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Abstract

Plane-wave expansions (PWEs) based on Fourier transform and their physical interpretation are discussed for the case of homo-
geneous and isotropic lossy media. Albeit being mathematically correct, standard Fourier-based definition leads to nonphysical
properties, such as the absence of homogeneous plane waves,lack of dissipation along transversal directions and inaccurate identi-
fication of single plane waves. Generalizing the PWE definition using Laplace transform, which amounts to switching to complex
spectral variables, is shown to solve these issues, reinstating physical consistency. This approach no longer leads toa unique PWE
for a field distribution, as it allows an infinite number of equivalent definitions, implying that the interpretation of the individual
components of a PWE as physical plane waves does not appear asjustified. The multiplicity of the generalized definitions is illus-
trated by applying it to the near-field radiation of an elementary electric dipole, for different choices of Laplace cuts, showing the
main differences in the generalized PWEs.

Keywords: Plane-wave expansion, lossy media, near-field scans.

1. Introduction

Expanding field distributions onto a Fourier basis is a well-
established procedure used for solving problems of radiation
and propagation [1–8]. Also known as spectral representa-
tion, it provides an interesting and effective framework, as it al-
lows algebraic representations of integro-differential equations,
which lend themselves to physical interpretation, since each
basis function corresponds to the mathematical description of
a plane wave. Field distributions are therefore represented as
a linear combination of plane waves, where each one can be
propagated through a homogeneous or layered space according
to physical laws, whence their being referred to as plane-wave
expansions (PWEs).

It is therefore reasonable that the individual components of
a PWE are often considered as physical plane waves, regarding
their propagation vectors and amplitudes as physical parame-
ters that accurately describe the way they propagate through a
homogeneous medium. While this has a physical foundation in
the case of propagative contributions, as recalled in Sec. 2, the
interpretation of PWE has been at the center of controversies.
In [9, 10], the need to consider portions of a PWE not as neces-
sarily physically consistent at the individual scale was already
pointed out for reactive contributions to a PWE, when taken in-
dividually. A related issue was reported in [5, 11, 12], when
considering homogeneous contributions in asymptotic expres-
sions.

The problems at interpreting a PWE worsen when lossy me-
dia are considered. The introduction of losses is presentedin

the literature as not requiring any modification to the standard
Fourier-based definition. Sec. 2.2 comments on some incon-
sistencies that make an intuitive interpretation of a PWE look
dubious, e.g., the absence of any homogeneous contributionin
case of lossy media. In particular, the PWE can be shown not
to provide accurate identification of single plane waves, asop-
posed to lossless settings.

Sec. 3 studies an alternative definition of PWE based
on Laplace transform. Allowing complex spectral variables,
Laplace transform makes it possible again to identify single
plane waves from field distributions even in lossy media. The
existence of an extended region of convergence for Laplace
transform implies that a field distribution does not correspond
to a unique PWE, thus leading to an extended family of prop-
agators. All of these propagators yield identical results when
propagating field distributions from one plane to another. But
each propagator being different it is no longer possible to as-
sociate a single common physical meaning to each individual
component (or plane wave) across all PWEs.

Numerical examples in Sec. 4 illustrate the fundamental
differences in the generalized PWE depending on the chosen
Laplace cut, thus supporting the conclusion that the PWE can-
not be interpreted, in lossy media, as composed of physical enti-
ties, but should rather be regarded as a mathematical representa-
tion. More specifically, there is a case for choosing on purpose
alternative definitions when identifying single plane waves that
are expected to be homogeneous on physical grounds, such as
for asymptotic representations needed for far-field radiation.
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2. Plane-wave expansion and field propagation

In the following an exp(jωt) time dependence will be as-
sumed, and dropped throughout the paper for simplicity, thus
working with phasor notation. The background medium is as-
sumed to be homogeneous and isotropic, with a relative permit-
tivity constantǫr and an electric conductivityσ supposed for the
time being to be equal to zero, thus with a propagation constant
ko defined as

k2
o = ω

2µoǫoǫr . (1)

In this section and the next one scalar field distributions are
considered for the sake of simplicity, but the ideas discussed
directly apply to vector fields as well, as done in Sec. 4.

