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Abstract

A multi-fidelity simulator is a numerical model, in which one of
the inputs controls a trade-off between the realism and the computa-
tional cost of the simulation. Our goal is to estimate the probability
of exceeding a given threshold on a multi-fidelity stochastic simulator.
We propose a fully Bayesian approach based on Gaussian processes
to compute the posterior probability distribution of this probability.
We pay special attention to the hyper-parameters of the model. Our
methodology is illustrated on an academic example.

1 Introduction

In this article, we aim to estimate the Probability of Failure (PoF) of a sys-
tem described by a multi-fidelity numerical model. Multi-fidelity simulators
are characterized by the fact that the user has to make a trade-off between
the realism of the simulation and its computational cost, for instance by
tuning the mesh size when the simulator is a finite difference simulator. An
expensive simulation gives a high-fidelity result, while a cheap simulation
returns a low-fidelity approximation. A multi-fidelity approach combines
different levels of fidelity to estimate a quantity of interest. A method for
estimating probabilities of exceeding a threshold of a stochastic multi-fidelity
numerical model is proposed in [6]. In this paper, we extend the methodol-
ogy to a fully Bayesian approach.

A stochastic multi-fidelity simulator can be seen as a black-box, which
returns an output modeled by a random variable Z from a vector of in-
puts (z,t) e X x RT, X C R%. The vector x is a set of input parameters of
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the simulation, and the scalar ¢ controls the fidelity of the simulation. The
fidelity increases when ¢ decreases. We denote by PP, ; the probability distri-
bution of the output Z at (x,t). We assume that an input distribution fx
on the input space X and a critical threshold 2" are also provided. The
PoF is the probability that the output exceeds the critical threshold

j /X P, et (Z > 27 fy (z)dz, (1)
where t'f is a reference level where we would like to compute the probabil-
ity. We use a Bayesian approach based on a multi-fidelity Gaussian process
model of Z in order to compute a posterior distribution of the PoF. Prior
distributions are added on the hyper-parameters of the Gaussian process, so
we expect that the posterior distribution of the PoF has better predictive
properties. This approach is compared to a classical plug-in approach.

The paper is organized as follows. Section 2 explains the Bayesian multi-
fidelity model. Section 3 describes how to take into account the hyper-
parameter uncertainties to compute the posterior density of the PoF. Sec-
tion 4 illustrates the methodology on an academic example.

2 Multi-fidelity Gaussian process

In this section, we present the model proposed in [6]. The output Z at x,t
is assumed conditionally Gaussian

Z1§, A ~ N(&(z, 1), A(t)), (2)

with £(z,t) and A(t) the mean and variance functions, the latter being as-
sumed independent of x for simplicity. Knowing & and A, two different runs
of the simulator produce independent outputs. Bayesian prior models are
independently added on & and A.

For the mean function &, we use the multi-fidelity model proposed by [3,
7]. This model decomposes the Gaussian process {(z,t) in two independent
Gaussian processes:

£(x7t) = 50(56) + E(x’t)’ (3)

where the process &y describes an ideal simulator, which would be the re-
sult at ¢ = 0, and € represents the numerical error of the simulator. The
model imposes [e(x,O)Q] = 0. Moreover, as the fidelity increases when t
decreases, the variance of € according to ¢ is decreasing when ¢ decreases.

The ideal process & is a stationary Gaussian process with constant
mean m and stationary covariance cg. The error process € is a centered
Gaussian process with a separable covariance between = and ¢, independent
of &. Thus, the distribution of £ is

€~ GP(m,co(x —2') +7(t,t') - ce(x — 2')). (4)
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The prior distribution of m is a uniform improper distribution on R, which
is a classical assumption in ordinary kriging (see [5]). Following the rec-
ommendations of [7], a Matérn 5/2 covariance function is selected for cgy
and c.:

d /. \? 4\
co(h) = o§ Ms 2 ( > <_§> ) ,ce(h) = 05G M/, ( > <_f> ) ’
=1 \ Pk k=1 \Pk
(5)

and a distorted Brownian covariance function for the fidelity covariance:

) = (M) ©)

with ag, G, L, (pg,p§)1<k<d 2d + 3 positive hyper-parameters, t“F the low-
est level of fidelity (to ensure 7(t,t') < 1), and Mj/, the covariance func-
tion Ms/(h) = (1 +v/5h + §h2) e=V5h,

In this article, even if the simulator could be observed at any level t,
we assume that only S levels ¢t > t3 > --- > tg > 0 are actually ob-
served. Thus, instead of inferring on the whole function A\(¢), we consider
only the parameters (A(ts))i<s<s. The vector of hyper-parameters 6 =

{03, (pg)lgkgd G L () 1<p<a s ()\(ts))lgsgs} therefore has length 2d+ 3 +
S.

