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Abstract

Plane-wave expansions (PWESs) based on Fourier transfodrtheir physical interpretation are discussed for the cd$mmo-
geneous and isotropic lossy media. Albeit being mathembticorrect, standard Fourier-based definition leads tophgsical
properties, such as the absence of homogeneous plane \eakesf dissipation along transversal directions and insaie identi-
fication of single plane waves. Generalizing the PWE dedinitising Laplace transform, which amounts to switching tmglex
spectral variables, is shown to solve these issues, rémsiahysical consistency. This approach no longer leadsuoiqgue PWE
for a field distribution, as it allows an infinite number of @glent definitions, implying that the interpretation oetindividual
components of a PWE as physical plane waves does not appjeatifisd. The multiplicity of the generalized definitiorssiilus-
trated by applying it to the near-field radiation of an eletagnelectric dipole, for dferent choices of Laplace cuts, showing the
main diferences in the generalized PWEs.

Keywords: Plane-wave expansion, lossy media, near-field scans.

1. Introduction the literature as not requiring any modification to the stadd
o o i o Fourier-based definition. Sec. 2.2 comments on some incon-
Expanding field distributions onto a Fourier basis is a well-gistencies that make an intuitive interpretation of a PWklo
established procedure used for solving problems of ramiati g pioys, e.g., the absence of any homogeneous contrikiation
and propagation [1-8]. Also known as spectral representasase of lossy media. In particular, the PWE can be shown not

tion, it provides an interesting andfective framework, asital- 4 provide accurate identification of single plane waves@s
lows algebraic representations of integréfetiential equations, posed to lossless settings.

which lend themselves to physical interpretation, sincehea _ ) L
basis function corresponds to the mathematical desonifo ~ >€C- 3 studies an alternative definition of PWE based
a plane wave. Field distributions are therefore represease O" Laplace transform. - Allowing complex spectral variables

a linear combination of plane waves, where each one can HeAPlace transform makes it possible again to identify sng|

propagated through a homogeneous or layered space acg:ordﬁ’i'ane waves from field distributions even in lossy media. The

to physical laws, whence their being referred to as planeewa existence of an extended region of convergence for Laplace
expansions (PWES). transform implies that a field distribution does not cormsp

It is therefore reasonable that the individual componefts o!© & Unique PWE, thus leading to an extended family of prop-

a PWE are often considered as physical plane waves, regardifdators. All of these propagators yield identical resultem
their propagation vectors and amplitudes as physical param Propagating field distributions from one plane to anotheut B
ters that accurately describe the way they propagate thraug €2Ch Propagator beingftérent it is no longer possible to as-
homogeneous medium. While this has a physical foundation jfociate @ single common physical meaning to each individual
the case of propagative contributions, as recalled in Seihe2  cOmPonent (or plane wave) across all PWEs.
interpretation of PWE has been at the center of controversie Numerical examples in Sec. 4 illustrate the fundamental
In[9, 10], the need to consider portions of a PWE not as necedifferences in the generalized PWE depending on the chosen
sarily physically consistent at the individual scale wasadly = Laplace cut, thus supporting the conclusion that the PWE can
pointed out for reactive contributions to a PWE, when taken i notbe interpreted, in lossy media, as composed of physitial
dividually. A related issue was reported in [5, 11, 12], whenties, but should rather be regarded as a mathematical esyiees
considering homogeneous contributions in asymptoticespr tion. More specifically, there is a case for choosing on psepo
sions. alternative definitions when identifying single plane wateat

The problems at interpreting a PWE worsen when lossy meare expected to be homogeneous on physical grounds, such as
dia are considered. The introduction of losses is presdnted for asymptotic representations needed for far-field raztiat
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2. Plane-wave expansion and field propagation whereP(K, z - z,) is the spectral propagator, given by

— ik (z—
In the following an expt) time dependence will be as- P(K.2-20) = e 1), (6)
sumed, and dropped throughout the paper for simplicitys thu Definingk = K + k;z, Helmholtz equation enforces the con-
working with phasor notation. The background medium is as4ition
sumed to be homogeneous and isotropic, with a relative permi k-k=k, @)
tivity constant and an electric conductivity supposed forthe s that for each value df, i.e., for each doublek(, k,), there
time being to be equal to zero, thus with a propagation cabsta exists a valud;, = y, such that
ko defined as s o
kg = W2lloEokr. D Y =ks - K-K. (8)
The complex amplitude of each basis functifiR; K) propa-

