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Abstract7

The present paper investigates the sensory-driven modulations of Central Pattern Generators dynamics that can be ex-8

pected to reproduce human behavior during rhythmic hybrid tasks. We propose a theoretical model of human sensorimotor9

behavior able to account for the observed data from the ball-bouncing task. The novel control architecture is composed of10

a Matsuoka neural oscillator coupled with the environment through visual sensory feedback. The architecture’s ability to11

reproduce human-like performance during the ball-bouncing task in the presence of perturbations is quantified by comparison12

of simulated and recorded trials. The results suggest that human visual control of the task is achieved on-line. The adaptive13

behavior is made possible by a parametric and state control of the limit cycle emerging from the interaction of the rhythmic14

pattern generator, the musculoskeletal system and the environment.15

16

Ball bouncing; Information-movement couplings; Behavioral modeling; Visual control; Neural oscillators17

New & Noteworthy18

The study demonstrates that a behavioral model based on a neural oscillator controlled by visual information is able to accurately19

reproduce human modulations in a motor action with respect to sensory information during the rhythmic ball-bouncing task.20

The model attractor dynamics emerging from the interaction between the neuromusculoskeletal system and the environment met21

task requirements, environmental constraints and human behavioral choices without relying on movement planning and explicit22

internal models of the environment.23

Introduction24

A successful interaction between the central nervous system, the musculoskeletal system and the environment is crucial to25

behave efficiently in a dynamic environment (Beer 2009). The study of rhythmic movements in vertebrates allows for a better26

understanding of these interactions and associated control strategies. Several electrophysiology-based studies show that some27

rhythmic movements are the result of spinal cord control units activating muscle synergies based on an efficient sensorimotor28

integration. In particular, it has been shown that rhythm generators, known as Central Pattern Generators (CPGs), are present29

at the spinal level in vertebrates to produce basic rhythmic movement patterns such as locomotion and respiration (Grillner 2006;30

Zehr et al. 2004). The dynamics of CPGs are modulated by sensory signals through low-level information-movement couplings31

(Pearson 2004), and descending signals from the cerebrum (Grillner 2006; Harris-Warrick 2011; Rossignol et al. 2006). However,32

the neural basis of the control architectures and the sensorimotor couplings generating rhythmic movements remains unclear.33

Specifically, the way the Central Nervous System (CNS) might achieve the observed robust and efficient visual control of actions34

during cyclic hybrid tasks, such as walking or bouncing a ball, is still under investigation (Ankarali et al. 2014; Ronsse et al.35

2010; Wei et al. 2007).36

Based on recent experimental results involving object catching, hitting or locomotion, Zhao and Warren (2015) suggested that37

human action is controlled on-line, without relying on internal models of the environment, when current visual information is38

available. According to this study, the alternative model-based control strategy, with action guided by an internal representation39
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of the world and musculoskeletal system, was shown to be better suited to visually-directed actions such as during tasks where40

participants are first allowed to memorize the environment and then move in it blindfolded.41

Among the competing approaches to the on-line visual control of action, the information processing theory considers that42

during limb synchronization with external periodic signals, movement characteristics such as period or phase are corrected on a43

cycle-to-cycle basis, through sequential auto-regressive relations called intermittent couplings (Van Der Steen and Keller 2013).44

However, as several studies show that during synchronization tasks the human neural system relies on dynamic phenomena such45

as entrainment and resonance tuning, the dynamic systems theory considers that synchronization is a result of these phenomena46

originating from the continuous coupling of the CPG with other oscillators from the neuromusculoskeletal system or from the47

environment (Van Der Steen and Keller 2013; Warren 2006). Visuomotor resonance tuning and entrainment phenomena, also48

called global entrainments in the literature (Taga 1995), have been observed during locomotion (Pelah et al. 2015), postural49

sway (Bertenthal et al. 1997), synchronization of the human arm oscillation with an oscillating external event (Schmidt et al.50

2007), interpersonal visual coordination of limb oscillations (Oullier et al. 2008; Schmidt et al. 1998) and visuomotor tracking51

of a sinusoidally moving target (Wimmers et al. 1992). Recent results even suggest that they could emerge without conscious52

awareness of the visual stimuli, as the visuomotor coupling would be based on the neural pathways from retina to Area V5/MT53

that by-pass Area V1 (Pelah et al. 2015).54

To contribute to the debate opposing these theories, the present paper considers the one-dimensional (vertical) ball-bouncing55

task. It is a well-known model system in neuroscience (Ankarali et al. 2014; Bazile et al. 2013, 2016; Marchal-Crespo et al. 2015;56

Morice et al. 2007; Ronsse et al. 2010; Ronsse and Sternad 2010; Schaal et al. 1996; Siegler et al. 2010, 2013; Sternad et al. 2001;57

Wei et al. 2007, 2008), robotics (Buehler et al. 1994; Kulchenko and Todorov 2011; Williamson 1999) and nonlinear dynamics58

(Vincent and Mees 2000) to investigate control and stability of tasks involving an agent coupled with an environment through59

contacts and information exchanges. The agent oscillates the paddle to hit the ball in such a way that the ball ideally reaches60

a predefined target height at each cycle (see Fig. 1). Imposing a target height allows for analysis of the processes involved in61

error-to-target correction in addition to ball-paddle timing synchronization.62

Different models of paddle juggling have been proposed to analyze the information-movement couplings involved during63

human ball bouncing, including open-loop control models (Dijkstra et al. 2004; Schaal et al. 1996; Wei et al. 2007, 2008), optimal64

control models (Marchal-Crespo et al. 2015; Kulchenko and Todorov 2011; Ronsse et al. 2010; Ronsse and Sternad 2010) and65

Matsuoka oscillator-based models (de Rugy et al. 2003; Williamson 1999). As this the ball-bouncing task exhibits a dynamically66

stable regime where small perturbations of the bounce die out without requiring active control (Dijkstra et al. 2004; Schaal et al.67

1996), the open-loop models generally attempt to quantify how much passive control of ball bouncing would explain the observed68

performances during the task performed by humans. It has recently been shown that active control strategies were also involved69

during the task (Ankarali et al. 2014; Wei et al. 2007, 2008). Optimal controllers have efficiently reproduced the discrete, low70

frequency paddle movements observed in human ball bouncing for small gravity acceleration values (between 0.61 and 9.81m.s−2)71

(Marchal-Crespo et al. 2015; Ronsse et al. 2010; Ronsse and Sternad 2010). For higher frequency movements (because of higher72

gravity value or lower target height), human arm trajectories are rhythmical and almost sinusoidal. To generate the almost73

sinusoidal paddle trajectories observed during rhythmic ball bouncing, de Rugy et al. (2003) made the interesting assumption74
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that a CPG, modeled by a Matsuoka oscillator, generates paddle oscillations. The robustness to perturbation of these active75

control strategies is made possible by the use of the environment condition values, defined by the gravity acceleration g and the76

ball-paddle restitution coefficient α. It would be interesting to analyze whether a parsimonious model of ball bouncing necessarily77

has to dispose of these values in order to reproduce the observed behavior.78

Assuming that rhythmic movement control relies on low-level and oscillatory CPGs, the present study evaluates the hypothesis79

that rhythmic movements of experienced participants are organized by sensory information through continuous information-80

movement couplings between the ball and paddle trajectories during rhythmic ball bouncing (for gravity acceleration higher81

than 6 m.s−2 and target height lower than 1 m). According to this hypothesis the phase and frequency locking phenomenon82

emerging from this coupling would preclude the need for quantitative values of the environmental conditions or any explicit83

internal model of the environment, trajectory planning and on-line optimization.84

To test this hypothesis, the present study proposes a human ball bouncing model implementing a CPG model continuously85

coupled to the ball trajectory to ensure synchronization between the paddle and the ball. Moreover, a parametric controller86

scales the CPG dynamics to cancel bounce errors and address perturbations, as in Avrin et al. (2016); de Rugy et al. (2003).87

Both control processes are based on visual information only. The Matsuoka oscillator was chosen from existing CPG models88

as it constitutes a parsimonious half-center structure already attested to model rhythmic movement generation in human ball-89

bouncing (de Rugy et al. 2003), biped walking (Taga 1995) and tremor modeling (Zhang et al. 2009). This model respects as90

much as possible the known results concerning the actual neural architecture involved in the control of rhythmic movements. It91

presents supraspinal control signals that scale the movement based on information from the target in Cartesian space (i.e. bounce92

error). The paddle trajectory (velocity and acceleration profiles) is encoded on the CPG attractor dynamics whose outputs can93

be viewed as motor primitives (Degallier et al. 2011; Hogan and Sternad 2012). During the movement, CPG motor primitives94

are modulated by sensory feedback, that takes the form of information-movement couplings, in order to adapt the movement to95

an unknown or changing environment (Siegler et al. 2010; Warren 2006).96

To summarize, human visual control of rhythmic action is investigated in the present study by comparing human performance97

acquired by a virtual-reality setup with a behavioral model. It provides insight into how neural system internal dynamics are98

related to sensory information and adapted to palliate perturbations in a changing environment. The results support the99

hypothesis that human behavior during ball bouncing is controlled on-line based on visual information. Section 1 presents100

the experimental data that raise a number of questions about human motor control of ball bouncing and requiring further101

investigation. Then, a candidate CPG-based control architecture, a parameters setting method and a validation method are102

proposed. The results are presented in Section 2 and discussed in Section 3.103

1 Methods104

1.1 Human control of ball-bouncing105

1.1.1 Experimental data used for analysis106
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General experiment information In the considered ball-bouncing task, the agent handles a paddle and moves his/her arm107

