from Assumption 1 and (12) that, for all t ≥ 0,

d

dt
‖x(t)− y(t)‖F = ‖ẋ(t)− ẏ(t)‖F

= ‖f(xt, u(t))− f(yt, u(t))‖F
≤ ρ(‖xt − yt‖C)
≤ ρ ◦ α−1 ◦ α(‖x0 − y0‖C)
≤ ρ ◦ α−1 ◦ α(∆)

≤ `, (16)

where

` := max
{
ρ ◦ α−1 ◦ α(∆) ;

ε

2d̄

}
. (17)

Combining (14) and (16), we get that, for all k ∈ N,

‖x(τk)− y(τk)‖F >
ε

2
, ∀t ∈

[
τk −

ε

2`
; τk +

ε

2`

]
.

Moreover, (17) ensures that d̄ ≥ ε/2`, which implies by
(15) that the intervals [τk − ε/2`; τk + ε/2`], k ∈ N, do not



overlap. It follows from (3)-(4) that

V (xt, yt) ≤ V (x0, y0)−
K(t)∑
k=0

α(ε/2)
ε

`

≤ α(∆)− α(ε/2)
ε

`
(K(t) + 1),

where K(t) := max{k ∈ N : τk ≤ t}. In view of (15), it
holds that τk ≥ τ0 + 2kd̄ ≥ 2kd̄, from which we get that
K(t) + 1 ≥ t/2d̄. Therefore

V (xt, yt) ≤ α(∆)− α(ε/2)
εt

2`d̄
,

For t > 2α(∆)`d̄
εα(ε/2) , this leads to V (xt, yt) < 0 which is

impossible. This establishes that ‖xt−yt‖C eventually takes
values below ε.

Furthermore, this reasoning shows that, given any ∆, ε >
0, the time needed for ‖xt−yt‖C to reach a value smaller than
ε from any initial states satisfying ‖x0−y0‖ ≤ ∆ is at most
T = 2α(∆)`d̄

εα(ε/2) , thus independent of the applied input u. In
addition, (12) show that if ‖xt0−yt0‖C ≤ ε for some t0 ≥ 0,
then ‖x(t)−y(t)‖F ≤ α−1 ◦α(ε) for all t ≥ t0. Since ε and
∆ are arbitrary, this shows that ‖x(·)−y(·)‖F globally tends
to zero, uniformly in the input u. Combining this fact with
(12) and proceeding3 as in [23, Appendix C.6], we conclude
that there exists β ∈ KL such that, for all x0, y0 ∈ C and
all u ∈ U , ‖x(t)− y(t)‖F ≤ β(‖x0 − y0‖C , t) for all t ≥ 0,
which establishes Theorem 1.

B. Proof of Lemma 1

Given any t0 ∈ R and any x0 ∈ X , let x(·; t0, x0) denote
the solution of (6) such that x(t0; t0, x0) = x0. The regularity
assumption on g ensures in view of [13, Theorem 6.10] that
this solution is uniquely defined. Moreover, the fact that,
by assumption, xt(t0, x0) tends to A as t tends to infinity
guarantees that x(t; t0, x0) exists at all times t ≥ t0 by
[13, Proposition 6.16]. Defining ξ : R × X × R≥0 → X
as ξ(t0, x0, t) := xt+t0(t0, x0), the time-periodicity of g
ensures that ξ is a T -periodic process, as defined in [20,
Definition 1.1, p. 76]. Moreover, by assumption, R × A
attracts all points of X , meaning that ξ is point dissipative
in the sense of [20, Definition 5.3, p. 96]. The conclusion
then follows from [20, Theorem 6.2, p. 98].