In this section and the next one scalar field distributiores argate from a plane, to a planez as dictated by (6), i.e..,

considered for the sake of simplicity, but the ideas disedss _ i
directly apply to vector fields as well, as done in Sec. 4. f(R; K)P(K, z— 2o) = eIk (22, 9)

_ o with r = R + zz. Therefore, each of these functions behaves
2.1. Standard Fourier-based definition as a plane wave propagating according to a propagationrvecto

The standard PWE definition is usually introduced by invok-K- This observation is the main rationale behind interpgeéin
ing the property of completeness of the Fourier basis [3, &].7 PWE as a collection of actual plane waves propagating throug

A generic scalar fieldi(R, z,) sampled at a plane = z (the &" hpmogene?ousfinfinite medium. In (8) only_the forward prop-
scan plane), outside the source region, is projected onto 2B9@ting solution is usually retained, assuming a sourcesto b
functions of the kindf (R; K) = exp(jK - R), with R = XX +y§/ found be_low the scan plarzs; FhIS solution is ch_aracterl_z_ed by
the transversal position over the plane aad- ke + k,§ the ~ the physical choice of decaying waves for an increaging:.,
spectral variable. Since the projection between two of twwa ~ With @ negative imaginary part of o
basis functions, e.g., for two choices Kf hereK; and K», _ The Igssless case allows a c_Iear classn_‘lc;atlon of<_t¥wace
gives into active (visible) and reactive (non-visible) regioras a
o0 function of the sign of the argument of the square root in i8).
fde £*(R; Kq) F(R: K2) = 6(K1 — K»), (2) case of a positive argument,e R, corresponding to propaga-
tive fields structures, whereas for negative arguments foe
those||K|| > ko, v € 1, thus exponentially decaying structures.
with « the complex conjugate a¢) Dirac’s delta distribution, The corollary of condition (9) is that the quantitiesk, and
it is indeed possible to identify precisely the @ibgent associ-  k, must be the Cartesian components of the vektdre., for
ated to each basis function. The identification is exact anly each componeri of the vectork
the case of data gathered over an infinitely large planethe. .
domain over which the orthogonality relationship (2) holds ki = ko Gi, (10)
The projection, computed using the inner product, leads tavith G; the unit vector of thé-th Cartesian axis, as long Ksbe-
defining the complex amplitude of the Fourier transform oflongs to the active region where they are expected to be homo-
U(R, z,) as geneous plane waves. If plane waves in the active regionean b
interpreted as representing physical rather than just enait-
~ ~ _ ical objects, then they can be expected to correspond to homo
(K, z) = fde U(R, 20) f*(R; K) = fde u(R, o), geneous plane waves, as inhomogeneous ones can be observed
—c0 —o0 only in case of two half spaces, of which one with negligible
o (‘3) losses and the other one with much larger dissipation [13].
and therefore to expres¢R, z) as a (infinite) linear combina-  cndition (10) is indeed satisfied in the case of lossless me-
tion dia, since the far-field distribution generated by a sousrebe

1 ' o _iK. expressed in terms of their PWE as [5, 7
u(R, ) = = fde (K, z)e X R, (4) P jkor[ ]
NS €

—00

u(r) = jkot(Ker) cosy, (11)

The above representation is known as PWE (or spectrum) or '

angular spectrum when expressed as a function of the directd/ith ~

cosines oK. Insofar it is essentially a mathematical procedure, Ker = kole - (12)

with no physical-motivated rationale. The connectiontangl and1; = XX + §y a dyad operating a projection over tig

wave propagation will be recalled in a moment. plane; notice how (12) is equivalent to (9). These resul{gym
Plane-wave expansions can be defined and computed for afijat an observer is expected to experience a homogeneous lo-

planez, but it can be demonstrated that PWEs fdtetient val-  cally plane wave propagating along the direction of obséma

ues ofz are actually related to one another as consistently with the condition of a isotropic and homogere
medium. Hence, plane waves in the active region of the PWE
(K, 2 = P(K, z- z)l(K, z,), (5) can beinterpreted as physical quantities in their own right



2.2. Lossy media and related issues with the standard Fourier-based definition of the PWE. It can
o i o be remarked how (12) automatically enforces (10), resyitin
In case of a dissipative background medium, it is charaCy,q se of purely homogeneous plane-wave contributioms fro

terized by a complex relative dielectric permittivity = & — 1o pwWE, as opposed to the standard PWE definition limited to
jo/(weo), taking the place of in (1). In this case the disper- ¢ c g2 The implications of sampling a PWE for a compléx
sion relationk = k(w) is no longer linear inw and therefore 4, be discussed in Sec. 3.