(movement approximated by a rotation at the elbow) to bounce a ball vertically. At each cycle, the ball’s apex must be as108

close as possible to a predefined target height hp. The article uses the following notations (Fig. 1): θ is the angle between the109

horizontal axis and the forearm, Tb(k) is the ball trajectory period during cycle k, i.e. between impact k and impact k + 1.110

Tr(k), and ε(k) are the paddle period and the bounce error of cycle k. Bounce error is defined by the distance between the ball111

apex ha(k) and the target height hp (ε(k) = ha(k)− hp).112

The experimental data used in the present paper were acquired during the two experiments presented in Siegler et al. (2010),113

where 13 experienced participants freely moved a real table tennis paddle with their preferred hand in 3-D. The vertical component114

of this movement was used to move a virtual paddle vertically, to hit a ball in a virtual environment. The paddle trajectories were115

recorded by an electromagnetic sensor (Flock of Bird Model 6DFOB c©, Ascension Technologies, with a sampling rate of 120116

Hz) attached on the back side of the paddle, at 0.2m from the tip. The sensor was connected to an electromagnetic transmitter117

via a flexible, lightweight cable, long enough to not interfere with the participants’ movements. The latency between the real118

and virtual paddles was equal to 29.78± 1.07ms (See Morice et al. (2008) for a complete description of the experimental setup).119

[FIG. 1 about here.]120

The 1-D, single-joint movement hypothesis Previous studies modeling the information-movement couplings involved du-121

ring human ball bouncing hypothesized that the rhythmic arm movement could be approximated by a 1-D single-joint movement122

at the elbow reproducing, in first approximation, the combined movement resulting from possible oscillations at the shoulder,123

elbow and wrist (Kulchenko and Todorov 2011; de Rugy et al. 2003; Ronsse et al. 2010; Ronsse and Sternad 2010; Schaal124

2006; Williamson 1999). This common assumption facilitates comparison between the different modeling approaches. It is also125

considered in the present study (see Figure 1).126

The legitimacy of the 1-D single-joint approximation first relies on kinematics considerations. During the experiments127

presented in Siegler et al. (2010), the participants were asked to use only rotations at the elbow to move the paddle. They128

were more specifically asked to not move their wrist and to keep their arm aligned with their thorax, thus avoiding shoulder129

movements. If, for example, residual rotations at the wrist were present in addition to the rotations at the elbow, then the two130

joints’ oscillation frequencies should have been equal to efficiently achieve the ball bouncing task. As the angular displacements131

were small during the task (Ronsse et al. 2010) because of the chosen target height (hp = 0.80 m in Ronsse et al. (2010) and132

0.55 m here), the paddle trajectory could be linearized and approximated by a single-degree of freedom rotation at the elbow.133

In Ronsse et al. (2010), the authors showed that mean human paddle trajectory was accurately reproduced by a 1-D single-joint134

biomechanical model.135

Secondly, the legitimacy of the 1-D single-joint hypothesis relies on performance-related considerations. To attest that136

constraints on wrist movement do not modify bouncing precision, the present study analyzed the influence of constrained wrist137

movements on the participants’ mean bounce error and standard bounce error during ball bouncing. A group of 11 participants138

performed ball bouncing trials under two different conditions using the virtual reality set-up presented in Morice et al. (2008)139

and used in Siegler et al. (2010). One condition consisted in performing the task with unconstrained wrist movements and the140

second with wrist movements constrained by a rigid splint. At the beginning of the experiment, each participant performed nine141
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familiarization trials for each wrist condition. The target height hp was taken among three different values (0.55, 0.70, 0.85m)142

and changed every three familiarization trials. Then, the participants performed three trials for hp = 0.70 m and for each143

of the constraint conditions presented in randomized order. Each trials lasted 45 s and the environmental conditions were144

g = 9.81 m.s−2, α = 0.48. Mean bounce error was equal to 0.022 ± 0.07 m for the unconstrained group and 0.015 ± 0.07 m for145

the constrained group, inducing no significant difference between the groups (p = 0.52). Mean bounce error standard deviation146

was equal to 0.141± 0.056m for the unconstrained group and 0.129± 0.047m for the constrained group, inducing no significant147

difference between the groups (p = 0.27). In addition, as in Sternad et al. (2001), no significant influence of the constrained148

wrist movement on the paddle acceleration at impact was observed. These results therefore support the present study 1-D single149

joint hypothesis.150

Perturbed human ball-bouncing trials In Experiment 2 of Siegler et al. (2010), an environmental parameter (g or α) was151

suddenly changed during ongoing bouncing. The experiment was performed by 13 participants, each participant performing 12152

trials with three perturbations (either on g in Session G, or on α in Session A) separated by 12 or 16 seconds. In Session G, the g153

was changed at the ball apex. In Session A, α was changed just before impact. The 16 perturbation conditions tested are recalled154

in Table 1. In the present paper, these perturbation conditions are separated into behavior tuning conditions used to set the155

model parameters presented in the next Section, and behavior validation conditions used for model validation. This separation156

of the perturbation conditions is used to test model predictive capacity and to avoid overfitting. It has been achieved so that157

each group of conditions includes each environment condition, the same number of high and small perturbation magnitudes158

and the same number of decreases and increases of the environment parameter. As in Wei et al. (2007) and Siegler et al.159

(2013), Siegler et al. (2010) showed an active control of paddle oscillation, even during steady-state bouncing in the passively160

stable region. Paddle movement adjustments occurred for both small and large perturbations, and were proportional to the161

perturbation magnitude. The participants were able to independently control the paddle oscillation period and magnitude to162

stabilize bouncing. Investigating which visual information participants used to adapt the paddle period, Siegler et al. (2010)163

concluded that the value of g is not information that is likely to be used (if known) by participants to control paddle trajectory.164

Firstly, they showed that the paddle period poorly correlates with ball velocity after impact, that could be used to determine the165

ball period if participants knew the value of g, and better correlated with the upward ball period. Siegler et al. (2013) reached the166

same conclusion based on more recent results. Secondly, the adjustments of the paddle period were rapid after a perturbation on167

g (within one cycle). On average, perturbation on g recovered after two cycles and perturbation on α after three cycles. These168

rapid adaptations do not likely allow sufficient time to learn a new value of g. In addition, gravity acceleration was changed in169

the virtual environment but not in the real world. Thus, the perturbations directly affected ball dynamics but arm dynamics170

were still subjected to normal gravity acceleration on Earth. A motor control strategy relying on an explicit knowledge and171

estimation of g would suppose that participants are able to attribute the perturbation to a modification of g, but also to realize172

that only gravity in the virtual environment has been changed but not the one on Earth. This uncommon situation should be173

difficult to manage for control strategy based on an explicit internal representation of the gravity. In contrast, humans were able174

to robustly and quickly react to these perturbations.175
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Siegler et al. (2010) also observed that the adaptation of the paddle period was rapid whereas the paddle amplitude shifted176

gradually after a perturbation. These differences may indicate the existence of two different control strategies. Recent results177

from Siegler et al. (2013) revealed that during human ball bouncing, control of paddle trajectory is achieved visually, on a178

cycle-by-cycle basis. During each cycle, the period of the paddle oscillation Tr is modulated to match the period of the ball Tb,179

and the paddle velocity from the previous impact is adapted proportionally to bounce error ε. The relations summarizing these180

results, collected in the paper under the term information-movement couplings, are:181

Tr(k + 1) = ΛperTb(k + 1)

∆Vr(k + 1) =̂ Vr(k + 1)− Vr(k) = Λvelε(k)
(1)

with Λper a constant (Λper ≈ 1), Λvel a negative constant and Vr(k) the paddle velocity at impact k. In the virtual environment,182

the ball is considered to be mass-free. Paddle velocity is unaffected by impact with the ball, and paddle velocity just before183

impact is equal to paddle velocity just after impact. The present paper also evidenced similar information-movement couplings184

for the perturbed trials of Siegler et al. (2010). An example of perturbed trial (g = 9.81→ 13.69, α = 0.48) from a representative185

participant of Experiment 2 of Siegler et al. (2010) is presented in Fig. 2.186

[FIG. 2 about here.]187

Table 1. Experimental data from Siegler et al. (2010) used for tuning and validation