2.1. Standard Fourier-based definition

The standard PWE definition is usually introduced by invok-
ing the property of completeness of the Fourier basis [3, 4, 7, 8].
A generic scalar fieldu(R, zo) sampled at a planez = zo (the
scan plane), outside the source region, is projected onto 2D
functions of the kindf (R; K) = exp(−jK · R), with R = xx̂+ yŷ
the transversal position over the plane andK = kxx̂ + kyŷ the
spectral variable. Since the projection between two of the above
basis functions, e.g., for two choices ofK, hereK1 and K2,
gives

∞"

−∞

dR f ∗(R; K1) f (R; K2) = δ(K1 − K2), (2)

with ∗ the complex conjugate andδ(·) Dirac’s delta distribution,
it is indeed possible to identify precisely the coefficient associ-
ated to each basis function. The identification is exact onlyin
the case of data gathered over an infinitely large plane, i.e., the
domain over which the orthogonality relationship (2) holds.

The projection, computed using the inner product, leads to
defining the complex amplitude of the Fourier transform of
u(R, zo) as

ũ(K, zo) =

∞"

−∞

dR u(R, zo) f ∗(R; K) =

∞"

−∞

dR u(R, zo)ejK·R,

(3)
and therefore to expressu(R, zo) as a (infinite) linear combina-
tion

u(R, zo) =
1

4π2

∞"

−∞

dK ũ(K, zo)e−jK·R. (4)

The above representation is known as PWE (or spectrum) or
angular spectrum when expressed as a function of the director
cosines ofK. Insofar it is essentially a mathematical procedure,
with no physical-motivated rationale. The connection to plane
wave propagation will be recalled in a moment.

Plane-wave expansions can be defined and computed for any
planez, but it can be demonstrated that PWEs for different val-
ues ofzare actually related to one another as

ũ(K, z) = P(K, z− zo)ũ(K, zo), (5)

whereP(K, z− zo) is the spectral propagator, given by

P(K, z− zo) = e− jkz(z−zo). (6)

Defining k = K + kzẑ, Helmholtz equation enforces the con-
dition

k · k = k2
o, (7)

so that for each value ofK, i.e., for each doublet (kx, ky), there
exists a valuekz = γ, such that

γ2 = k2
o − K · K. (8)

The complex amplitude of each basis functionf (R; K) propa-
gate from a planezo to a planezas dictated by (6), i.e.,

f (R; K)P(K, z− zo) = e−jk·(r−zo ẑ), (9)

with r = R + zẑ. Therefore, each of these functions behaves
as a plane wave propagating according to a propagation vector
k. This observation is the main rationale behind interpreting a
PWE as a collection of actual plane waves propagating through
an homogeneous infinite medium. In (8) only the forward prop-
agating solution is usually retained, assuming a source to be
found below the scan planezo; this solution is characterized by
the physical choice of decaying waves for an increasingz, i.e.,
with a negative imaginary part ofγ.

The lossless case allows a clear classification of theK-space
into active (visible) and reactive (non-visible) regions,as a
function of the sign of the argument of the square root in (8).In
case of a positive argument,γ ∈ �, corresponding to propaga-
tive fields structures, whereas for negative arguments, i.e., for
those‖K‖ > ko, γ ∈ �, thus exponentially decaying structures.

The corollary of condition (9) is that the quantitieskx, ky and
kz must be the Cartesian components of the vectork, i.e., for
each componentki of the vectork

ki = ko · ûi , (10)

with ûi the unit vector of thei-th Cartesian axis, as long asK be-
longs to the active region where they are expected to be homo-
geneous plane waves. If plane waves in the active region can be
interpreted as representing physical rather than just mathemat-
ical objects, then they can be expected to correspond to homo-
geneous plane waves, as inhomogeneous ones can be observed
only in case of two half spaces, of which one with negligible
losses and the other one with much larger dissipation [13].

Condition (10) is indeed satisfied in the case of lossless me-
dia, since the far-field distribution generated by a source can be
expressed in terms of their PWE as [5, 7]

u(r) = jkoũ(KFF )
e−jkor

r
cosθ, (11)

with
KFF = ko1t · r̂ (12)

and 1t = x̂x̂ + ŷŷ a dyad operating a projection over thexy
plane; notice how (12) is equivalent to (9). These results imply
that an observer is expected to experience a homogeneous lo-
cally plane wave propagating along the direction of observation,
consistently with the condition of a isotropic and homogeneous
medium. Hence, plane waves in the active region of the PWE
can be interpreted as physical quantities in their own right.
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2.2. Lossy media and related issues

In case of a dissipative background medium, it is charac-
terized by a complex relative dielectric permittivityǫc = ǫr −
jσ/(ωǫo), taking the place ofǫr in (1). In this case the disper-
sion relationk = k(ω) is no longer linear inω and therefore
dissipative media may be referred to as dispersive [8].