dissipative media may be referred to as dispersive [8]. Another limitation of the standard PWE definition is its in-

To the best of our knowledge, in casewf# 0 the standard apility to correctly assess the parameters of a plane waye pr
definition of PWE and propagator recalled in Sec. 2.1 are MaiNygating through a lossy medium. Suppose a single plane wave
tained throughout the literature[7, 8], by still choosig R?. propagates in a medium wity € C, along a directiorky, with
It is this choi_ce that is argued as arbitrary in the rest o$ thi 5 complex amplitudd,,. In the case of a lossless medium, the
paper, and discussed as the reason for apparent, but @lymat pywe would be capable of immediately identify the plane-wave

fictitious, physical inconsistencies. . parameters, since fég € R the PWE would be

The only diference in the equations with respect to the pre- .
vious case of lossless media is acknowledging Kyas now G(K, zo) = Apd(K — Kol; - kp). (13)
complex and therefore that the domairkgfas givenin (8), can ” )
no longer be divided into purely real and imaginary regians, |D case ofko € C andK € R=, It s no longer possmlg to
active and reactive, respectively. satisfy this condition, as Dirac’s delta is never evaluateis

In fact, from a physical point of view there are two issuesSingularity inkokp, now outside the real plane spannedoin
at stake when dealing with lossy media. First, if each basidhe standard Fourier-based PWE. Moreover, precise ideaifi
function is to be regarded as physically meaningful, it nest 10N requires sampling having access to the entire piaad,
consistent with the fact that each plane wave is evolving in dvhich then would imply that homogeneous plane waves in a
homogeneous and isotropic medium. Second, there exist oth{SSy medium would exponentially diverge. Fourier transfs
alternative definitions with interesting properties, ascdssed ~cannotbe applied to this kind of functions, but we can stfic
in Sec. 3. sider the case where only a portion of the 0 plane is sam-

Concerning the first point, several observations suggest th P1€d: as it happens in practical applications of the PWE, e.g

the standard PWE definition leads to spectra that shouldeot O Measured data. _

interpreted as composed of physically meaningful planeesay ~ OF @ Single homogeneous plane wave of amplitglprop-
when taken individually. Eq. (11) proved that for losslessm @gating alongk = Xsinf, + 2cosép, its PWE would be esti-
dia plane waves in a PWE can be regarded as physical quaﬂ_lated as |n_(3), limiting the integral over a square region of
tities. But it is striking that in case of lossy media, when di Side &, yielding

rectly applying the standard definition of PWS, the entirelPW 2asincl,a)
is made up of what would be interpreted as inhomogeneousi(K, z,) = Apy———- [sin(Ak;a) coshkyasingp)+

plane waves, apart for the direction of propagation normal t kosinfp — ki (14)

the xy plane. Still, in a lossy medium the far-field condition jcos@kia) sinh(kgasinap)]

would require, though asymptotically, the observationahlo-

geneous locally-plane waves along any direction, as lotigeas  WhereAk, = k;sindy — kx andks = k; + jkg. For a lossless
medium is isotropic and homogeneous. There, it would be ex*edium the above formula would have a vanishing imaginary
pected that each Cartesian comporenf the vectork comply ~ Part, leaving a sinc function centeredgf = (k, sinép, 0), con-
with (10). Since for the standard definitishe R2, the projec-  Verging to a Dirac’s distribution aa — oo, i.e., as in (13).
tion of a complex, over thexy plane should also be complex. €omputing the square modulus of (14)

. > .
In other words, the standard choicetokE R< requires the_lteach ) , . cosh(X.asind,) - cos(2K,a)
plane wave propagates transversally oventhelane without  |T(K, z,)|* = 2a%|Ap| S|nc,2(kya) — — >
losses, while dissipation occurs only for longitudinal gaga- (AK)” + (kg sin6p)

tion alongz. (15)

: .. it appears that the peak amplitude is still foundat where
It should be stressed that although not physically consiste K, = 0, even a&/ # 0, when Rai(Kp, z) = 0. The fact that

with homogeneous media, inhomogeneous plane waves are al- . . 4 . .
g g P it is the imaginary part of (14) that provides the identifioat

lowed by (7), as they represent exact solutions of Helmholtz ! ) .
equatior%l (7) y rep of the plane wave is an issue, as it does not behave as an ap-