3 Dealing with hyper-parameters

In order to carry out a fully-Bayesian approach, prior distributions are added
on these hyper-parameters. To simplify the estimations and the inference,
the hyper-parameters are expressed in log-scale ly = log(f), and the joint
prior distribution of Iy is chosen to be a multivariate normal distribution.
The hyper-parameters of the mean function £ are assumed mutually inde-
pendent, and independent of the noise variance A\. An approximate value r°%
of the range of the output is assumed known, and the input domain X is
assumed to be an hyper-rectangle X = ngl[ak; br]. We propose, for the
model described in Section 2, the following prior distributions:

out2
r 2
lO_(Q) ~ N (log (W) ,lOg(lOO) ) y (7&)

I ~ N (log (1), 10g(100)?) (7b)
lole~N<log<k >10g(10)),1§k§d, (7¢)
lr, ~ N(log(4),log (7d)
out2
(zA(ts))1S ( og ’;002> 1g,log(100)2 - (1 — ¢)Ig + CUS)> . (Te)
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with ¢ the correlation between two noise variances, 1g the vector of ones of
length S, Ig the identity matrix of size S, and Ug the square matrix of ones
with size S. To select the prior distributions, we propose a reference value
for each hyper-parameter, and add a large prior uncertainty to get weakly-
informative prior distributions. The parameters o3 and Gog are assumed to

Tout

2
be approximatively equal to (100) . The range parameters (p{, 05)1<k<d

are assumed to be about the half of the domain p; ~ bk;“k. For the degree

parameter L, the mean is a value recommended by [7].

rout

The noise variances are assumed to be about (W)Q, with a large stan-
dard deviation. However, we also assume that the prior uncertainty on
the difference between two log-noise variance are really small with respect
to the uncertainty of the noise variance, Var [log(A(¢1)) — log(A(t2))] <
Var [log(A(t1))]. Consequently, we assume [6] a strong correlation between
log-noise variances, which is set to ¢ = 99%. This assumption helps to
estimate noise variance on the levels with few observations.

Once the prior distribution are defined, we can compute the posterior
distribution conditionally to observations using Bayes theorem. Let yx, =
(@i, ti; 2i)1 <4<, denote n observations of the simulator. Because of the as-
sumption of normal output distribution and Gaussian process with unknown
mean (Equations (2) and (4)), the prior and posterior processes conditioned
by 6 are Gaussian. Thus, for any vector of outputs Z at given input vec-
tors, m(Z|xn,0) and 7(xn|0) are Gaussian multivariate distributions, whose
mean and covariance are given by the kriging equations [5].

The posterior distribution of § can be expressed with Bayes formula up
to a normalizing constant: 7 (0|x,) < 7(xn|0) - 7(0). As there is no close
expression of this posterior distribution, we sample it using a Monte-Carlo
method. More precisely, we use the adaptive Metropolis-Hastings algorithm
proposed by [2] to get samples (6;)1<j<p, distributed according to m(8|xn).

The sampled hyper-parameters are used to compute the probability dis-
tribution of the PoF P (1). Since the density of P is intractable, we
use a Monte-Carlo method to draw samples from the posterior distribu-
tion m(P|xn). At each fixed 6;, first, m inputs are drawn according to the in-

put distribution XU) = (xgj)) CEEj) ~ fx. Then, we draw ¢ Gaussian

1<i<m’

: ) O] (.7) ref
sample paths at the inputs X/ at the reference level (ng@j (xz ,t ))1§i§m, I<i<q

1 . f(l) 0. (x(j)7tref) _Zcrit
and compute the probability function p( ) (,CEEJ ), tref) - | X J\/ —
)\9 K (tref)
J

J
Finally, the samples (P;j;)1<;<p, 1<i<q are computed by averaging on the in-

put space, Pj; = L A pg-l (ﬂ:z(]), tref). With this sample, we can estimate

m
the PoF with a measure of uncertainty, for instance, by computing the em-

pirical median and a 95% confidence interval.
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Figure 1: Normalized densities of the hyper-parameters of the multi-fidelity
Gaussian process. The solid blue lines are the posterior densities, and the
green dashed lines the prior densities. The abscissa axes are in logarithmic
scale.