Exp. # Session A (g = 9.81) Session G (α = 0.48) # conditions Use in the present study

1 Steady-state Steady state 9 Noises strengths tuning
α ∈ {0.55, 0.52, 0.48, 0.45, 0.41} g ∈ {6.56, 8.10, 9.81, 11.66, 13.69}

2 Perturb. on α Perturb. on g 8 Behavior tuning
α = 0.48→ 0.55 g = 9.81→ 6.56
α = 0.45→ 0.48 g = 11.66→ 9.81
α = 0.48→ 0.41 g = 9.81→ 13.69
α = 0.52→ 0.48 g = 8.10→ 9.81

2 Perturb. on α Perturb. on g 8 Behavior validation
α = 0.48→ 0.52 g = 9.81→ 8.10
α = 0.41→ 0.48 g = 13.69→ 9.81
α = 0.48→ 0.45 g = 9.81→ 11.66
α = 0.55→ 0.48 g = 6.56→ 9.81

Steady-state human ball-bouncing trials Experiment 1 of Siegler et al. (2010) investigated steady-state performance of188

humans during ball bouncing. Thirteen participants performed 40 second-long trials during which environmental conditions189

were kept constant, but the values of α and g were changed between trials. The participants were subjected to five different190

environmental conditions in two different experimental sessions referred to as Session A and Session G. In Session A, α was191

varied (0.55, 0.52, 0.48, 0.45, 0.41, in each condition respectively), with g = 9.81. In Session G, g was varied (6.56, 8.10, 9.81,192

11.66, 13.69 m.s−2, in each condition respectively), with α = 0.48. Note that one condition was the same in both sessions193

(g = 9.81, α = 0.48). Target height hp was 0.55m for all trials in both experiments.194

The different environmental conditions required different ball steady-state velocities after impact. To produce these velocities195

during Session A, the participants decreased paddle amplitude for increased values of α, while paddle period was constant.196
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During Session G, paddle period decreased with the increased value of g, completed with a small increase in paddle amplitude.197

They were able to stabilize the task for all the conditions tested.198

1.1.2 Questions raised by the experimental data199

The main goal of the present paper is to better understand the information-movement couplings used by participants during200

steady-state and transient state ball bouncing. The steady-state and perturbed trials presented above demonstrated the par-201

ticipants’ ability to independently adapt paddle period and amplitude to control the task. Thus two independent adaptation202

processes have to be investigated and modeled.203

A purely open-loop model relying only on passive error-correction due to the natural dynamics of the task cannot account for204

such observed active control and was thus discarded. Two controllers were previously proposed to model human active control205

of action during the ball bouncing task. Ronsse et al. (2010), Ronsse and Sternad (2010) presented an optimal controller and206

de Rugy et al. (2003) a CPG-based controller. The former considered both period and amplitude adaptation whereas the later207

considered only period adaptation. As mentioned in the Introduction, these two models efficiently reproduce some aspects of208

human behavior during the ball-bouncing task by implementing on-line visual control of paddle oscillation based on an explicit209

value of the gravity acceleration. The optimal controller proposed in Ronsse and Sternad (2010) used the values of g and α,210

at least at the beginning of the trial, in order to compute controller gains. The robustness of the controller to perturbation211

of these environmental conditions during on-going trials was not studied. The Matsuoka oscillator-based controller proposed212

in de Rugy et al. (2003) accurately reproduced participants’ transient state bounce error series after perturbation on α thanks213

to active control of the paddle period. To do this, the model integrates the value of g and estimates the ball period based on214

the mathematical relation that exists between ball velocity after impact and ball period. The capacity of these two previously215

proposed controllers to robustly stabilize ball bouncing after sudden perturbations on g was not investigated.216

Siegler et al. (2010) rejected the hypothesis that the gravity acceleration was used (if known) by participants during ball217

bouncing. Additionally, the participants reacted quickly and stabilized the bouncing accurately in fewer than four cycles after218

abrupt changes in the environment conditions (Siegler et al. 2010, 2013; Wei et al. 2007). This quick correction leaves very little219

time to estimate the perturbed environmental conditions, possibly recompute controller gains and finish bouncing stabilization.220

Thus, the results from Siegler et al. (2010) suggest, in agreement with recent human motor control studies (Zhao and Warren221

2015), that the paddle trajectory is controlled on-line based on the available visual information. As a consequence, the present222

study intents to demonstrate that a humans might rely on a control strategy robust to gravity changes without needing to223

integrate or estimate a quantitative value of g.224

In the next sections, we propose a model of human on-line visual control of ball bouncing. It constitutes a CPG-based,225

threshold-free and world representation-free control architecture able to reproduce the participants’ average steady-state and226

transient-state behavior for perturbed and unperturbed trials with different values of α and g. Participants’ bounce error time227

series, information-movement couplings (presented in Equation 1), and bounce error standard deviation will be the criteria to228

test the validity of the proposed model.229
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1.2 A candidate model for the control of rhythmic ball bouncing230

1.2.1 Bouncing ball equations231

Ball flight between impacts is governed by ballistic equations:232

Xb(t) = Xb(k) + Vb(k)t− 0.5gt2

Vb(t) = Vb(k)− gt

 for tk < t < tk+1 (2)

with Xb(t) ball position, tk k-th impact instant, Xb(k) k-th impact position and Vb(k) ball velocity directly after impact k. The233

impact equation is Vb(k) = −αVb(k)−+(1+α)Vr(k), Vr(k) the paddle velocity at impact and Vb(k)− ball velocity directly before234

impact k.235

1.2.2 Arm dynamic model236

The arm movement during ball bouncing is approximated by a 1-D, single-joint movement of the forearm. Its mechanical237

impedance is a simplified model, linearized around the resting position θ = 0, with constant coefficients as already used in Avrin238

et al. (2016) and de Rugy et al. (2003):239

Iθ̈ + γθ̇ +Kθ = h1ζ (3)

with ζ elbow torque, I arm inertia, γ damping ratio, K arm stiffness and h1 a constant multiplicative gain on torque input.240

As reported in Bennett et al. (1992), during cyclic tasks, the natural frequency of the human arm is adapted to match the241

first harmonic frequency of the task ωarm =
√
K/I ≈ ωtask. If I is constant, then humans adapt the arm stiffness K so242

that ωarm ≈ ωtask. Experimental trials used in this study show that the participants were able to stabilize bouncing after a243

perturbation with a perturbed ball period equal to 0.4 s, corresponding to ωtask = 2π/Ttask = 15.7 rad/s (Siegler et al. 2010).244

The model has to be fast enough to efficiently adapt to such perturbed ball period. Taking ωtask = 15.7 rad/s while respecting245

the bound values of the mechanical parameters found in humans (Bennett et al. 1992) (0.2 < γ/(2
√
KI) < 0.6) and the inertial246

value used in de Rugy et al. (2003), the chosen parameter values are K = 25 kg ·m2 · s−2, γ = 1.8 kg ·m2 · s−1, I = 0.1 kg ·m2.247

1.2.3 Matsuoka oscillator248

The rhythmic movement is generated by the two tonically excited neurons of the Matsuoka half-centered neural oscillator249

(Matsuoka 2011). The two neurons in reciprocal inhibition activate the arm flexor and extensor muscles to generate torque at250

the elbow and move the forearm. Each neuron has its dynamics governed by two nonlinear differential equations integrating251

coupling terms:252

τrẋ1 = −x1 − βv1 − ρy2 − h0[m]+ + u

τav̇1 = −v1 + y1

τrẋ2 = −x2 − βv2 − ρy1 − h0[m]− + u

τav̇2 = −v2 + y2

(4)
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The states xi(t) and vi(t) are the i-th neuron membrane potential and the self-inhibition responsible for the fatigue phe-253

nomenon. The neurons are coupled through the terms yi(t) = max(xi(t), 0). Oscillator output is yout(t) = max(x1(t), 0) −254

max(x2(t), 0) and oscillator sensory input is m(t) with [m(t)]+ = max(m(t), 0), [m(t)]− = max(−m(t), 0). The parameters defi-255

ning oscillator dynamics are ρ the mutual-inhibition intensity and β the self-inhibition intensity. u is the excitability determining256

oscillator output amplitude and h0 is a constant gain on the input m(t). τr and τa are the time constants determining the257

responsiveness of xi and vi respectively.258

The Matsuoka oscillator has two operating modes. In the first, referred to as forced-oscillation mode, the oscillator can be259

entrained by an external signal or dynamic system to which it is coupled by the input m in a robust and stable way. In the260

second, referred to as autonomous mode, the oscillator autonomously produces a periodic limit cycle with a natural frequency261

denoted ωn in the absence of rhythmic sensory input (m = 0).262

In a previous work, we proposed a parameters tuning method for the oscillator autonomous mode performing the ball-263

bouncing task (Avrin et al. 2016), capitalizing on the Describing Function Analysis (DFA) of Matsuoka (2011). Two scaling264

coefficients c1 and c2 were introduced so that τr = Tbc1 and τa = Tbc2. The parameter Kn was defined as Kn = (1/ρ)(c1/c2 + 1).265