It appears that only [7] has studied how (11) must be modi_proximation of a Dirac’s distribution, as it was the casetfo

fied in order to take into account the case of lossy media, anl(g)ssless case. Moreover, the value taken by (15)

restore the necessary homogeneity of the local plane wéres o . ) sinh/asindp)

served in the far-field region of a source. What was proven in (K p, 20) = JzaApW (16)
[7, Sec. 3.3] is that (11) and (12) are still valid in the case P

of lossy media, even though ndw € C, i.e., the far-field ra- is in quadrature with the actual amplitudg and depends on
diation is related to the PWE sampled not overe R?, but k¢, quickly diverging ak} asingj, increases, whereas in loss-
rather over complex values. This result seems in contiadict less conditions increasing has no impact on estimating,.
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Therefore, only fok] — 0 (14) yields an exact estimate of the choosing only a single value &”, or Laplace cut, as required
plane wave amplitude. by Bromwich integral [14],

This example shows a fundamental limitation of the standard K/ +jeo i +jco
deﬂmt_lon of th(—;- PWE, since for a single homogeneou; plane R 2 = (Zﬂj)—2f d(jk;)f d(ik)) (K, 2)e KR
wave it cannot identify its parameters correctly. As a rgsisl K, Ky —joo
PWE cannot be interpreted as an estimate of the physical phe- (19)
nomena underlying the sampled field distribution, evengiou Which can be recast as
inverse-transforming (14) the original field distributiencor-

,
x ~J°

_ K'R A
rectly retrieved. u(R,2) = e4 5 fde’ﬂ(K’ +jK"”,2) expjK' - R). (20)
T
3. Generalized plane-wave expansions and propagators The Laplace pair as defined by (18) and (20) shows that pass-

] ] ) ) ing to Laplace transform still involves computing Fourierts-
The observations presented in the previous SzeCt'O” can Bgrms, but now applied to a spatial distribution undergaing
ascribed to the arbitrary choice of only usiHge R®. Aswe  normalization as it is weighted by a real-argument expdaknt
will discuss at the end of this section, this choice is cdrasea decaying along the directidd”. The chosen value d€” must
actually necessary in the cdgges R, but it is not justified either belong to the region of convergence (ROC) of the Laplacestran

mathematically or physically for the more general case Y0 form. The ROC can be identified by looking for the set<df
media, wherd, € C. such that

ChoosingK e €2 means switching from Fourier functions lim |eK"‘Ru(R, z)l <M VR (21)

to those used in Laplace transform, i.e., for a generic cerpl R0

K=K +jK” whereM is a finite real number. The above condition, applied

e KR _ K" RgjKR (17) toall directionsR over thexy plane, translates the requirement
for a bounded spatial distribution after weightin@R, z) by an
Adopting the standard definition of Laplace transform, theexponential function. In lossy media, the far-field amliwof

natural candidate for the Laplace variable in the spectomlain  fig|ds generated by finite-size sources is dominated by expon

would be K = jK’ — K”, with a generalized PWE defined as  tjg| functions of the imaginary part &, [15, 16]. Hence (21)
holds as long as

(K, 2 = fde[tl(R, z)e‘K"‘R] exp(K’ - R). (18) (k;(')z 4 (k;//)Z _ ”K//HZ < (kg)z (22)

In case of losses, fierent choices oK” yield different def-
Laplace transform is better known for applications to fisred  initions of the PWE, with their own propagator, still definesl
of time, where it is only applied to positive time values,cgn in (6), with (8) becoming
any real system can be assumed to be causal. There is no such o e
constraint in the case of spatial field distributions anedym Y =ks— K- K — K" K"+ 2]K" - K", (23)
harmonic steady-state conditions, where they cover in argén
way the entire plane. Therefore, for the case at hand hav, it
be necessary to consider the two-sided Laplace transfone. T
consequences of this choice are discussed later in thi®sect
when looking for regions of convergence.

whereK’ - K” # 0 as opposed to the usual case of physical
settings of waves propagating at the interface betweeltekss
and lossy media.

