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Summary. Environmental epidemiological studies of the health effects of air pollution
frequently utilize the generalized additive model (GAM) as the standard statistical method-
ology, considering the ambient air pollutants as explanatory covariates. Although exposure
to air pollutants are multidimensional, the majority of these studies considers only a single
pollutant as a covariate in the GAM model. This model restriction may be due to the fact
that the pollutant variables do not only possess serial dependence, but also interdepen-
dence amongst themselves. In an attempt to convey a more realistic model, we propose
here the hybrid GAM-PCA-VAR model, which is the combination of the principal compo-
nent analysis (PCA) and GAM along with a vector autoregressive (VAR) process. The
PCA is used to eliminate the multicollinearity amongst the pollutants while the VAR model
is used to handle the serial correlation of the data in order to produce white noise pro-
cesses as covariates in the GAM. Some theoretical and simulation results of the proposed
methodology are discussed, with special attention to the effect of the time correlation of the
covariates on the PCA and, consequently, on the estimates of the parameters in the GAM
model and on the relative risk (RR), which is a commonly used statistical quantity to mea-
sure the impact of the covariates, especially the pollutants, on the population health. As a
main motivation to the proposed methodology, a real data set is analysed with the aim to
quantify the association between respiratory disease and air pollution concentrations, es-
pecially, PM10, SO2, NO2, CO and O3. The empirical results show that the GAM-PCA-VAR
model is able to remove the autocorrelations from the principal components. In addition,
this method produces estimates of the RR, for each pollutant, which are not affected by the
serial correlation present in the data. This, in general, leads to more pronounced values
of the estimated risk compared to the standard GAM model, indicating, for this study, an
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increase of almost 5.4% in the risk of PM10, one of the most important pollutants which is
usually associated with adverse effect on human health.

Keywords: Generalized additive model; Multicollinearity; Principal component anal-
ysis; Relative risk; Serial correlation; Vector autoregressive model

1. Introduction

The impact of air pollutants on human well-being has motivated the study and control
of atmospheric pollution, which affects human health even for low levels of air pollutants
concentrations within air quality guidelines suggested by the World Health Organization,
WHO (2006). Many studies have found significant association between daily pollutant
concentration levels and hospital admissions for respiratory and cardiovascular diseases,
see Schwartz (2000), Ostro et al. (1999), Chen et al. (2010), among others. The adverse
effects of atmospheric pollutants on human health are a source of concern to environ-
mental and public health regulatory agencies. Population studies and epidemiological
research have been used to identify these adverse health effects and to guide the devel-
opment of practices and legislation to control emissions and air quality.

The generalized additive model (GAM) with a Poisson marginal distribution has
been the most widely applied method to measure and quantify the nonlinear associa-
tion between adverse health effects and covariates such as ambient concentrations of air
pollutants and meteorological conditions, mainly because it allows for nonparametric
adjustments of nonlinear confounding effects of seasonality and trends.

In spite of its widespread use, many authors claim that care is needed when applying
the GAM to time series. The fit can be affected, for instance, by a wrong choice of the
number of degrees of freedom in the smooth component, by the presence of the autocor-
relation in the series under study, among others, see for example, the recent paper by
Dionisio et al. (2016). Some works that aim to solve these problems include Dominici et
al. (2002), who proposed a correction on the degrees of freedom in the smooth compo-
nent; Dominici et al. (2006), Lall et al. (2011), Michelozzi et al. (2007), who have used lag
distributed models to relate the response variable to lagged values of a time-dependent
predictor; and Figueiras et al. (2005), Ramsey et al. (2003), who have proposed some
approaches to control the problem of concurvity (the nonlinear dependency that can
remain among the covariates). Additionally, most of the papers in the epidemiologi-
cal research area related to the study of the association between pollution and adverse
health effects usually consider only one pollutant, while the population under study is
exposed to a complex mixture of pollutants; a broad discussion of the impact of corre-
lated measurement errors in time series on the relative risk estimates is recently given
in Dionisio et al. (2016). The choice of a simple model may be, in general, due to the
fact that the pollutants are linearly time correlated variables, which implies in biased re-
gression estimates since the presence of multicollinearity (the linear dependency among
the covariates) can inflates the variance of the estimators. This model restriction may
not provide the true picture of the scenario in a real problem. As a result, this incorrect
analysis may lead to serious consequences on the health of the population under study
such as, for example, a false-positive conclusion of the pollution health risk.