To the best of our knowledge, in case ofσ , 0 the standard
definition of PWE and propagator recalled in Sec. 2.1 are main-
tained throughout the literature[7, 8], by still choosingK ∈ �2.
It is this choice that is argued as arbitrary in the rest of this
paper, and discussed as the reason for apparent, but ultimately
fictitious, physical inconsistencies.

The only difference in the equations with respect to the pre-
vious case of lossless media is acknowledging thatko is now
complex and therefore that the domain ofkz, as given in (8), can
no longer be divided into purely real and imaginary regions,or
active and reactive, respectively.

In fact, from a physical point of view there are two issues
at stake when dealing with lossy media. First, if each basis
function is to be regarded as physically meaningful, it mustbe
consistent with the fact that each plane wave is evolving in a
homogeneous and isotropic medium. Second, there exist other
alternative definitions with interesting properties, as discussed
in Sec. 3.

Concerning the first point, several observations suggest that
the standard PWE definition leads to spectra that should not be
interpreted as composed of physically meaningful plane waves,
when taken individually. Eq. (11) proved that for lossless me-
dia plane waves in a PWE can be regarded as physical quan-
tities. But it is striking that in case of lossy media, when di-
rectly applying the standard definition of PWS, the entire PWE
is made up of what would be interpreted as inhomogeneous
plane waves, apart for the direction of propagation normal to
the xy plane. Still, in a lossy medium the far-field condition
would require, though asymptotically, the observation of homo-
geneous locally-plane waves along any direction, as long asthe
medium is isotropic and homogeneous. There, it would be ex-
pected that each Cartesian componentki of the vectork comply
with (10). Since for the standard definitionK ∈ �2, the projec-
tion of a complexko over thexy plane should also be complex.
In other words, the standard choice ofK ∈ �2 requires that each
plane wave propagates transversally over thexy plane without
losses, while dissipation occurs only for longitudinal propaga-
tion alongz.

It should be stressed that although not physically consistent
with homogeneous media, inhomogeneous plane waves are al-
lowed by (7), as they represent exact solutions of Helmholtz
equation.

It appears that only [7] has studied how (11) must be modi-
fied in order to take into account the case of lossy media, and
restore the necessary homogeneity of the local plane waves ob-
served in the far-field region of a source. What was proven in
[7, Sec. 3.3] is that (11) and (12) are still valid in the case
of lossy media, even though nowko ∈ �, i.e., the far-field ra-
diation is related to the PWE sampled not overK ∈ �2, but
rather over complex values. This result seems in contradiction

with the standard Fourier-based definition of the PWE. It can
be remarked how (12) automatically enforces (10), resulting in
the use of purely homogeneous plane-wave contributions from
the PWE, as opposed to the standard PWE definition limited to
K ∈ �2. The implications of sampling a PWE for a complexK
will be discussed in Sec. 3.

Another limitation of the standard PWE definition is its in-
ability to correctly assess the parameters of a plane wave prop-
agating through a lossy medium. Suppose a single plane wave
propagates in a medium withko ∈ �, along a direction̂kp, with
a complex amplitudeAp. In the case of a lossless medium, the
PWE would be capable of immediately identify the plane-wave
parameters, since forko ∈ � the PWE would be

ũ(K, zo) = Apδ(K − ko1t · k̂p). (13)

In case ofko ∈ � and K ∈ �2, it is no longer possible to
satisfy this condition, as Dirac’s delta is never evaluatedat its
singularity inko k̂p, now outside the real plane spanned byK in
the standard Fourier-based PWE. Moreover, precise identifica-
tion requires sampling having access to the entire planez = 0,
which then would imply that homogeneous plane waves in a
lossy medium would exponentially diverge. Fourier transforms
cannot be applied to this kind of functions, but we can still con-
sider the case where only a portion of thez = 0 plane is sam-
pled, as it happens in practical applications of the PWE, e.g.,
for measured data.