The set of parameters {c1, c1/c2, Kn, β} were tuned based on graphical analysis methods and Particle Swarm Optimizations266

(PSO) during open-loop (without ball bouncing) and closed-loop (during ball bouncing) trials, to ensure an accurate setting of267

ωn, high paddle trajectory harmonicity and rapid bounce convergence after perturbation. The identified trade-offs are recalled268

in Table 2. This method is used in the present paper for the tuning of ρ, β, c1, c2.269

Table 2. Tuning trade-offs

High value Low value

Kn • high harmonicity • no simultaneous firing
 T

u
n

ed
p

ar
am

et
er

s
• good DFA precision
→ Tuning method: open-loop PSO optimization

c1 • high harmonicity • high rapidity
→ Tuning method: closed-loop PSO optimization

c2 • For Kn and c1 fixed, only one value
 D

ep
en

d
en

t
p

ar
am

et
er

s

leads to ωn = 2π/Tb
→ Tuning method: graphical analysis

ρ • Depends of Kn, c1 and c2 values
→ Tuning method: using the equation defining Kn

β • Depends of Kn, c1, c2 and ρ
→ Tuning method: the DFA gives

β = c1ρ(4π2c22 + 1)/(c1 + c2)

1.2.4 Implementation of information-movement couplings in the model270

A block diagram of the global system is presented in Fig. 3. The dotted lines represent intermittent signals, and the solid ones271

the continuous signals. References to the equations corresponding to each block of the neuromusculoskeletal system model are272

indicated on the figure. The control strategies involved in bounce error correction and ball-paddle impact timing of the model273

are presented below.274
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Bounce error correction The error-to-target correction of Equation 1 is implemented in the model via adaptation of joint275

torque magnitude. Once per cycle, the sensorimotor control unit adapts excitability u, using the relation u(k+1) = λε(k)+u(k),276

to modify oscillator output amplitude (i.e. joint torque at the elbow). The adaptation occurs when bounce error is perceived,277

i.e. when the ball reaches its apex (Xb(t) = ha). The excitability adaptation coefficient λ has a critical influence on the modeled278

behavior response time to perturbation. It is therefore the subject of tuning presented in Section 1.3.2.279

Impact timing control Three different Matsuoka oscillator operating modes could be considered to achieve ball-paddle impact280

timing control: forced, mixed and autonomous oscillations modes. In the forced-oscillation mode, paddle period adaptation would281

result from entrainment of the oscillator by perception of ball trajectory. However, this mode is efficient only when oscillator282

natural frequency ωn is close to ball frequency 2π/Tb. Otherwise, oscillator output amplitude is affected by the amplitude of the283

input sensory signal. This is undesirable because oscillator output amplitude is supposed to be determined by excitability u, and284

because it was shown that paddle amplitude and period can be controlled independently by humans during the ball-bouncing285

task (Siegler et al. 2010).286

As a consequence, using forced-oscillation mode of the oscillator also supposes that oscillator natural frequency is adapted287

to be equal or close to ball frequency when the difference becomes too large. If no internal model of ball ballistic flight is288

considered, oscillator natural frequency adaptation can only occur when the ball period is known by the participants, i.e. when289

the ball is at its apex (Xb(t) = ha). This forced-oscillation mode with oscillator natural frequency adaptation will be refered to290

as mixed-oscillation mode.291

On the contrary, autonomous mode of the oscillator, with natural frequency adaptation at the ball apex to equal ball frequency,292

is less robust than mixed-oscillation mode. The ability of the three modes (autonomous, forced and mixed) to stabilize bouncing293

for different gravity values (and α = 0.48 fixed) have been evaluated and the results are shown in Fig. 4. It can be seen that294

mixed-oscillation mode was the only one to be stable for any of the tested values of g (between 5 and 12.2 m.s−2). In addition,295

autonomous oscillation mode gives rise to unrealistic behaviors, as in Fig. 5. This figure presents a situation where a perturbation296

on a cycle leads to a ball period largely higher than the oscillator one. In this case, as the oscillator natural frequency is only297

modified at the ball apex, the paddle completes two cycles before reacting to the large ball period. This behavior is not observed298

during human ball bouncing. Rather, humans tend to react to large changes of ball period before the ball reaches its apex, as299

evidenced in (Siegler et al. 2010) after perturbations on g.300

Thus, the mixed-oscillation mode is considered in the present paper. In order to avoid adding a supplementary threshold301

parameter, oscillator natural frequency adaptation is achieved on a cycle basis directly after the ball reaches its apex, via a302

modification of oscillator time constants τr and τa. The information-movement coupling responsible for paddle period adaptation,303

presented in Equation 1, is implemented in the model via a low-level coupling between perceived ball velocity and the oscillator.304

The continuous oscillator input m is equal to perceived ball velocity delayed by a duration td: m(t) = Vb(t − td). td will be305

referred to as visual time delay in the present paper. This delay affects the ball-paddle impact phase as presented in Section306

1.3.1. Therefore, it is subject to tuning presented in the same section.307

To summarize, oscillator dynamics are modulated by sensory information via Equation 5.308
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u(k + 1) = λε(k) + u(k)

τr = c1Tb(k), τa = c2Tb(k)

 adaptation when Xb(t) = ha(k)

m(t) = Vb(t− td)

(5)

Finally, participants exhibit variability in bounce error ε during steady-state bouncing. In the present paper, we hypothesize309

that two sensory noises (on ball period and ball apex perceptions) and one motor noise (affecting joint torque) cause this310

variability. They are considered to be additive Gaussian white noises: τ(t) = yout(t)+S1W1(t), u(k+1) = u(k)+λε(k)+S2W2(k)311

and Tr(k) = Tb(k) + S3W3(k) with Wi Gaussian white noise and Si its strength (or standard deviation).312

[FIG. 3 about here.]313

[FIG. 4 about here.]314

[FIG. 5 about here.]315

1.2.5 Summary of tunable parameters316

The proposed model contains 11 tunable parameters: {c1, c2, ρ, β, h0, h1, td, λ, S1, S2, S3}. The parameters {c1, c2, ρ, β} have317

been chosen according to the method first proposed in Avrin et al. (2016) and recalled in Section 1.2.3. Thus, we do not address318

their tuning further in the present study. These parameters are kept constant for all of the simulations presented in the paper.319

Three parameters affect the limit cycle of the closed-loop hybrid system: visual input delay td of Equation 5, oscillator input320

gain h0 of Equation 4 and mechanical arm input gain h1 of Equation 3. Finally, the parameter λ influences system response321

time, and noise strengths S1, S2 and S3 influence performance variability. Table 3 summarizes model tunable parameters.322

The model parameters are tuned and validated based on simulations using Matlab/C programs with a sampling rate ts = 3ms.323

The neural oscillator and arm differential equations are integrated numerically using Matlab ode23 solver.324

Table 3. Tunable model parameters

Parameter Value Influence on the modeled motor behavior

Neurons membrane potential time constant coefficient c1 = 0.137 Intra-cycle paddle trajectories (cf. Section 1.2.3)
Neurons self-inhibition time constant coefficient c2 = 0.314 Intra-cycle paddle trajectories (cf. Section 1.2.3)
Neurons self-inhibition intensity coefficient ρ = 1.689 Intra-cycle paddle trajectories (cf. Section 1.2.3)
Neurons mutual-inhibition intensity coefficient β = 2.512 Intra-cycle paddle trajectories (cf. Section 1.2.3)
Oscillator input gain h0 = 96.54 Ball-paddle impact phase (cf. Section 2.1)
Oscillator output gain h1 = 0.610 Oscillator entrainment by input (cf. 2.1)
Oscillator visual input delay td = 36.00ms Ball-paddle impact phase (cf. Section 2.1)
Oscillator excitability adaptation coefficient λ = −3.400 Error correction response time (cf. Section 2.1)
Noise strength on joint torque S1 = 0.946 Bounce error variability (cf. Section 2.3)
Noise strength on ball apex perception S2 = 0.083 Bounce error variability (cf. Section 2.3)
Noise strength on ball period perception S3 = 0.004 Bounce error variability (cf. Section 2.3)

1.3 Parameter influences on the modeled behavior dynamics and tuning methods325

The parameters {td, h0, h1, λ} are set so that the bounce error correction strategies implemented in the model match the326

human ones analyzed in Experiment 2 of Siegler et al. (2010). More specifically, the model bounce errors of the two ball cycles327
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before perturbations and the eight ball cycles following the perturbation are compared to human ones. The influence of these328

parameters on the simulated behavior is described in the following paragraphs and the tuning method is deduced.329