Generalized additive model with principal component analysis in time series data 3

One way to circumvent the problem of multicollinearity is to perform a principal com-
ponent analysis (PCA) on the pollutants covariance matrix. The PCA is a multivariate
statistical technique and it is generally used to reduce the dimensionality of a set of data
while preserving, as much as possible, the variability in the covariates, see Johnson and
Wichern (2007). Evaluating the adverse health effects of a combination of pollutants
may be easier to interpret and more feasible than isolating the effects of a single pollu-
tant. Some authors have explored this relevant research direction. For example, Roberts
and Martin (2006) evaluated how the pollutants PM10, O3, SO2, NO2 and CO affect
health, where the issue of multicollinearity was handled using the PCA. The authors also
developed a PCA supervised method in which the relationship between the covariates
(the pollutants) and deleterious health effects are determined before the covariates are
inserted into the regression model. Recently, Wang and Pham (2011) studied the com-
bined effects of pollutants on daily mortality using a PCA and a robust method. The
RR estimates of the results were more significant when the multivariate PCA technique
was used. Nevertheless, application of the PCA technique generally requires the data
to be obtained through independent replications. All the time series considered in this
paper are supposed to be stationary (including the covariates). As the principal compo-
nents are linear combinations of the covariates, their properties are linearly transferred
to the principal components. Therefore, the use of PCA to perform statistical inferences
on time-correlated covariates, such as ambient concentration of atmospheric pollutants,
should be further examined.

Zamprogno (2013) has addressed this issue by using theoretical and empirical meth-
ods to determine the effect of neglecting the time correlation of the covariates in the PCA
technique. The author showed that the principal components are autocorrelated if the
covariates are also autocorrelated. The principal components contain the time structure
of the covariates and must therefore be used judiciously in the regression analysis. To
remove the temporal correlation structures of the PCA, Zamprogno (2013) has suggested
filtering the series by using a multivariate ARMA model in the pollution variables be-
fore performing any statistical analysis using PCA. In the same context, Matteson and
Tsay (2011) and Hu and Tsay (2014) have applied VAR models to remove the serial
correlation of time series of stock returns before carrying out the PCA analysis on the
residual of the VAR model. The use of Box-Jenkins methodology to eliminate the serial
correlation in the data was also considered in Campbell (1994) which discusses the rela-
tionship between sudden infant death syndrome with environmental temperature using
time regression for count with Poisson marginal distribution.

In the current study, the multicollinearity issue is solved using the PCA on the pol-
lutants, with the obtained components being used as covariates in the GAM. This pro-
cedure is called GAM-PCA. Additionally, the problem associated with the presence of
autocorrelation in the principal components when applying the GAM is circumvented
by using a vector autoregressive (VAR) model to the time series of covariates before
obtaining the principal components. This new model is called here GAM-PCA-VAR.
These two models are formulated theoretically as probabilistic latent variable models in
Section 2. The GAM-PCA and GAM-PCA-VAR models are compared to the conven-
tional GAM by means of adequate goodness-of-fit statistics and, also, in terms of the
RR estimate, a commonly used tool to measure the impact of the covariates, especially



4 Juliana B. de Souza et al.

the pollutants, on the population health. Some results related to the proposed methods
and the effect of autocorrelated covariates on the PCA are theoretically and empirically
discussed. In addition, the estimate of the RR is evaluated for each model in a real data
problem. The objective of estimating the RR is to verify if there is any change on this
statistic due to the characteristics of the covariates under study, such as temporal cor-
relation, among others. As a main result of this paper, we find that the two procedures
(GAM-PCA and GAM-PCA-VAR) evidenced larger relative risk estimates than those
obtained using the conventional GAM. A simulation study demonstrates that the inter
and autocorrelation found in the explanatory pollutant variables may be responsible for
this divergence. This is an important evidence that prevents the use of the standard
GAM, from the epidemiological point of view, since the time-series phenomena present
in the explanatory pollutant variables can produce unrealistic risk impacts on the health
of the population under study, that is, this may indicates a false-positive result.

The paper is organized as follows. Section 2 presents the statistical models addressed
here, such as GAM, PCA and VAR, in some detail. Section 3 discusses some simulations
results and the analysis of a real data set. Section 4 concludes the work.