According to Bromwich theorem, any choice f" satisfy-

. . . . . .ing (22) will yield identical results when coming back to the
T_he main advantage with respect tp Fquner functions l,s the'spatial domain, after propagation. Hence, there is not quéni
ab'.“ty to mtroduce_an ex_ponen'ual We_lghtlng,cor?trothdK., definition for the PWE, but rather an infinite number, all of
which allows dealing with exponentially diverging funcis )hem equivalent when it comes to propagating field distribu-

such_as in the case o_f a single homogeneous plane_wa\_/e. Bns from a plane, to a planez The two main reasons for
practice, the exponential ex{-R) operates as a normalization choosingK” # 0 are either to compute the far-field radiation

Of the spatigl distributio.n, capable OT compensating expoial associated to the field scannedzgtas required by (11) or in
Q|vergence in the spatial da}ta, as is the case fgr plane WaVider to identify the exact complex amplitude of a plane wave
in homogeneous lossy med_la. Moreover, swﬂzchlng to I__aplace This last case was shown in the previous section to be an
transform also allows sampling the PWB@E C*, as required issue, with an inaccurate estimate PWE given by (14). This

by (12), in order to accurately predict far-field radiation. problem can be solved by first computing the PWEKGr= 0,

At first glance Laplace transform could be regarded as bur\'/vhich was shown in Sec. 2.2 to attain its peak intensit/at

densome with respect to Fourier transform, as the imaginarm sind,, 0). The generalized PWE with Laplace transform for
parts ofk, = ki + jk; andk, = K +Jk; now also need to ' _ i+ requces to
- P

be explored, thus passing from a two-dimensional to a practi
cally four-dimensional function. In fact, there is no neecx- 9
plore all possible values ", since passing back to the spatial g(K;J +jK”,20) = Ap fde K"~k sinfp%)-R (24)
domain by performing an inverse Laplace transform requires
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Figure 1: Modulus of field distributions ai (left column),z (right column)
for an Hertzian dipole normal to the scan plamzeo(iented). The three rows
represent the Cartesian components of the electric figjcandz
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which converges only foK” = kg sinpX, a value that can be
predicted sinc#, can be estimated fror{,for homogeneous
plane waves. Finally(K} + K}, Z0) = Apd(K" — K7), where
the amplitude of the plane wave is now clearly identified.sThi
property underlies a recent application of Laplace tramsfor
parameter identification of plane waves in acoustic field@$.[1

In the case of lossless medi&R, z,) decays as /&, so any
real-argument exponential function would make Laplace-int
gral diverging. In this case therefore the PWE is uniquely de
fined forK” = 0.

As seen above, Bromwich integral implies that all the cheice
of K” in the ROC (22) are equivalent. Therefore, the appar
ent inconsistencies summarized in Sec. 2.2 are mainly due
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Figure 2: Modulus of field distributions aj (left column),z (right column)
for an Hertzian dipole tangent to the planedfiented). The three rows stand
for the Cartesian components of the electric field; andz
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4. The case of an Hertzian dipole

A Hertzian dipole surrounded by a homogeneous isotropic
medium is considered in this section in order to study the be-
havior of the generalized PWE discussed above. The ragonal
for this choice is the availability of closed-form formulés
the radiation of Hertzian dipoles, valid even at close rdig¢

E(M = —22¥ (14 jkne (252)
2njweqecr

B = 2% 11 ior + Gkon?] e 1 (25b)
Arrjweoecr

Es() = 0 (25¢)

wherep is the electric dipole moment of the source. A Carte-
wian representation will be adopted in the following.

interpreting the individual components of the standard PWE The medium chosen for the analysis has a complex relative

as physical quantities, rather than purely mathematicakon
Physical meaning is more clearly associated to far-fieldarad
tion, where the concept of locally-plane waves is unamhiguo
In this case, (12) does require to ch&sé # 0, where the quan-
tities yielded by the PWE correspond to meaningful ampétud

dielectric constan¢é; = 1 —j0.5; the working frequency is set
at 1 GHz, hencd, = 21.57 - j5.093 nt! . The electric field
radiated by the dipole is sampled at a plapne= 0.1 m away
from it, and its PWE is employed in order to compute the field
radiated a, = 0.6 m, slightly more than 1.5 wavelengths away

of plane waves. But as long as field propagation from one planfrom the first plane.

to another is at stake, any choiceldf that satisfies (22) is cor-
rect, includingK” = 0 for the standard definition, as shown in
Sec. 4.

Two orientations of the dipole with respect to the scan plane
are considered, namely alormy(Vertical dipole) andx“(hori-
zontal dipole). The spatial distribution of the three Csida
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components oE(R, 2) are shown in Figs. 1 and 2, for the two
planesz = z; andz = z.
Figure 4: Comparison of generalized propagators computez} - z; for four

Four generallzed PWE are considered in the foIIowmg, bychoices ofky. Modulus (left column), phase in radians (right column).

choosingky /ky = {0,0.3,0.6,0.9} andky = 0. These choices

of the Laplace-domain cut correspond to applying the Fourie

transform to the spatial distributions shown in Fig. 3. Tbe-c electric Green function [6]
responding spectral propagators are shown in Fig. 4.