1.3.1 Limit cycle shaping330

Fig. 6 presents an example of a participant’s reaction to a perturbation during the ball-bouncing task (here a perturbation on the331

ball-paddle restitution coefficient α = 0.41→ 0.48). If steady state is reached before perturbation, as is the case in the example332

in Fig. 6, the first two bounce errors before perturbation (steady-state errors) and the first bounce error after perturbation are333

unaffected by the bounce error correction strategy and so are independent of λ. As a consequence, these three bounces depend334

only on the characteristics of the limit cycle where the closed-loop system converged before perturbation. This limit cycle,335

determined by the steady-state values of the paddle position, velocity, acceleration and phase at impact (these variables being336

dependent of each other if the movement is considered to be almost sinusoidal) is influenced by the parameters {td, h0, h1}. For337

instance, the influence of td on the impact phase for the condition g = 9.81, α = 0.48 is shown in Fig. 7. The higher td is, the338

lower the impact phase is, and so the sooner ball-paddle impact occurs in the cycle. The impact phase is calculated in the phase339

portrait, with the centered paddle position on the x-axis and the paddle velocity on the y-axis. It is equal to 360 − φ, with φ340

the angle at impact position. Thus, the parameter td could be tuned so that the paddle impacts the ball in the open-loop stable341

phase region (corresponding to negative paddle acceleration at impact (Schaal et al. 1996; Sternad et al. 2001)). The influence of342

h1 on acceleration at impact was underlined by de Rugy et al. (2003). On the contrary, as will be shown in the next paragraph,343

λ influences system transient behavior and thus determines whether the system will diverge or converge towards the limit cycle344

defined by {td, h0, h1}.345

Thus, {td, h0, h1, λ} are tuned simultaneously by a Particle Swarm Optimization (PSO) (Yagoubi and Sandou 2011)346

minimizing the sum of the Mean Square Error (MSE) between the participants and model mean bounce error of the first three347

cycles, in the eight tuning conditions (see Fig. 6). It is important to note that with this optimization, if the bouncing steady-state348

is reached before perturbation (i.e. if the value of λ stabilized the system) during any simulated trial, then the cost function349

evaluates only the goodness of parameters {td, h0, h1} and this cost function value is independent of the value of λ. λ is still350

considered as tunable in the PSO just because it is possible that some limit cycle could be reached only for specific value intervals351

of λ.352

[FIG. 6 about here.]353

[FIG. 7 about here.]354

1.3.2 Transient-state shaping355

The oscillator excitability adaptation coefficient λ in Equation 5 influences the information-movement coupling between bounce356

error ε and the change in paddle velocity at impact from previous impact ∆Vr. It acts as a negative feedback gain for bounce357

error correction. The more negative λ is, the lower the response time is until the point where, when decreasing too much, λ358

also yields an overshoot and thus reduces responsiveness. The influence of λ on response time after a target height change359

(hp : 0.55 → 0.75m) occurring 10 s after trial initiation is illustrated in Fig. 8A. Examples with low and high absolute values360
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of λ, for the perturbation (hp : 0.55 → 0.1m) are given in 8B and 8C, respectively. Thus, it is possible to tune λ to match361

the participants’ response time after perturbations. To do so, once the parameters {td, h0, h1} were tuned using the method362

proposed in 1.3.1, they were kept constant and the sum of the MSE between the 13 participants and model bounce errors for363

the ten cycles around perturbation (two cycles before perturbation and eight cycles after perturbation) is calculated for different364

values of λ. The λ value leading to the minimum MSE is chosen for tuning. Note that the two cycles before perturbation will365

have no influence on the MSE if the considered λ value allowed the system to reach steady-state before perturbation.366

[FIG. 8 about here.]367

1.4 Model noise level368

Noise strengths S1, S2 and S3 influence bounce error variability during simulation trials and thus can be set to match the observed369

human variability (see Fig. 9A for an illustration of human bounce error variability during a steady-state trial). Examples of370

simulated trials without noise (for S1 = S2 = S3 = 0) and with motor noise (for S1 = 0.946, S2 = S3 = 0) are given in Figs. 9B371

and 9C.372

Noise strengths are considered to be adequately tuned for a specific environmental condition when the model mean bounce373

error standard deviation over 13 trials is within the confidence interval (CI) of the 13 participants’ bounce error standard374

deviations calculated based on the nine trial conditions of Experiment 1 of Siegler et al. (2010). The CIs presented in the paper375

are calculated based on Student t-values: CI =
[
x̄− t s√

n
; x̄+ t s√

n

]
with n the number of participants in the experiment, t the376

Student t-values corresponding to n − 1 degrees of freedom and p = 0.05. s is the corrected sample standard deviation and x̄377

the sample mean.378

A PSO was performed to find the values of {S1, S2, S3} minimizing the MSE between the 13 participants’ and model mean379

bounce error standard deviations, for the nine different conditions of Experiment 1 of Siegler et al. (2010).380

[FIG. 9 about here.]381

1.5 Model Validation382

For each participant in Experiment 2 of Siegler et al. (2010), a regression between the informational variable Tb (ball period)383

and the action variable Tr (paddle period) of the ten cycles around perturbation (two cycles before and eight cycles after384

perturbation) of the four validation conditions of Session G presented in Table 1, was achieved (180 points per regression, 13385

regressions). The mean regression slope Λper is equal to 0.999 with a standard deviation of ±0.003, leading to the calculated CI386

[0.999− 0.002; 0.999 + 0.002]. For the model of the human timing control of the ball-paddle impact to be validated, the model387

regression slope Λ̂per, calculated based on the simulation data vectors (Tr) and (Tb), has to be within this confidence interval,388

that is: Λ̂per ∈ [0.997; 1.001].389

Similarly, to characterize the human bounce error correction strategy and to serve as a reference for model validation, a390

regression between the informational variable ε and the action variable ∆Vr for each of the 13 participants was achieved. The391

trials concerned by the regression are those corresponding to the four validation conditions of Session A, presented in Table 1392
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(180 points per regression, 13 regressions). The mean regression slope Λvel was computed over the 13 participants in order to393

characterize the information-movement coupling and to serve as a reference value for model simulations. Mean Λvel is equal to394

−1.06 with a standard deviation ±0.35, leading to CI [−1.06− 0.22;−1.06 + 0.22]. To validate the model, the regression slope395

Λ̂vel, that is calculated based on the simulation data vectors (∆Vr) and (ε), has to be within this confidence interval, that is:396

Λ̂vel ∈ [−1.28;−0.84].397

2 Results398

2.1 Results of limit cycle and transient-state tuning399

As presented in Fig. 10, the black dots corresponding to the different parameter values tested by the PSO algorithm converged400

towards the parameter set: {td = 36, h0 = 96.54, h1 = 0.610}. The cumulated MSE between the model and participants bounce401

error for the ten cycles around perturbation for the eight tuning conditions was then calculated for different values of λ. The402

value leading to the lowest MSE was λ = 3.4 (see Fig. 11). The participants and model bounce error convergences after each403

perturbation of the eight tuning conditions are shown in Fig. 12 for qualitative comparison. It can be seen that all the model404

bounce errors are inside the gray area corresponding to mean ± SD of humans.405

[FIG. 10 about here.]406

[FIG. 11 about here.]407

[FIG. 12 about here.]408

2.2 Validation of modeled behavior dynamics409

The different types of environmental condition perturbations require different paddle oscillation periods and amplitudes as410

explained in Siegler et al. (2010). The tuned controller stabilized each of the validation perturbations recalled in Table 1 and411

thus proved able to adapt paddle oscillations to these perturbations. The model regression slopes characterizing the sensorimotor412

gains of the information-movement couplings are: Λ̂vel = −0.96 and Λ̂per = 1.00. The model sensorimotor gains Λ̂vel and Λ̂vel413

are inside the two corresponding CI calculated on humans (see Section 1.3.2). In other words, the model accurately reproduces414

human modulations in motor action respectively to sensory information during the task. Figure 13 shows the 13 participants’415

performance (mean bounce error ± SD) and the model bounce error for each validation perturbation, as a function of the cycle416

number. It can be seen that all of the model bounce errors are inside the gray area corresponding to mean ± SD of humans.417

[FIG. 13 about here.]418

2.3 Result of model noise tuning419

The PSO algorithm converged toward values of noise strengths S1 = 0.946, S2 = 0.083 and S3 = 0.004. Optimization convergence420

is shown in Fig. 14. The black dots indicate the tested noise strengths that were successfully faced by the control architecture. It421
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can be seen that the proposed model is robust and leads to stable bouncing for a large range of sensory and motor noise strengths.422

The noise model that best reproduces the participants’ bounce error variability during the steady-state experiment of Siegler423

et al. (2010) is composed of significant motor noise (8%) and relatively lower sensory noises (approximately 1% for ball apex and424

period perception). For this noise setting, the controller stabilizes bouncing for the nine environmental conditions determined425

by the pairs {α, g} presented in Section 1.1.1. Figure 15 shows nine condition-related error bars. Each one corresponds to426

the CI of the 13 participants’ bounce error standard deviations for a particular environmental condition determined by the pair427