2. Methodology: GAM, PCA, VAR and Relative Risk

In this section, we present the methodology employed to relate the covariates to the count
time series under study. As there are both linear and nonlinear relationship between
the explanatory variables and the response, a GAM model is used. The procedures
are implemented using count data with Poisson distribution, as this is widely used in
practical problems.

We also present, in some detail, the PCA and VAR methodologies, in order to explain
how these procedures are linked to solve problems that can occur with data exhibiting
both multicollinearity and serial correlation in the explanatory variables.

2.1. Generalized Additive Models
The generalized additive model (GAM), see Hastie and Tibshirani (1990), with a Poisson
marginal distribution is typically used to relate a discrete outcome variable with a set of
covariates in the epidemiological area, for example, to quantify the association between
health problems and air pollution concentrations. The GAM model is widely used to
describe non-linear correlations among the variables of interest, see for example, Schwartz
(2000), Ostro et al. (1999), Chen et al. (2010).

Let {Yt} ≡ {Yt}t∈Z be a count time series, i.e., it is composed of non-negative integer
valued random variables. The conditional distribution of Yt, given the past Ft−1 which
contains the available information up to time t − 1, is characterized by the weights
p(yt | Ft−1) := P (Yt = yt | Ft−1) where yt ∈ {0, 1, . . .}. If Yt has the conditional Poisson
distribution with mean µt, then

p (yt;µt | Ft−1) =
e−µtµytt
yt!

, yt = 0, 1, . . .

Thus the conditional log-likelihood function of the mutually conditionally independent
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random variables Y1, . . . , Yn is given by

`(µ) :=

n∑
t=1

ln p (Yt;µt | Ft−1) ∝
n∑
t=1

(Yt lnµt − µt), (1)

where the vector µ := (µ1, . . . , µn)> depends on the covariates and the parameters of
the process {Yt}. Let Xt = (X1t, . . . , Xpt)

> be the vector of covariates of dimension
p at time t, where > denotes the transpose, which may include past values of Yt and
other auxiliary variables, such as the pollutants and confounding variables (i.e., trends,
seasonality and meteorological variables, among others). In the following, X1t, . . . , Xqt

denote the pollutants, while X(q+1)t, . . . , Xpt denote the confounding variables at time t
(q ≤ p).

The relation between Yt and the vector Xt of covariates is obtained by setting, see,
for example, Kedem and Fokianos (2002),

ln(µt) =

q∑
j=0

βjXjt +

p∑
j=q+1

fj(Xjt) with q ≤ p,

where (β0,β
>) with β := (β1, . . . , βq)

> is the vector of the coefficients to be estimated
(βj is the coefficient of the j-th covariate), and fj is a smoothing function of an appro-
priate function space for the j-th confounding variable, for example, the temperature or
the humidity variable. Moreover, β0 denotes the curve intercept and is associated with
X0t = 1 for all t. For the sake of simplicity it is assumed that the pollutant covari-
ates are centered. The aforementioned model is usually referred to as a semi-parametric
model because it involves parametric and non-parametric functions. The parameters of
the parametric functions are generally estimated using maximum likelihood or quasi-
likelihood methods, by optimizing the log-likelihood defined by equation (1), with the
asymptotic properties given in Kedem and Fokianos (2002). The non-parametric func-
tions are evaluated using “splines”, “loess” or moving average functions, among others,
see Friedman (1991) and Wahba (2001).

The RR is frequently used in epidemiological studies to measure the impact of atmo-
spheric pollutant concentrations on the health of the exposed population. The RR of
a pollutant covariate Xj , j = 1, ..., q, is defined as the relative change in the expected
count of respiratory disease events per ξ unit change in the covariate while keeping the
other covariates fixed. More precisely, we have

RRXj
(ξ) :=

E(Y | Xj = ξ,Xi = xi, i 6= j)

E(Y | Xj = 0, Xi = xi, i 6= j)
,

see formula (8) in Baxter et al. (1997). For Poisson regression, RR does not depend on
the values xi, i 6= j, of the other covariates and is given by

RRXj
(ξ) = exp (βjξ) .