For a single homogeneous plane wave of amplitudeAp prop-
agating alonĝk = x̂ sinθp + ẑ cosθp, its PWE would be esti-
mated as in (3), limiting the integral over a square region of
side 2a, yielding

ũ(K, zo) = Ap
2asinc(kya)

ko sinθp − kx

[

sin(∆k′xa) cosh(k′′o asinθp)+

j cos(∆k′xa) sinh(k′′o asinθp)
]

(14)

where∆k′x = k′o sinθp − kx andko = k′o + jk′′o . For a lossless
medium the above formula would have a vanishing imaginary
part, leaving a sinc function centered atKp = (ko sinθp, 0), con-
verging to a Dirac’s distribution asa → ∞, i.e., as in (13).
Computing the square modulus of (14)

|ũ(K, zo)|2 = 2a2|Ap|
2sinc2(kya)

cosh(2k′′o asinθp) − cos(2∆k′xa)

(∆k′x)
2 + (k′′o sinθp)2

(15)
it appears that the peak amplitude is still found atKp, where
∆k′x = 0, even ask′′o , 0, when Re ˜u(Kp, zo) = 0. The fact that
it is the imaginary part of (14) that provides the identification
of the plane wave is an issue, as it does not behave as an ap-
proximation of a Dirac’s distribution, as it was the case forthe
lossless case. Moreover, the value taken by (15)

ũ(Kp, zo) = j2aAp
sinh(k′′o asinθp)

k′′o asinθp
(16)

is in quadrature with the actual amplitudeAp and depends on
k′′o , quickly diverging ask′′o asinθp increases, whereas in loss-
less conditions increasinga has no impact on estimatingAp.
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Therefore, only fork′′o → 0 (14) yields an exact estimate of the
plane wave amplitude.

This example shows a fundamental limitation of the standard
definition of the PWE, since for a single homogeneous plane
wave it cannot identify its parameters correctly. As a result, its
PWE cannot be interpreted as an estimate of the physical phe-
nomena underlying the sampled field distribution, even though
inverse-transforming (14) the original field distributionis cor-
rectly retrieved.

3. Generalized plane-wave expansions and propagators

The observations presented in the previous section can be
ascribed to the arbitrary choice of only usingK ∈ �2. As we
will discuss at the end of this section, this choice is correct and
actually necessary in the caseko ∈ �, but it is not justified either
mathematically or physically for the more general case of lossy
media, whereko ∈ �.

ChoosingK ∈ �2 means switching from Fourier functions
to those used in Laplace transform, i.e., for a generic complex
K = K′ + jK′′

e−jK·R = eK′′ ·Re−jK′·R. (17)

Adopting the standard definition of Laplace transform, the
natural candidate for the Laplace variable in the spectral domain
would be jK = jK′ − K′′, with a generalized PWE defined as

ũ(K, z) =

∞"

−∞

dR
[

ũ(R, z)e−K′′ ·R
]

exp(jK′ · R). (18)

Laplace transform is better known for applications to functions
of time, where it is only applied to positive time values, since
any real system can be assumed to be causal. There is no such
constraint in the case of spatial field distributions analyzed in
harmonic steady-state conditions, where they cover in a general
way the entire plane. Therefore, for the case at hand here, itwill
be necessary to consider the two-sided Laplace transform. The
consequences of this choice are discussed later in this section,
when looking for regions of convergence.

The main advantage with respect to Fourier functions is their
ability to introduce an exponential weighting, controlledby K′′,
which allows dealing with exponentially diverging functions,
such as in the case of a single homogeneous plane wave. In
practice, the exponential exp(K′′·R) operates as a normalization
of the spatial distribution, capable of compensating exponential
divergence in the spatial data, as is the case for plane waves
in homogeneous lossy media. Moreover, switching to Laplace
transform also allows sampling the PWE atK ∈ �2, as required
by (12), in order to accurately predict far-field radiation.