{α, g}. Thirteen simulations are run for each environmental condition and the mean of the 13 model bounce error standard428

deviations is superimposed on the corresponding participants’ CI. The model mean bounce error standard deviations lies within429

the participants’ CI for all conditions but one (α = 0.55, g = 9.81).430

[FIG. 14 about here.]431

[FIG. 15 about here.]432

2.4 Analysis of robustness to sensory information sampling433

As presented in Section 1.2.4, the input of the Matsuoka oscillator is the delayed signal of the perceived ball velocity. For model434

tuning and validation, the sensory input signal was considered to be continuous. However, as the sampling rate at which the435

subject picks up information from the environment is unknown, a robustness test on its sampling is performed to evaluate the436

CPG’s ability to be driven by a sampled input. Thus, different sampling periods were tested during trials with environmental437

conditions g = 9.81, α = 0.48. Once the ball velocity was discretized at a specific sampling period, it was transformed into a438

piecewise-constant signal using a zero-order hold. An example with a sampling period equal to 60ms is presented in Fig. 16A.439

Based on the simulation results (Fig. 16B), it can be seen that bounce error standard deviation increases (non-linearly) with440

sampling period until bouncing becomes unstable for sampling periods over 160ms.441

[FIG. 16 about here.]442

3 Discussion443

The present study explored how visual information might modulate CPG dynamics via information-movement couplings in444

human rhythmic ball bouncing. Previous experimental studies found that 1) paddle adjustments were rapid and proportional to445

the disturbance magnitude, 2) the paddle oscillation period was adapted to match the ball period (Tr = ΛperTb) and 3) humans446

used target height perception to correct bounce error by changing paddle velocity from the previous impact (∆Vr = Λvelε)447

(Siegler et al. 2010, 2013; Wei et al. 2007, 2008).448

To model these control strategies and imitate human behavior during ball bouncing with environmental conditions leading449

to rhythmic movements (g higher than 6 m.s−2 and hp lower than 1 m), an extension of the CPG-based model of de Rugy et al.450

(2003) was proposed in the present study. However, the model is conceived without threshold, in agreement with recent results451

questioning the threshold hypothesis (Siegler et al. 2010). More importantly, it integrates an innovative mixed-oscillation mode452
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for the Matsuoka oscillator. With this operating mode, the intrinsic dynamics of the action system (the CPG and the arm)453

define a limit cycle attractor that is shifted by both state and parametric control laws. State control corresponds to the forced454

oscillations of the CPG that is continuously fed by the visual perception of the non-sinusoidal ball trajectory. This entrainment,455

completed by the intermittent mechanical coupling composed of ball-paddle impacts, leads to a resonance tuning of the ball-456

paddle system. The resulting perception-action cycle precludes the need for explicit internal representation of environment457

parameters (g, α). The generated paddle movement pattern is scaled by the parametric control of CPG excitability. The458

resulting model respects vertebrates’ motor control organization with descending signals from the cortex that modulate CPG459

activity (Deliagina 2008; Drew 1988). It opens new ways of explaining human behavior observed during ball bouncing. For460

example, most participants were seen to hit the ball in the passive stability regime, thus independently of the initial conditions461

(Ankarali et al. 2014; Dijkstra et al. 2004; Siegler et al. 2010, 2013; Sternad et al. 2001; Wei et al. 2007), and this attractor would462

be the consequence of a behavioral choice learned with practice (Wei et al. 2008). This robust convergence toward a specific463

limit cycle could be the result of an additional intermittent control of paddle acceleration at impact (Avrin et al. in press). The464

present paper demonstrated the existence of an alternative hypothesis: the limit cycle emerges from the resonance tuning of the465

ball-paddle system.466

Studies evidencing such visual entrainment phenomena were recalled in the Introduction. The relevance of these phenomena467

for modeling human ball bouncing is further supported by recent results showing that humans have the ability to efficiently syn-468

chronize (or even entrain) their limb movements specifically with a virtual bouncing ball constituting a moving visual metronome469

(Gan et al. 2015; Iversen et al. 2015). The vision system is efficient at processing spatial information. It leads to accurate action470

timing when the visual stimuli contain spatiotemporal information (Hove et al. 2013). Hove et al. (2013) show that the putamen471

was activated during visuomotor synchronization with a continuously moving virtual bar instead of a bouncing ball, which seems472

to indicate rhythm detection. The superior parietal lobule, which was reported to be part of the dorsal visual system, was also473

activated. This result is consistent with the suggestion of Goodale and Milner (1992) and Norman (2002) that the dorsal visual474

system is involved in the sensorimotor transformation related to visually guided actions. Thus, the dorsal visual stream might475

be involved in the entrainment of the CPG by the ball trajectory during the ball bouncing task investigated in the present study.476

The modeling of human movement during ball bouncing by self-organizing dynamics of a system of coupled oscillators also477

seems to be coherent with previously observed human behaviors during this task. It is in agreement with Morice et al. (2007) who478

reported the emergence of stable behavior during ball bouncing, with behavioral dynamics depending on the order parameter ∆φ,479

the phase shift between ball and paddle trajectory, that was exploited by participants to stabilize the behavior. Phase shift is a480

well-known order parameter for inter-limb coordination (Kelso et al. 2013). In addition, the dynamic approach of ball-bouncing481

could possibly explain the dwell-time observed in Ronsse et al. (2010) for small gravity values. Indeed, frequency generally482

constitutes a control parameter for systems of coupled oscillators. Its variation can typically influence the movement pattern483

as observed for bi-manual coordination or locomotion gaits. For ball-bouncing, frequency decreases when gravity decreases and484

could thus lead to such pattern transition toward non-harmonic paddle trajectories. It would be interesting to investigate this485

supposition further in a future study.486

The presented model efficiently reproduces human information-movement couplings during the ball-bouncing task in the487
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presence of perturbations, which was our main focus of study. Indeed, no significant difference existed between model sensorimotor488

gains (Λvel and Λper) and human ones. Furthermore, none of the model bounce errors after perturbation (Fig. 12 and 13) were489

outside the limits defined by the standard deviation of the 13 participants’ bounce errors. This qualitative comparison illustrates490

the human-likeness of the behavior produced by the model.491

Three main ways of refining the model and possibly reducing the slight remaining discrepancy between humans and model492

bounce error series could be explored. First, in our model, the parameters of the adaptation laws and the mechanical arm are493

considered to be constant for all of the environmental conditions and all of the perturbation magnitudes. However, it is possible494

that humans adapt these gains when necessary. Second, muscle dynamics, possible multi-joint movements and 3-D movement495

excursions are not taken into account. Simulations using a more accurate musculoskeletal model could lead to a better matching.496

Third, paddle acceleration at impact is not actively controlled in our model, although previous studies suggested that it might497

be actively controlled by participants to keep the bounce in or near the passively stable region of the paddle cycle after a498

perturbation deviated it (Siegler et al. 2010; Sternad et al. 2001; Wei et al. 2007, 2008). The proposed model integrates a499

parameter td that defines the phase shift between ball trajectory and paddle trajectory and therefore the paddle acceleration at500

impact. When td is zero, the impact occurs at the maximum paddle position, as in the mirror algorithm (Buehler et al. 1994),501

and the impact phase decreases when td is increased. As this phase shift could result from a combination of a visual input502

delay constituting a physiological constant and a voluntary phase shift, the parameter td could be actively controlled to regulate503

paddle acceleration at impact during on-going trial and possibly reduce the discrepancy. Instead of ball velocity, the authors also504

considered ball position as potential input of the CPG. However, when coupled with this signal, the system converged toward505

an impact corresponding to maximum paddle velocity that is outside the cycle’s passively stable region, in contradiction with506

observed participant behavior.507

The proposed control architecture also proved able to stabilize bouncing in the presence of both motor noise and sensory508

noises. High motor noise and low sensory noises best reproduced human bounce error variability. For only one condition509

(g = 9.81, α = 0.55), model bounce error standard deviation was outside the participants’ confidence interval, but was still510

inside standard deviation limits. In future studies, the discrepancy for one of the nine environmental conditions might be canceled511

by defining more complex noise models, such as multiplicative noises as often used in neuroscience (Harris and Wolpert 1998). In512

addition, it is known from experimental ball bouncing trials, that after large perturbations, participants do not wait for the ball513

to reach its apex to adapt paddle period to ball period (one reason why the behavior shown in Fig. 5 is unrealistic). Contrary514

to what was supposed in previous modeling studies, this means that humans integrate information from the environment more515

frequently than just once per cycle. Thus, the present study considered that the CPG visual input signal m was continuously516

fed back to the CPG. However, this work also evidenced the increase of bounce error variability with the sampling period of m.517