RR is often called relative rate or rate ratio, see, e.g., page 265 in Dalgaard (2008). Note
that for binary outcomes, the RR is defined as the ratio of probabilities that an event
will occur following a certain exposure/non-exposure to a risk factor, see Zou (2004).
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RR can also be interpreted in this study as the ratio of probabilities that a patient is
suffering from respiratory diseases per ξ unit change in a pollutant covariate. The RR
and its approximate confidence interval (CI) at an α significance level of a covariate Xj ,
j = 1, . . . , q, in the GAM model with Poisson marginal distribution are estimated as
follows:

R̂RXj
(ξ) = exp

(
β̂jξ
)

and CI(RRXj
(ξ)) = exp

(
β̂jξ ∓ zα/2 se(β̂j)ξ

)
,

where ξ is the variation in the pollutant concentration (for example, a value of 10µg/m3

of interquartile variation), β̂j is the estimated coefficient for the pollutant Xj being

studied with standard error se(β̂j), and zα/2 denotes the 1−α/2 quantile of the standard
normal distribution. At an α significance level, the hypothesis to be tested is defined as
H0 : RRXj

= 1 against H1 : RRXj
> 1 where RRXj

:= RRXj
(1), i.e., the RR of unit

change in Xj . The rejection of H0 statistically implies that the respective pollutant has
a significant adverse health effect.

2.2. Principal Component Analysis
Principal component analysis (PCA) is a multivariate statistical technique that aims, in
general, to reduce the dimensionality of a data matrix space through linear transforma-
tions of the original variables. The correlation among the variables implies the occurrence
of multicollinearity in the regression models. In this study, the PCA technique is used
to circumvent the problem of pollutants that are correlated with each other. In general,
the whole variability of a system determined by q variables can only be explained using
all the q principal components. However, a large part of this variability can be explained
using a lower number r of components (r ≤ q), see Johnson and Wichern (2007).

Consider the following pairs of eigenvalues/eigenvectors of the covariance matrix ΣX

of the random vectorX = (X1, ..., Xq)
> : (λ1,a1), (λ2,a2), . . . , (λq,aq) where λ1 ≥ λ2 ≥

. . . ≥ λq. The i-th principal component of ΣX is given as follows:

Zi = a>i X = a1iX1 + a2iX2 + · · ·+ aqiXq, (2)

i = 1, 2, . . . , q, where aji = (ai)j , i, j = 1, 2, . . . , q, with the properties

Var(Zi) = a>i ΣXai = λi and Cov(Zi, Zj) = a>i ΣXaj = 0,

i, j = 1, 2, . . . , q, i 6= j, since the eigenvectors are orthogonal.
For a stationary vector time series {Xt} ≡ {Xt}t∈Z, Xt = (X1t, ..., Xqt)

>, with the
covariance matrix ΣX , the principal components (PCs) are defined as Zit = a>i Xt,
i = 1, . . . , q, and

Cov(Zit, Zjt) = a>i Cov(Xt,Xt)aj = a>i ΓX(0)aj =

{
λi if i = j,

0 otherwise,
(3)

and

Cov(Zit, Zj(t+h)) = a>i Cov(Xt,Xt+h)aj = a>i ΓX(h)aj , (4)
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where ΓX(h) denotes the autocovariance matrix function of {Xt} at lag h with ΓX(0) =
ΣX . This result is proved in Zamprogno (2013).

Equation (3) shows that at zero lag the PCs are uncorrelated, while equation (4)
demonstrates that PCA preserves the autocorrelation structures present in time-correlated
covariates. That is, for all i = 1, . . . , q, Zi ≡ {Zit}t∈Z is a time series and the autocorre-
lation of Zi, ρZi

(h) 6= 0, h = ±1, . . ., provided the eigenvector ai is not in the nullspace
of the autocovariance matrices ΓX(h), h 6= 0, which holds clearly, for example, if these
matrices have full rank. In addition, Zi and Zj , j 6= i, are cross-correlated, that is,
ρZi,Zj

(h) 6= 0 for all h = ±1,±2 . . .

Thus, PCA must be used judiciously in time series regression models. We propose
in Section 2.4 an alternative method to eliminate the autocorrelation of the principal
components.