4 Application

The algorithm is illustrated on a random damped harmonic oscillator from [1].
Consider X (t) the solution of the second-order differential stochastic equa-
tion, driven by a Brownian motion with spectral density equal to one, and
with X (t = 0) = 0 and X (t = 0) = 0 as initial conditions. The parameters
of the differential equation, the natural pulse wy and the damping ratio ¢,
are the d = 2 inputs of the simulator. The stochastic equation is solved on a
period ¢ € [0; "], with t*"? = 30s, by an explicit exponential Euler scheme,
which approximates X by a sequence X, ~ X (n - dt). The time step ot is
the fidelity parameter. The multi-fidelity simulator is

f:(wo,(,0t) —  max {log (|)Z'n|)} ) (8)
0<n<| 4

with wp € [0;30] rads™, ¢ € [0;1] and 6t € [0;1] s. The cost of this simulator
is linear in 1/t: observing the level 6t (in seconds) costs C(6t) = 23 +5.45
(in milliseconds). The approximate output range is r° = 40.

For this article, we consider S = 5 levels of fidelity: ot = 1, 0.5, 0.1,
0.05, and 0.01 s. The multi-fidelity design is a Nested Latin Hypercube
Sampling (NLHS) with respectively 168, 56, 28, 14 and 7 points at each level
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of fidelity, generated with the algorithm of [4] and a maximin optimization.
The adaptive Metropolis algorithm is applied to draw p = 103 vectors §. The
figure 1 represents the normalized marginal prior and posterior distributions
of 6, the latter being estimated with a kernel density method.

The marginal posterior distributions are more concentrated than their
prior counterparts, indicating that the observations y, brings information
about the hyper-parameters. Particularly, for noise variances (A(dts)), the
strong correlation between levels allows to reduce the uncertainties of all
noise variances, including those from levels with few observations. The value
of L is rather well-estimated, an observation which is opposite to the one
in [7], which recommends to fix the value.

With the sampling of hyper-parameters, we can estimate the posterior
distribution of the PoF. The input distribution fx is an uniform distribution
on the input space [0; 30jrads~! x [0; 1], the critical threshold is zi* = 1. In
order to make a comparison, we estimate the PoF at an observable fidelity-
level, fixed to 6t™f = 0.01s. We compute a reference value P* = 5.73%.

We compare two different methods of estimation: a Fully Bayesian (FB)
approach, and a plug-in approach, where hyper-parameters are replaced by
their Maximum A Posteriori (MAP). Our methodology is applied on 240
independent experiments. On these experiments, the input and outputs
observations change, but the models and their priors are fixed. For each
experiment, the posterior density of the PoF of the four models is sampled,
which gives 240 x 2 posterior densities. From these posterior densities of the
PoF, we compute the median, and the 95% confidence intervals.

Figure 2(a) displays the empirical histograms of the 240 medians of the
posterior distributions of the PoF. We can see that the medians returned by
FB approach vary less from an experiment to another than those returned
by MAP. Figure 2(b) plots the empirical densities of the 240 lengths of the
95% confidence intervals, estimated by kernel density regression. We can
see that, for all approaches, the failing intervals have a smaller length than
the successful intervals. We can also see that the FB approach always pro-
vides non-zero confidence intervals, opposite to MAP approach. Figure 2(c)
presents the capacity of the models to catch the reference value. Each curve
corresponds to one approach. Each point of the curve at abscissa p is the
coverage, the proportion of the confidence intervals of level p which contain
the reference, according to the associated approach. We can see that the FB
approach provides much more conservative intervals than MAP approach.

The three Figures 2(a), 2(b) and 2(c) suggest that, on this example, the
FB approach returns a better posterior distribution than the MAP approach.
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Figure 2: (a) Histograms of the medians. The vertical dotted line is the
reference. (b) Estimated densities of the lengths of the 95% confidence in-
terval. The dashed lines with squares correspond to intervals which contain
the reference value, the dashed lines with stars to those which miss it, and
the solid lines to all intervals. (c) Coverage of confidence intervals at level p.
The coverage is the proportion of cases where the reference value is inside
the confidence interval. The solid and dashed-crossed lines corresponds re-
spectively to the FB and MAP approaches.
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5 Conclusion

In this article, we propose a Bayesian model for stochastic multi-fidelity
numerical model. The model is based on a Gaussian process, completed
with prior distributions on the hyper-parameters of the covariance function
and on noise variances. By comparing prior and posterior hyper-parameter
distributions, we see that observations bring informations about the hyper-
parameters. Using sampling algorithms, we can sample the posterior distri-
bution of the quantity of interest, here a Probability of Failure (PoF). By
comparing the Fully Bayesian approach with Maximum A Posteriori plug-
in approach, we can see that, on an academic example, the Fully Bayesian
approach provides more robust confidence intervals of the PoF. However,
the priors require care when using the models. Future work will focus on
assessing the impact of the different prior modeling choices on the posterior
distributions of hyper-parameters and of quantities of interest.
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