This sampling rate could be partly responsible for the variability in the participants’ performance. The present model predicts518

that environment information has to sampled at least every 160 ms to reach a stable limit cycle. To obtain better insight of the519

sampling rate at which humans integrate information from the environment and improve the noise model, this prediction could520

be compared with a future experimental ball-bouncing task with a ball trajectory visible only at an imposed specific frequency.521

In summary, without using any explicit world representation, the proposed control architecture achieves the same level of522
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performance as humans with the same pattern of movement, including when facing perturbations on the gravity acceleration and523

ball-paddle restitution coefficient. The information-movement couplings integrated in the model are in agreement with recent524

results supporting the strong on-line approach to visual control of action. Thus, the presented control framework is well suited525

to understanding the emergence of action from sensorimotor couplings in humans, and modeling rhythmic movements such as526

those involved in the ball-bouncing task. For robotic applications, it shows that some complex hybrid tasks can be performed by527

robots in a model-free control framework. Future work will extend the CPG-based control architecture so that it can produce528

the discrete arm trajectories involved during low frequency ball bouncing. It will also include an experimental evaluation of the529

proposed controller for the ball-bouncing task performed by a robotic arm.530
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Ankarali MM, Tutkun Şen H, De A, Okamura AM, Cowan NJ. Haptic feedback enhances rhythmic motor control by reducing variability, not542

improving convergence rate. J Neurophysiol 111: 1286–1299, 2014.543

Avrin G, Makarov M, Rodriguez-Ayerbe P, Siegler IA. Particle swarm optimization of Matsuoka’s oscillator parameters in human-like control544

of rhythmic movements. Proc IEEE American Control Conf p. 342–347, 2016.545

Avrin G, Makarov M, Rodriguez-Ayerbe P, Siegler IA. Dynamic stability of repeated agent-environment interactions during the hybrid546

ball-bouncing task. Proc Int Conf Informatics in Control, Automation and Robotics , in press.547

Bazile C, Benguigui N, Siegler IA. Development of information–movement couplings in a rhythmical ball-bouncing task: from space- to time-related548

information. Exp Brain Res 234: 173–183, 2016.549

Bazile C, Siegler IA, Benguigui N. Major changes in a rhythmic ball-bouncing task occur at age 7 years. PLoS ONE 8: e74127, 2013.550

18



Beer RD. Beyond control: The dynamics of brain-body-environment interaction in motor systems. In: Progress in motor control. Springer, 2009. p.551

7–24.552

Bennett D, Hollerbach J, Xu Y, Hunter I. Time-varying stiffness of human elbow joint during cyclic voluntary movement. Exp Brain Res 88:553

433–442, 1992.554

Bertenthal BI, Rose JL, Bai DL. Perception-action coupling in the development of visual control of posture. Journal of Experimental Psychology555

Human Perception and Performance 23: 1631–1643, 1997.556

Buehler M, Koditschek DE, Kindlmann PJ. Planning and control of robotic juggling and catching tasks. Int J Robotics Research 13: 101–118,557

1994.558

de Rugy A, Wei K, Müller H, Sternad D. Actively tracking passive stability in a ball bouncing task. Brain Res 982: 64 – 78, 2003.559

Degallier S, Righetti L, Gay S, Ijspeert A. Toward simple control for complex, autonomous robotic applications: combining discrete and rhythmic560

motor primitives. Autonomous Robots 31: 155–181, 2011.561

Deliagina TG. Overview of motor systems. types of movements: Reflexes, rhythmical and voluntary movements. In: Dynamical Systems, Wave-Based562

Computation and Neuro-Inspired Robots, edited by Arena P. Vienna: Springer Vienna, 2008. p. 3–14.563

Dijkstra T, Katsumata H, de Rugy A, Sternad D. The dialogue between data and model: passive stability and relaxation behavior in a564

ball-bouncing task. Nonlinear Studies 11: 319–344, 2004.565

Drew T. Motor cortical cell discharge during voluntary gait modification. Brain Res 457: 181–187, 1988.566

Gan L, Huang Y, Zhou L, Qian C, Wu X. Synchronization to a bouncing ball with a realistic motion trajectory. Scientific reports 5: 11974, 2015.567

Goodale MA, Milner AD. Separate visual pathways for perception and action. Trends in neurosciences 15: 20–25, 1992.568

Grillner S. Biological pattern generation: The cellular and computational logic of networks in motion. Neuron 52: 751 – 766, 2006.569

Harris CM, Wolpert DM. Signal-dependent noise determines motor planning. Nature 394: 780–784, 1998.570

Harris-Warrick RM. Neuromodulation and flexibility in central pattern generator networks. Curr Opin Neurobiol 21: 685 – 692, 2011. networks,571

circuits and computation.572

Hogan N, Sternad D. Dynamic primitives of motor behavior. Biological cybernetics 106: 727–739, 2012.573

Hove MJ, Fairhurst MT, Kotz SA, Keller PE. Synchronizing with auditory and visual rhythms: an fmri assessment of modality differences and574

modality appropriateness. Neuroimage 67: 313–321, 2013.575

Iversen JR, Patel AD, Nicodemus B, Emmorey K. Synchronization to auditory and visual rhythms in hearing and deaf individuals. Cognition576

134: 232–244, 2015.577

Kelso JS, Dumas G, Tognoli E. Outline of a general theory of behavior and brain coordination. Neural Networks 37: 120–131, 2013.578

Kulchenko P, Todorov E. First-exit model predictive control of fast discontinuous dynamics: Application to ball bouncing. Proc IEEE Int Conf on579

Robotics and Automation (ICRA) p. 2144–2151, 2011.580

Marchal-Crespo L, Bannwart M, Riener R, Vallery H. The effect of haptic guidance on learning a hybrid rhythmic-discrete motor task. IEEE581

Trans Haptics 8: 222–234, 2015.582

Matsuoka K. Analysis of a neural oscillator. Biol Cybern 104: 297–304, 2011.583

Morice A, Siegler IA, Bardy B, Warren W. Action-perception patterns in virtual ball bouncing: combating system latency and tracking functional584

validity. Exp Brain Res 181: 249–265, 2007.585

Morice AH, Siegler IA, Bardy BG. Action-perception patterns in virtual ball bouncing: Combating system latency and tracking functional validity.586

Journal of neuroscience methods 169: 255–266, 2008.587

Norman J. Two visual systems and two theories of perception: An attempt to reconcile the constructivist and ecological approaches. Behavioral and588

brain sciences 25: 73–96, 2002.589

Oullier O, De Guzman GC, Jantzen KJ, Lagarde J, Scott Kelso J. Social coordination dynamics: Measuring human bonding. Social590

neuroscience 3: 178–192, 2008.591

Pearson KG. Generating the walking gait: role of sensory feedback. Progress in brain research 143: 123–129, 2004.592

Pelah A, Barbur J, Thurrell A, Hock HS. The coupling of vision with locomotion in cortical blindness. Vision research 110: 286–294, 2015.593

Ronsse R, Sternad D. Bouncing between model and data: stability, passivity, and optimality in hybrid dynamics. J Mot Behav 42: 389–399, 2010.594

Ronsse R, Wei K, Sternad D. Optimal control of a hybrid rhythmic-discrete task: The bouncing ball revisited. J Neurophysiol 103: 2482–2493,595

19



2010.596

Rossignol S, Dubuc R, Gossard JP. Dynamic sensorimotor interactions in locomotion. Physiol Rev 86: 89–154, 2006.597

Schaal S. Dynamic movement primitives-a framework for motor control in humans and humanoid robotics. In: Adaptive motion of animals and598

machines. Springer, 2006. p. 261–280.599

Schaal S, Sternad D, Atkeson CG. One-handed juggling: A dynamical approach to a rhythmic movement task. J Mot Behav 28: 165–183, 1996.600

Schmidt R, Bienvenu M, Fitzpatrick P, Amazeen P. A comparison of intra-and interpersonal interlimb coordination: Coordination breakdowns601

and coupling strength. Journal of Experimental Psychology: Human Perception and Performance 24: 884, 1998.602

Schmidt R, Richardson MJ, Arsenault C, Galantucci B. Visual tracking and entrainment to an environmental rhythm. Journal of Experimental603

Psychology: Human Perception and Performance 33: 860, 2007.604

Siegler IA, Bardy BG, Warren WH. Passive vs. active control of rhythmic ball bouncing: the role of visual information. J Exp Psychol Hum605

Percept Perform 36: 729–50, 2010.606

Siegler IA, Bazile C, Warren W. Mixed control for perception and action: timing and error correction in rhythmic ball-bouncing. Exp Brain Res607

226: 603–615, 2013.608

Sternad D, Duarte M, Katsumata H, Schaal S. Bouncing a ball: tuning into dynamic stability. J Exp Psychol Hum Percept Perform 27: 1163,609

2001.610

Taga G. A model of the neuro-musculo-skeletal system for human locomotion. Biol Cybern 73: 97–111, 1995.611

Van Der Steen MC, Keller PE. The adaptation and anticipation model (adam) of sensorimotor synchronization. Frontiers in human neuroscience612