2.3. GAM-PCA - Generalized Additive Modelling and Principal Component Analysis

One of the research directions developed in this article is the combined use of the PCA
technique and the GAM model, which is denoted here as the GAM-PCA model. This
hybrid method was previously considered in Wang and Pham (2011) without taking into
account the temporal effect in the model parameter estimates. Note that this model is
also referred to as PCA-based GAM, see Zhao et al. (2014), where the model is applied
to quantify the relationships between fish populations and their environment.

In the GAM-PCA model the covariates Z1t, . . . , Zqt generated by the PCA are linear
combinations of the original variables X1t, . . . , Xqt. Mathematically, Zit = a>i Xt, simi-
larly to (2), but the PCs are now time dependent for all i = 1, . . . , q. These new covariates
are used in the GAM model. Let r ≤ q and, considering the first r-th pairs of eigenval-
ues/eigenvectors of the covariance matrix ΣX , define the matrices Λr := diag{λ1, . . . , λr}
and Ar := (a1, . . . ,ar), i.e., the eigenvectors form columns of matrix Ar. One can see
that Ar is an orthogonal matrix of dimension q × r, i.e., A>r Ar = Ir where Ir is the
identity matrix of dimension r. Moreover, A>r ΣXAr = Λr. Let Λ = Λq and A = Aq.
Then Λr is the top-left block of Λ of size r × r and Ar consists of the first r columns of
A, see, e.g., page 11 in Jolliffe (2002). Note that any linear combination of the first r-th
new covariates can be expressed as the linear combination of the original covariates in
the following way:

r∑
i=1

υiZit =

q∑
j=1

r∑
i=1

υiajiXjt =

q∑
j=1

β∗jXjt, (5)

where υ := (υ1, . . . , υr)
> and β∗ := (β∗1 , . . . , β

∗
q )> are vectors of dimensions r and q,

respectively, and the relation between vectors υ and β∗ is given by β∗ = Arυ, and thus
υ = A>r β

∗. (Note that aji = (ai)j where aji denotes the entry of the matrix A in the
j-th row and i-th column and (ai)j denotes the j-th coordinate of the i-th eigenvector
ai.) That is, in the GAM-PCA model, the new parameter vector β∗ of the original
covariates is in the range of matrix Ar. Then, the link function of the GAM-PCA model
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using the first r-th PCs is given by

µt(υ0,υ,A) = exp


r∑
i=0

υiZit +

p∑
j=q+1

fj(Xjt)


= exp

υ0 + υ>A>r Xt +

p∑
j=q+1

fj(Xjt)


(6)

with r ≤ q ≤ p, where Xt := (X1t, . . . , Xqt)
> is the vector of covariates, υ0 corresponds

to the curve intercept with Z0t = 1 for all t, υ is the vector of coefficients of the first
r-th principal components, and fj ’s are the smoothing functions for the confounding
variables (i.e., the temperature and the humidity in this study). In the definition of
the link function, we denote only the parameters of the new PC covariates and the
transformation matrix of the PCA.

The GAM-PCA model can be considered as a probabilistic latent variable model
defined by

Yt | Ft−1 ∼ Poi(µt) and Xt = AZt

with link function (6), where Poi(·) denotes the Poisson distribution, the latent variables
{Zt} form a vector white noise process of dimension q with diagonal variance matrix Λ,
see Definition 11.1.2 in Brockwell and Davis (1991), and A is an orthogonal matrix of
dimension q × q. The quadruple (υ0,υ,A,Λ) forms the parameters of the GAM-PCA
model to be estimated. Clearly, the latent variables can be expressed as Zt = A>Xt for
all t. Hence, GAM-PCA can also be interpreted as a two-stage model where, in the first
stage, new variables (PCs) are derived by the PCA using the original covariates, and,
in the second stage, GAM is fitted by using the first r-th new variables. If {Xt} is a
Gaussian process, then the joint distribution of (Yt,Xt) can be expressed as a product of
a Poisson and a Gaussian distribution. Thus, given a sample (X1, Y1), . . . , (Xn, Yn), the
log-likelihood, up to a constant, is derived as a hybrid sum of a Poisson and a Gaussian
log-likelihood:

`(υ0,υ,A,Λ) ∝
n∑
t=1

(Yt lnµt − µt)−
1

2

n∑
t=1

(A>Xt)
>Λ−1(A>Xt)−

n

2
ln det Λ, (7)

where µt depends on the parameters by the link function (6). The parameters of the
GAM-PCA model can be estimated, for example, by the maximum likelihood method.
Since the log-likelihood (7) is rather complicated, the maximization with respect to its
parameters is more complex, and a two-stage method is proposed. Firstly, the parameter
matrices A and Λ are estimated by applying the PCA for the estimated covariance
matrix Σ̂X . Secondly, the parameters υ0 and υ are estimated by fitting the GAM
model with link function (6) using the first r-th PCs. Note that this procedure works
without assuming any distribution assumption for the covariates. In case of Gaussian
covariates the maximization of the Gaussian part of the log-likelihood (7) is equivalent
to the application of PCA for these covariates. In the sequel, the assumption of normal
distribution for covariates is used only in computing the standard information criteria
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for model selection. The approach discussed above is similar to the principal component
regression, see, for example, Chapter 8 in Jolliffe (2002), and it can be considered as a
two-stage regression method, which is a procedure well-known in the econometric area,
see Amemiya (1985).

In this context, the estimate of RR per ξ unit change in the pollutant concentration
for the original covariate Xj , j = 1, . . . , q, is given as follows:

R̂R
∗
Xj

(ξ) = exp
(
β̂∗j ξ
)
, (8)

where ξ is, for example, the interquartile variation. The term β̂∗j is given by

β̂∗j :=

r∑
i=1

âjiυ̂i, j = 1, . . . , q, (9)

where υ̂i is the estimated coefficient of the i-th PC in (6) and âji = (âi)j where âji is

the entry of the matrix Â in the j-th row and i-th column and âi, i = 1, . . . , r, are the
first r-th estimated eigenvectors. Equation (9) can be easily derived using equation (5).

Since the PCs are uncorrelated the standard error of β̂∗j can be derived as

se2(β̂∗j ) =

r∑
i=1

â2ji se2(υ̂i).

2.4. GAM-PCA-VAR - GAM-PCA and Vector Autoregressive Modelling
As previously discussed, the use of PCA for time series produces autocorrelations and
cross-correlations among the principal components. In this paper, we suggest a procedure
to eliminate the autocorrelations and cross-correlations of these components by applying
a vector autoregressive moving average (VARMA) filter to the original data to obtain a
white noise process, see, also, Greenaway-McGrevy et al. (2012). The proposed model,
called here GAM-PCA-VAR, aims to eliminate the temporal correlation in order to
obtain estimates of the regression parameters, and consequently RR estimates, which
are free from the serial correlation present in the covariates that could lead to spurious
analysis in real applications.

Let now {Xt}, Xt = (X1t, . . . , Xqt)
>, be a VARMA(p∗, q∗) process defined as the

solution to the following system, see Hamilton (1994):

Φ(B)(Xt − γ) = Θ(B)εt, (10)

where B is the delay operator, γ is a q dimensional vector and the innovation process
{εt} is a q dimensional white noise with E(εt) = 0 and Var(εt) = Σε, where Σε is a q× q
variance matrix. The operators Φ(B) = Iq −

∑p∗

i=1 ΦiB
i and Θ(B) = Iq+

∑q∗

i=1 ΘiB
i

are polynomial matrices of orders p∗ and q∗, respectively, and Φi’s and Θi’s are matrices
of constants with dimension q × q. If det Φ(z) 6= 0 for all complex z such that |z| ≤ 1
then the VARMA model (10) has exactly one stationary causal solution, see Theorem
11.3.1 in Brockwell and Davis (1991). Seasonal VARMA models are built using the same
structure as in (10), but with the lag time being a multiple of the seasonal period.
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The VAR(1) model is a particular case of the VARMA(p∗, q∗) model with p∗ = 1 and
q∗ = 0. Without loss of generality, it is here assumed that γ = 0. Therefore, the model
in (10) can be written in the form

Xt = ΦXt−1 + εt. (11)

A VAR(1) process has unique stationary causal solution provided all the eigenvalues of Φ
are less than 1 in absolute value. In this case, the unique solution of the VAR(1) model
can be expressed as the almost surely convergent infinite series Xt =

∑∞
j=0 Φjεt−j , see

Example 11.3.1 in Brockwell and Davis (1991). The autocovariance matrix function of
{Xt} is given by ΓX(h) =

∑∞
j=0 Φj+hΣε(Φ>)j , h = 0,±1, . . .. The identification and

estimation procedures for model (10) are given in Hamilton (1994) and Brockwell and
Davis (1991). The seasonal VAR(1) model with period s, usually denoted by SVARs(1),
is an extension of Model (11) with a seasonal matrix autoregressive coefficient at lag
s. This seasonal matrix has to satisfy similar stationary condition to the one of the
VAR(1) model, see, for example, Brockwell and Davis (1991). In the following, the
model proposed here, which combines PCA, VAR and GAM procedures, is discussed.