C. Proof of Theorem 2

First consider T > 0. Given any T -periodic u ∈ U ,
let g(t, φ) := f(φ, u(t)) for all φ ∈ C and all t ≥ 0.
Then it holds that g(t + T, φ) = g(t, φ). Moreover, by
Assumption 1, g is locally Lipschitz in its second argu-
ment and completely continuous. Moreover, letting ū :=
supt≥0 ‖u(t)‖F = maxt∈[0;T ] ‖u(t)‖F , (5) ensures that the
bounded set A := {φ ∈ C : ‖φ‖C ≤ σ(ū)} is globally
attractive. We can thus apply Lemma 1 with X = F (hence,
X = C), to ensure the existence of a T -periodic solution
of ẋ(t) = g(t, xt), which in turn ensures the existence of

3This KL function construction is made in a finite dimensional context
in [23], but extends readily here.

a T -periodic solution x̄u : R≥−d̄ → F for (1). Let ϕ ∈ C
be defined as ϕ(s) := x̄u(s) for all s ∈ [−d̄; 0]. Then the
solution of (1) defined with ϕ as initial state coincides with
x̄u at all times. The assumption of δGAS ensures that (2)
holds for some β ∈ KL. Applying this bound with this
particular ϕ, we conclude that the solution of (1) starting
from any x0 ∈ C satisfies

‖x(t;x0, u)− x̄u(t)‖F ≤ β(‖x0 − ϕ‖C , t), ∀t ≥ 0,

and the conclusion follows. By convention, in the case when
T = 0, u is constant. Repeating the above reasoning for any
arbitrary T > 0 shows that x̄u is then constant too, which
ends the proof.

D. Proof of Theorem 3

First observe that Assumption 1 is satisfied since the
functions Si, i ∈ {1, . . . , n}, are globally Lipschitz. We
consider the functional V defined, for all φ, ϕ ∈ C, as

V (φ, ϕ) =
1

2

n∑
i=1

τi‖φi(0)− ϕi(0)‖2F

+

n∑
i=1

∫
Ω

γ(r)

∫
Ω

∫ 0

−di(r,r′)

(
[φi(θ)](r

′)− [ϕi(θ)](r
′)
)2

dθdr′dr,

where γ is a bounded function to be chosen latter. Given any
continuous Iext, let u ∈ U be defined as u(t) := Iext(t, ·).
Consider any x0, y0 ∈ C and let x(·) and y(·) denote
the corresponding solutions of (7). Elementary computations
show that

c‖x(t)− y(t)‖2F ≤ V (xt, yt) ≤ c‖xt − yt‖2C ,

where c := 1
2 mini=1,...,n τi and c := maxi=1,...,n τi +

#2
Ω maxr∈Ω γ(r). This establishes (3). In view of [16,

Theorem 3.2.1], x(·) and y(·) are uniquely defined and
continuously differentiable on R≥0. It follows that the map
V : t 7→ V (xt, yt) is continuously differentiable on R≥0.
Consequently, its upper-right Dini derivative coincides with
its classical derivative, which reads

V̇(t) =

n∑
i=1

V̇i(t) + Ẇi(t), (18)

with

Vi(t) :=
τi
2
‖xi(t)− yi(t)‖2F

Wi(t) :=

∫
Ω

γ(r)

∫
Ω

∫ t

t−di

(
[xi(θ)](r

′)− [yi(θ)](r
′)
)2
dθdr′dr,

where the spatial dependency of the delays di has been
omitted in the notation. In order to lighten the notation, we



let ei := xi − yi. The derivative of Vi reads

V̇i =
d

dt

(
τi
2

∫
Ω

|[xi(t)](r)− [yi(t)](r)|2dr
)

=τi

∫
Ω

[ei(t)](r)
(
[ẋi(t)](r)− [ẏi(t)](r)|

)
dr

=−
∫

Ω

[ei(t)](r)
2dr +

∫
Ω

[ei(t)](r)×[
Si

( n∑
j=1

∫
Ω

wij [xj(t− dj)](r′)dr′ + [u(t)](r)
)

− Si
( n∑
j=1

∫
Ω

wij [yj(t− dj)](r′)dr′ + [u(t)](r)
)]
dr.