At first glance Laplace transform could be regarded as bur-
densome with respect to Fourier transform, as the imaginary
parts ofkx = k′x + jk′′x and ky = k′y + jk′′y now also need to
be explored, thus passing from a two-dimensional to a practi-
cally four-dimensional function. In fact, there is no need to ex-
plore all possible values ofK′′, since passing back to the spatial
domain by performing an inverse Laplace transform requires

choosing only a single value ofK′′, or Laplace cut, as required
by Bromwich integral [14],

u(R, z) =
(

2πj
)−2
∫ k′′x +j∞

k′′x −j∞
d(jk′x)

∫ k′′y +j∞

k′′y −j∞
d(jk′y) ũ(K, z)e−jK·R,

(19)
which can be recast as

u(R, z) =
eK′′ ·R

4π2

∞"

−∞

dK′ũ(K′ + jK′′, z) exp(−jK′ · R). (20)

The Laplace pair as defined by (18) and (20) shows that pass-
ing to Laplace transform still involves computing Fourier trans-
forms, but now applied to a spatial distribution undergoinga
normalization as it is weighted by a real-argument exponential
decaying along the directionK′′. The chosen value ofK′′ must
belong to the region of convergence (ROC) of the Laplace trans-
form. The ROC can be identified by looking for the set ofK′′

such that
lim
R→∞

∣

∣

∣eK′′ ·Ru(R, z)
∣

∣

∣ < M ∀R̂ (21)

whereM is a finite real number. The above condition, applied
to all directionsR̂ over thexy plane, translates the requirement
for a bounded spatial distribution after weightingu(R, z) by an
exponential function. In lossy media, the far-field amplitude of
fields generated by finite-size sources is dominated by exponen-
tial functions of the imaginary part ofko [15, 16]. Hence (21)
holds as long as

(k′′x )2 + (k′′y )2 = ‖K′′‖2 < (k′′o )2. (22)

In case of losses, different choices ofK′′ yield different def-
initions of the PWE, with their own propagator, still definedas
in (6), with (8) becoming

γ2 = k2
o − K′ · K′ − jK′′ · K′′ + 2jK′ · K′′, (23)

whereK′ · K′′ , 0 as opposed to the usual case of physical
settings of waves propagating at the interface between lossless
and lossy media.

According to Bromwich theorem, any choice ofK′′ satisfy-
ing (22) will yield identical results when coming back to the
spatial domain, after propagation. Hence, there is not a unique
definition for the PWE, but rather an infinite number, all of
them equivalent when it comes to propagating field distribu-
tions from a planezo to a planez. The two main reasons for
choosingK′′ , 0 are either to compute the far-field radiation
associated to the field scanned atzo, as required by (11) or in
order to identify the exact complex amplitude of a plane wave.

This last case was shown in the previous section to be an
issue, with an inaccurate estimate PWE given by (14). This
problem can be solved by first computing the PWE forK′′ = 0,
which was shown in Sec. 2.2 to attain its peak intensity atK′p =
(k′o sinθp, 0). The generalized PWE with Laplace transform for
K′ = K′p reduces to

ũ(K′p + jK′′, zo) = Ap

∞"

−∞

dR e(K′′−k′′o sinθpx̂)·R, (24)
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Figure 1: Modulus of field distributions atz1 (left column),z2 (right column)
for an Hertzian dipole normal to the scan plane (ˆz-oriented). The three rows
represent the Cartesian components of the electric field,x, y andz.

which converges only forK′′ = k′′o sinθpx̂, a value that can be
predicted sinceθp can be estimated fromK′pfor homogeneous
plane waves. Finally, ˜u(K′p + jK′′p , zo) = Apδ(K′ − K′p), where
the amplitude of the plane wave is now clearly identified. This
property underlies a recent application of Laplace transform for
parameter identification of plane waves in acoustic fields [17].

In the case of lossless media,u(R, zo) decays as 1/r, so any
real-argument exponential function would make Laplace inte-
gral diverging. In this case therefore the PWE is uniquely de-
fined forK′′ = 0.

As seen above, Bromwich integral implies that all the choices
of K′′ in the ROC (22) are equivalent. Therefore, the appar-
ent inconsistencies summarized in Sec. 2.2 are mainly due to
interpreting the individual components of the standard PWE
as physical quantities, rather than purely mathematical ones.
Physical meaning is more clearly associated to far-field radia-
tion, where the concept of locally-plane waves is unambiguous.
In this case, (12) does require to choseK′′ , 0, where the quan-
tities yielded by the PWE correspond to meaningful amplitudes
of plane waves. But as long as field propagation from one plane
to another is at stake, any choice ofK′′ that satisfies (22) is cor-
rect, includingK′′ = 0 for the standard definition, as shown in
Sec. 4.
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Figure 2: Modulus of field distributions atz1 (left column),z2 (right column)
for an Hertzian dipole tangent to the plane (ˆx-oriented). The three rows stand
for the Cartesian components of the electric field,x, y andz.