5 ~
The spectra computed for these four choice«fshown G(k) = 1; k"kzk = ?(k)z

in Figs. 5 and 6, present strong modifications only for cartai k”—ko k”—ko

Cartesian components. These modifications can be intetpret

by recalling that for a homogeneous plane wave Wjth= kg

it must necessarily presekit = k;. Ask’ — kg in Figs. 5 and

6 those components that are expected to subsist in the ldr-fie E(K) = —jwuG(K) - I(K). (27)

region of the sources present increasingly strong andvedgol

peaks arounK = k¥, consistently with the requirement of In case of a Hertzian dipole oriented alopg J(r) = d(r)p,

(12), as proven in [7]. These peaks occur forytendzcom-  henceJ(k) = p.

(26)

with 1 the identity dyad. Given an electric-current density dis-
tribution J(r) whosek-space representationdgk)

ponents in case of aroriented dipole, and for thecomponent The PWE can then be computed as
for the x-oriented one. 1
A formal explanation can be provided, by computing the E(K.9 = fdeE(k)e‘szZ, (28)
generalized PWE of a dipole. Rather than doing this from
spatial distributions given in (25), it is easier to procéemm i.e., inverse transforming only along thkedimension. Carrying

the reciprocal-space (d=space) representation of the electric- out the integration for (27) using Cauchy theorem and chupsi
6



an integration path in order to only include forward progaga
waves yields
E(K,0)= - D(K +72) - p. (29)
2y

wherey was defined in (23).

The fact that the generalized definition allows multiple
choices forK” has direct implications on the interpretation of
PWE. Since any choice of Laplace cut must yield identical re-
sults, it is no longer possible to define a single interpietanf
the PWE, as each one is based onféedént set of plane waves
with complementary properties. While the resulting fielstidi
butions are identical by virtue of Bromwich theorem, theaxp

For the case of a vertical dipole oriented alan@9) simpli-
fies to

sions no longer represent a collection of functions thatlman

) Kyy interpreted on an individual basis. The discussions ptegén
E(K,0) = 1_2 ky |, (30)  this paper stress the fact that the PWE sho_uld be re.gar.dgd onl
k5| 12 y2 as a mathematical representation, restraining from ireéiny

its individual components as physical entities.

i.e., presenting a singularcomponent foy = 0, i.e., for allK
such thatk - K = k2. This condition is satisfied whefK’|| =
k;, and|K”|| = kj, i.e., for grazing propagation along the scan

plane, and is consistent with the peaks observed earliénsn t Roferences

section in Fig. 5. The consequence is that these peaks aetin f
singularities that, once passing back to space througttrspec

integration, correspond to plane wave contributions. [
In the same way, for ar-driented dipole,
[2]
- j kg — kx
E(K,0)= —| -k |, (31) (3]
Ky
[4]

which is now singular for the& andy components of the PWE,
again for grazing directions along the scan plane, comgiste (3]
with the peaks observed in Fig. 6. (6]

More simply stated, the choice of a Laplace cufetient
from the one used in the Fourier transform naturally leads to [7]
dominant contribution in the generalized PWE, which hagpen 6]
to coincide with a homogeneous plane wave, as expected for 5
source radiating in a homogeneous medium. The standard defy]
inition of PWE would not allow observing these singulastie
as they occur outside the Fourier ¢t = 0.

Once the four PWE are propagatedzatand inverse trans-
formed according to (20), the results are indistinguisdétdm  [11]
the references shown in Figs. 5 and 6, as expected from
Bromwich theorem, with errors below@L% of the respective

peak amplitudes due to finite numerical resolution. [13]

(14]
5. Conclusions

[15]

This paper has argued about apparent inconsistencies ob-

served when extending the standard Fourier-based deffiitio [16]
the PWE to lossy media. The inaccurate identification of ho-
mogeneous plane waves was pointed out as an intrinsical limzi7]
itation. Switching to a more general Laplace-based degimiti
was shown to reintroduce homogeneous plane waves, which are
needed in order to describe the asymptotic evolution ofiéda-
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Figure 5: Comparison of generalized PWE computed, dor four choices ok, for az-oriented Hertzian dipole. From top to bottom row, the th@zetesian
componentsy,y andz
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Figure 6: Comparison of generalized PWE computed, dor four choices oky, for ay-oriented Hertzian dipole. From top to bottom row, the th@zetesian
componentsy, y andz