Using the fact that |Si(a − b)| ≤ `i|a − b| for all a, b ∈ R
and Cauchy-Schwarz inequality, it follows that

V̇i ≤− ‖ei(t)‖2F

+ `i

∫
Ω

|[ei(t)](r)|

∣∣∣∣∣∣
n∑
j=1

∫
Ω

wij [ej(t− dj)](r′)dr′
∣∣∣∣∣∣ dr

≤− ‖ei(t)‖2F

+ `i‖ei(t)‖F

√√√√∫
Ω

( n∑
j=1

∫
Ω

wij [ej(t− dj)](r′)dr′
)2

dr

≤− 1

2
‖ei(t)‖2F +

`2i
2

∫
Ω

( n∑
j=1

∫
Ω

wij [ej(t− dj)](r′)dr′
)2

dr,

where we used the fact that ab ≤ (a2 + b2)/2 to get the last
bound. Using again Cauchy-Schwarz inequality, we get that

V̇i ≤−
1

2
‖ei(t)‖2F

+
`2i
2

∫
Ω

( n∑
j=1

√∫
Ω

w2
ijdr

′
∫

Ω

[ej(t− dj)](r′)2dr′
)2

dr

≤− 1

2
‖ei(t)‖2F

+
`2i
2

∫
Ω

( n∑
j=1

∫
Ω

w2
ijdr

′
)( n∑

j=1

∫
Ω

[ej(t− dj)](r′)2dr′
)
dr

≤− 1

2
‖ei(t)‖2F

+
1

2

∫
Ω

w̄i(r)
( n∑
j=1

∫
Ω

[ej(t− dj)](r′)2dr′
)
dr,

where w̄i(r) := `2i
∑n
j=1

∫
Ω
wij(r, r

′)2dr′. It follows that
n∑
i=1

V̇i(t) ≤ −
1

2
‖e(t)‖2F

+
1

2

n∑
i=1

∫
Ω

w̄i(r)
( n∑
j=1

∫
Ω

[ej(t− dj)](r′)2dr′
)
dr

≤ −1

2
‖e(t)‖2F (19)

+
1

2

∫
Ω

( n∑
i=1

w̄i(r)
)( n∑

j=1

∫
Ω

[ej(t− dj)](r′)2dr′
)
dr.

Similarly, the derivative of Wi reads

Ẇi(t) :=
d

dt

∫
Ω

γ(r)

∫
Ω

∫ t

t−di
[ei(θ)](r

′)2dθdr′dr

=

∫
Ω

γ(r)

∫
Ω

(
[ei(t)](r

′)2 − [ei(t− di)](r′)2
)
dr′dr

=‖ei(t)‖2F
∫

Ω

γ(r)dr −
∫

Ω

γ(r)

∫
Ω

[ei(t− di)](r′)2dr′dr.

It follows that
n∑
i=1

Ẇi(t) =‖e(t)‖2F
∫

Ω

γ(r)dr (20)

−
∫

Ω

γ(r)
( n∑
i=1

∫
Ω

[ei(t− di)](r′)2dr′
)
dr.

Combing (18), (19), and (20), we obtain that

V̇(t) ≤−
(1

2
−
∫

Ω

γ(r)dr
)
‖e(t)‖2F

−
∫

Ω

[(
γ(r)−

n∑
i=1

w̄i(r)

2

)∫
Ω

[ej(t− dj)](r′)2dr′
]
dr.

So the assumptions of Theorem 1 are fulfilled provided that∫
Ω

γ(r) < 1/2 and γ(r) ≥
n∑
i=1

w̄i(r)

2
.

By picking

γ(r) =

n∑
i=1

w̄i(r)

2
=

n∑
i,j=1

`2i
2

∫
Ω

wij(r, r
′)2dr′,

the first condition becomes
n∑

i,j=1

`2i

∫
Ω

∫
Ω

wij(r, r
′)2dr′dr < 1,

which corresponds to condition (9).

E. Proof of Corollary 1

Recall that (7) can be written in the form (1) with
f defined as (8). Given any i ∈ {1, . . . , n}, let S̄i :=
sups∈R |Si(s)|. Then it can easily be checked that, for all
x0 ∈ C and any u ∈ U , the solution of the latter system
satisfies lim supt→∞ ‖xi(t)‖F ≤ S̄i

√
#Ω where #Ω :=∫

Ω
dr. It follows that (5) is satisfied, and the conclusion

follows from Corollary 1.
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