7: 253, 2013.613

Vincent TL, Mees AI. Controlling a bouncing ball. Int J of Bifurcation and Chaos 10: 579–592, 2000.614

Warren WH. The dynamics of perception and action. Psychol Rev 113: 358–389, 2006.615

Wei K, Dijkstra T, Sternad D. Passive stabiliy and variability: indicators for passive stability and active control in a rhythmic task. J Neurophysiol616

98: 2633–2646, 2007.617

Wei K, Dijkstra TMH, Sternad D. Stability and variability: Indicators for passive stability and active control in a rhythmic task. J Neurophysiol618

99: 3027–3041, 2008.619

Williamson M. Designing rhythmic motions using neural oscillators. Proc IEEE/RSJ Int Conf on Intelligent Robots and Systems (IROS) 1: 494–500,620

1999.621

Wimmers RH, Beek PJ, van Wieringen PC. Phase transitions in rhythmic tracking movements: A case of unilateral coupling. Human Movement622

Science 11: 217–226, 1992.623

Yagoubi M, Sandou G. Particle Swarm Optimization for the design of H∞ static output feedbacks. Proc IFAC World Congr , 2011.624

Zehr EP, Carroll TJ, Chua R, Collins DF, Frigon A, Haridas C, Hundza SR, Thompson AK. Possible contributions of CPG activity to625

the control of rhythmic human arm movement. Can J Physiol Pharmacol 82: 556–568, 2004.626

Zhang D, Zhu X, Poignet P. Coupling of central and peripheral mechanism on tremor. Proc IEEE/EMBS Int Conf Neural Engineering p. 649–652,627

2009.628

Zhao H, Warren WH. On-line and model-based approaches to the visual control of action. Vision research 110: 190–202, 2015.629

20



List of Figures630

1 The ball-bouncing task (see Section 1.1.1 for legends).631

2 Example of perturbed trial from a representative participant in Experiment 2 of Siegler et al. (2010). The 13632

participants’ bounce error standard deviation is represented by the shaded region superimposed on the figure.633

The participants’ mean bounce error is represented by the solid dark gray line centered on this shaded region.634

3 Sensorimotor control model of the ball-bouncing task.635

4 Intervals of gravity acceleration values leading to stable bouncing for the three oscillator operating modes. For636

forced mode, different oscillator natural frequencies are considered.637

5 Unrealistic behavior produced by autonomous oscillation mode: after a perturbation or a bad bounce, the paddle638

completed two cycles meanwhile the ball barely reached its apex.639

6 Example of bounce errors series used for limit cycle and transient-state tuning by minimization of MSE(e).640

7 Influence of td on the impact phase, for h0 = 96.54, h1 = 0.610 and λ = −3.4, compared to the impact phase of641

the 13 participants. The environmental conditions are: g = 9.81, α = 0.41.642

8 A: Influence of λ on system response time after a target height change (hp : 0.59 → 0.75m). B: With a high643

absolute value of λ, the convergence to target is fast. Here λ = −10. C: With a small absolute value of λ, the644

convergence is slower than in B. Here λ = −2. Simulations for the environmental conditions g = 9.81, α = 0.48.645

9 A: Example of human ball-bouncing. B: Example of ball-bouncing simulation without noise (λ = −3.4, S1 =646

S2 = S3 = 0). C: Example of ball-bouncing simulation with motor noise (λ = −3.4, S1 = 0.946, S2 = S3 = 0).647

10 Convergence of the PSO for limit cycle shaping. All the values tested are indicated with black dots. The chosen648

parameter set is indicated by a gray marker ⊗.649

11 Cumulated MSE between the participants and model bounce error series from the tuning conditions, as a function650

of λ.651

12 Bounce error for each cycle around perturbation of tuning trials of session A (first row) and session G (second652

row). Perturbation occurs at the beginning of cycle 1. The 13 participants’ mean bounce error is represented by a653

solid line with diamond markers. The participants’ bounce error standard deviation is represented by the shaded654

region.The model bounce errors are represented by the dashed line with round markers.655

13 Bounce error for each cycle around perturbation of validation trials of session A (first row) and session G (second656

row). The perturbation occurs at the beginning of cycle 1. The 13 participants’ mean bounce error is represented657

by a solid line with diamond markers. The participants’ bounce error standard deviation is represented by the658

shaded region.The model bounce errors are represented by the dashed line with round markers.659

14 Convergence of the PSO for noises strengths tuning. The black dots indicate the tested values that led to stable660

bouncing. The chosen parameter set is indicated by a gray marker ⊗.661

15 Mean of within-trial bounce error standard deviations (black circles: 13 participants; gray circles: 13 model662

simulations). The bars represent CI of participants’ mean bounce error standard deviation (with λ = −3.4, td =663

36ms, h0 = 96.54, h1 = 0.610, S1 = 0.946, S2 = 0.083, S3 = 0.004).664

16 A: Ball-bouncing task for a discrete CPG input (discrete perception of delayed ball velocity) with an input665

sampling period equal to 60 ms. B: Evolution of bounce error standard deviation as a function of the input666

sampling period, for simulation lasting 30 s with g = 9.81 and α = 0.48). Both simulations are run without noise667

(S1 = S2 = S3 = 0).668

21



FIG. 1. The ball-bouncing task (see Section 1.1.1 for legends).

22



Perturbation
g=9.81->13.69

}ε

Tr=Tb

Tb

}

ΔVr
Po

si
ti
on

 (
m

) 
Target height

FIG. 2. Example of perturbed trial from a representative participant in Experiment 2 of Siegler et al. (2010). The 13 participants’ bounce error
standard deviation is represented by the shaded region superimposed on the figure. The participants’ mean bounce error is represented by the solid
dark gray line centered on this shaded region.
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FIG. 3. Sensorimotor control model of the ball-bouncing task.
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FIG. 4. Intervals of gravity acceleration values leading to stable bouncing for the three oscillator operating modes. For forced mode, different oscillator
natural frequencies are considered.
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FIG. 5. Unrealistic behavior produced by autonomous oscillation mode: after a perturbation or a bad bounce, the paddle completed two cycles
meanwhile the ball barely reached its apex.
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FIG. 6. Example of bounce errors series used for limit cycle and transient-state tuning by minimization of MSE(e).
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FIG. 7. Influence of td on the impact phase, for h0 = 96.54, h1 = 0.610 and λ = −3.4, compared to the impact phase of the 13 participants. The
environmental conditions are: g = 9.81, α = 0.41.
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FIG. 8. A: Influence of λ on system response time after a target height change (hp : 0.59 → 0.75m). B: With a high absolute value of λ, the
convergence to target is fast. Here λ = −10. C: With a small absolute value of λ, the convergence is slower than in B. Here λ = −2. Simulations for
the environmental conditions g = 9.81, α = 0.48.
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FIG. 9. A: Example of human ball-bouncing. B: Example of ball-bouncing simulation without noise (λ = −3.4, S1 = S2 = S3 = 0). C: Example of
ball-bouncing simulation with motor noise (λ = −3.4, S1 = 0.946, S2 = S3 = 0).
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FIG. 10. Convergence of the PSO for limit cycle shaping. All the values tested are indicated with black dots. The chosen parameter set is indicated
by a gray marker ⊗.
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FIG. 11. Cumulated MSE between the participants and model bounce error series from the tuning conditions, as a function of λ.
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FIG. 12. Bounce error for each cycle around perturbation of tuning trials of session A (first row) and session G (second row). Perturbation occurs at
the beginning of cycle 1. The 13 participants’ mean bounce error is represented by a solid line with diamond markers. The participants’ bounce error
standard deviation is represented by the shaded region.The model bounce errors are represented by the dashed line with round markers.
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FIG. 13. Bounce error for each cycle around perturbation of validation trials of session A (first row) and session G (second row). The perturbation
occurs at the beginning of cycle 1. The 13 participants’ mean bounce error is represented by a solid line with diamond markers. The participants’
bounce error standard deviation is represented by the shaded region.The model bounce errors are represented by the dashed line with round markers.
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FIG. 14. Convergence of the PSO for noises strengths tuning. The black dots indicate the tested values that led to stable bouncing. The chosen
parameter set is indicated by a gray marker ⊗.
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FIG. 15. Mean of within-trial bounce error standard deviations (black circles: 13 participants; gray circles: 13 model simulations). The bars represent
CI of participants’ mean bounce error standard deviation (with λ = −3.4, td = 36ms, h0 = 96.54, h1 = 0.610, S1 = 0.946, S2 = 0.083, S3 = 0.004).
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FIG. 16. A: Ball-bouncing task for a discrete CPG input (discrete perception of delayed ball velocity) with an input sampling period equal to 60ms.
B: Evolution of bounce error standard deviation as a function of the input sampling period, for simulation lasting 30 s with g = 9.81 and α = 0.48).
Both simulations are run without noise (S1 = S2 = S3 = 0).
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