4. The case of an Hertzian dipole

A Hertzian dipole surrounded by a homogeneous isotropic
medium is considered in this section in order to study the be-
havior of the generalized PWE discussed above. The rationale
for this choice is the availability of closed-form formulasfor
the radiation of Hertzian dipoles, valid even at close range[18]

Er (r) =
pcosθ

2πjωǫoǫcr3
(1+ jkor)e− jkor (25a)

Eθ(r) =
psinθ

4πjωǫoǫcr3

[

1+ jkor + (jkor)2
]

e− jkor (25b)

Eφ(r) = 0 (25c)

wherep is the electric dipole moment of the source. A Carte-
sian representation will be adopted in the following.

The medium chosen for the analysis has a complex relative
dielectric constantǫc = 1 − j0.5; the working frequency is set
at 1 GHz, henceko = 21.57− j5.093 m−1 . The electric field
radiated by the dipole is sampled at a planez1 = 0.1 m away
from it, and its PWE is employed in order to compute the field
radiated atz2 = 0.6 m, slightly more than 1.5 wavelengths away
from the first plane.

Two orientations of the dipole with respect to the scan plane
are considered, namely along ˆz (vertical dipole) and ˆx (hori-
zontal dipole). The spatial distribution of the three Cartesian
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Figure 3: Modulus of field distributions atz1 after applying Laplace expo-
nential, fork′′y /ko = 0.9. These distributions are those that will be Fourier
transformed for generalized PWE. Hertzian dipole tangent to the scan plane (ˆx-
oriented) in the left column, normal to the plane (ˆz-oriented) on the right. The
three rows stand for the Cartesian components of the electric field, x, y andz.

components ofE(R, z) are shown in Figs. 1 and 2, for the two
planesz= z1 andz= z2.

Four generalized PWE are considered in the following, by
choosingk′′y /k

′′
o = {0, 0.3, 0.6, 0.9} andk′′x = 0. These choices

of the Laplace-domain cut correspond to applying the Fourier
transform to the spatial distributions shown in Fig. 3. The cor-
responding spectral propagators are shown in Fig. 4.

The spectra computed for these four choices ofk′′y , shown
in Figs. 5 and 6, present strong modifications only for certain
Cartesian components. These modifications can be interpreted
by recalling that for a homogeneous plane wave withk′′y = k′′o
it must necessarily presentk′y = k′o. As k′′y → k′′o in Figs. 5 and
6 those components that are expected to subsist in the far-field
region of the sources present increasingly strong and resolved
peaks aroundK = k′oŷ, consistently with the requirement of
(12), as proven in [7]. These peaks occur for they andz com-
ponents in case of anz-oriented dipole, and for thex component
for thex-oriented one.

A formal explanation can be provided, by computing the
generalized PWE of a dipole. Rather than doing this from
spatial distributions given in (25), it is easier to proceedfrom
the reciprocal-space (ork-space) representation of the electric-
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Figure 4: Comparison of generalized propagators computed for z2 − z1 for four
choices ofk′′y . Modulus (left column), phase in radians (right column).

electric Green function [6]

G̃(k) =
1− k2

okk

k2 − k2
o

=
D̃(k)

k2 − k2
o

(26)

with 1 the identity dyad. Given an electric-current density dis-
tribution J(r) whosek-space representation isJ̃(k)

Ẽ(k) = −jωµG̃(k) · J̃(k). (27)

In case of a Hertzian dipole oriented along ˆp, J(r) = δ(r) p̂,
henceJ̃(k) = p̂.

The PWE can then be computed as

Ẽ(K, z) =
1
2π

∫

dkzẼ(k)e−jkzz, (28)

i.e., inverse transforming only along thekz dimension. Carrying
out the integration for (27) using Cauchy theorem and choosing
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an integration path in order to only include forward propagating
waves yields

Ẽ(K, 0) =
j

2γ
D̃(K + γ ẑ) · p̂. (29)

whereγ was defined in (23).
For the case of a vertical dipole oriented along ˆz (29) simpli-

fies to

Ẽ(K, 0) =
j

2γk2
o





















kxγ

kyγ

1− γ2





















, (30)

i.e., presenting a singularz component forγ = 0, i.e., for allK
such thatK · K = k2

o. This condition is satisfied when‖K′‖ =
k′o and‖K′′‖ = k′′o , i.e., for grazing propagation along the scan
plane, and is consistent with the peaks observed earlier in this
section in Fig. 5. The consequence is that these peaks are in fact
singularities that, once passing back to space through spectral
integration, correspond to plane wave contributions.

In the same way, for an ˆx-oriented dipole,

Ẽ(K, 0) =
j

2γk2
o





















k2
o − kx

−kxky

kxγ





















, (31)

which is now singular for thex andy components of the PWE,
again for grazing directions along the scan plane, consistent
with the peaks observed in Fig. 6.

More simply stated, the choice of a Laplace cut different
from the one used in the Fourier transform naturally leads toa
dominant contribution in the generalized PWE, which happens
to coincide with a homogeneous plane wave, as expected for a
source radiating in a homogeneous medium. The standard def-
inition of PWE would not allow observing these singularities,
as they occur outside the Fourier cutK′′ = 0.

Once the four PWE are propagated atz2 and inverse trans-
formed according to (20), the results are indistinguishable from
the references shown in Figs. 5 and 6, as expected from
Bromwich theorem, with errors below 0.01% of the respective
peak amplitudes due to finite numerical resolution.

5. Conclusions

This paper has argued about apparent inconsistencies ob-
served when extending the standard Fourier-based definition of
the PWE to lossy media. The inaccurate identification of ho-
mogeneous plane waves was pointed out as an intrinsical lim-
itation. Switching to a more general Laplace-based definition
was shown to reintroduce homogeneous plane waves, which are
needed in order to describe the asymptotic evolution of far-field
radiation.

The fact that the generalized definition allows multiple
choices forK′′ has direct implications on the interpretation of
PWE. Since any choice of Laplace cut must yield identical re-
sults, it is no longer possible to define a single interpretation of
the PWE, as each one is based on a different set of plane waves
with complementary properties. While the resulting field distri-
butions are identical by virtue of Bromwich theorem, the expan-
sions no longer represent a collection of functions that canbe
interpreted on an individual basis. The discussions presented in
this paper stress the fact that the PWE should be regarded only
as a mathematical representation, restraining from interpreting
its individual components as physical entities.
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Figure 5: Comparison of generalized PWE computed atz1 for four choices ofk′′y , for a z-oriented Hertzian dipole. From top to bottom row, the threeCartesian
components,x, y andz.

k
′ y
/k

′ o

 

 

−2 0 2
−3

−2

−1

0

1

2

3

0

1

2

3

4

x 10
4

k
′ y
/k

′ o

 

 
k′′y/k

′′

o = 0

−2 0 2
−3

−2

−1

0

1

2

3

0

5

10

x 10
4

k′x/k
′

o

k
′ y
/k

′ o

 

 

−2 0 2
−3

−2

−1

0

1

2

3

2

4

6

x 10
4

 

 

−2 0 2
−3

−2

−1

0

1

2

3

0

1

2

3

4

5

x 10
4

 

 
k′′y/k

′′

o = 0.3

−2 0 2
−3

−2

−1

0

1

2

3

5

10

15

x 10
4

k′x/k
′

o

 

 

−2 0 2
−3

−2

−1

0

1

2

3

0

2

4

6

x 10
4

 

 

−2 0 2
−3

−2

−1

0

1

2

3

0

2

4

6

8
x 10

4

 

 
k′′y/k

′′

o = 0.6

−2 0 2
−3

−2

−1

0

1

2

3

0.5

1

1.5

2

x 10
5

k′x/k
′

o

 

 

−2 0 2
−3

−2

−1

0

1

2

3

2

4

6

x 10
4

 

 

−2 0 2
−3

−2

−1

0

1

2

3

0

5

10

15
x 10

4

 

 
k′′y/k

′′

o = 0.9

−2 0 2
−3

−2

−1

0

1

2

3

0

2

4

6
x 10

5

k′x/k
′

o

 

 

−2 0 2
−3

−2

−1

0

1

2

3

0

2

4

6

8
x 10

4

Figure 6: Comparison of generalized PWE computed atz1 for four choices ofk′′y , for a y-oriented Hertzian dipole. From top to bottom row, the threeCartesian
components,x, y andz.
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