The GAM-PCA-VAR model is a combination of the VAR(1) model given in (11),
where Xt represents the pollution variables at time t in the context of this paper,
and GAM-PCA model by using the white noise error process of (11) as covariates.
Mathematically, let Z1t, . . . , Zqt at time t be given by

Zit = a>i εt = a>i (Xt − ΦXt−1), i = 1, . . . , q, (12)

where (λi,ai), i = 1, . . . , q, denote the eigenvalues/eigenvectors of the variance matrix
Σε of the white noise innovation in (11), and, therefore, the PCs vector Zt has now
uncorrelated components Zi ≡ {Zit}, i = 1, . . . , q, and these components are white
noise processes with variances λi, i = 1, . . . , q, respectively. The impact of the VAR(1)
filter in the GAM-PCA-VAR model is to eliminate the serial correlation present in the
original pollutant covariates. Large positive values in a coordinate of the innovation εt
indicate locally high environmental influence according to this pollutant at time t. On
the contrary, large negative values indicate negligible influence. The link function of the
GAM-PCA-VAR model using the first r-th PCs is defined by

µt(υ0,υ,A,Φ) = exp


r∑
i=0

υiZit +

p∑
j=q+1

fj(Xjt)


= exp

υ0 + υ>A>r Xt − υ>A>r ΦXt−1 +

p∑
j=q+1

fj(Xjt)

 ,

(13)

which clearly shows that, in contrast to GAM-PCA, Yt depends on both Xt and Xt−1
demonstrating the presence of serial dependence in the GAM-PCA-VAR model.

The GAM-PCA-VAR model can also be considered as a probabilistic latent variable
model defined by

Yt | Ft−1 ∼ Poi(µt) and Xt = ΦXt−1 + AZt
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with link function (13), where the latent variables {Zt} form a vector white noise process
of dimension q with diagonal variance matrix Λ, A is an orthogonal matrix of dimension
q × q, and Φ is a matrix of dimension q × q. The quintuplet (υ0,υ,A,Λ,Φ) forms the
parameters of the GAM-PCA-VAR model to be estimated. Clearly, the latent variable
can be expressed as Zt = A>(Xt − ΦXt−1) for all t, see also equation (12). Hence,
GAM-PCA-VAR can be interpreted as a three-stage model, where in the first stage
the temporal dependence is eliminated by taking the new serially uncorrelated variable
εt = Xt −ΦXt−1 at time t; in the second stage new uncorrelated variables (PCs) {Zt}
are derived by using the PCA for the innovation process {εt}; and in the third stage
GAM is fitted by using the first r-th PCs as covariates. The order of models in the
acronym GAM-PCA-VAR corresponds to these stages starting with the third one and
finishing with the first one, which is generally accepted in the time series literature.

Under the assumption that the distribution of the innovation vector is multivariate
normal, the conditional log-likelihood of the GAM-PCA-VAR model, given a sample
(X1, Y1), . . . , (Xn, Yn), is derived as:

`(υ0,υ,A,Λ,Φ) ∝
n∑
t=2

(Yt lnµt − µt)−
1

2

n∑
t=2

ε>t AΛ−1A>εt −
n− 1

2
ln det Λ, (14)

where εt = Xt − ΦXt−1 and µt depends on the parameters by the link function (13).
Since the maximization of this log-likelihood is also rather computationally expensive,
a three-stage estimation method is proposed: firstly, VAR(1) model is fitted to the
original covariates by applying standard time series techniques; secondly, using PCA
for the residuals defined by ε̂t = Xt − Φ̂Xt−1, t = 2, . . . , n, where Φ̂ denotes the
estimated autoregressive coefficient matrix in the fitted VAR(1) model, the first r-th
PCs are computed; thirdly, GAM model is fitted using these PCs by maximizing the
Poisson part of the log-likelihood (14). The relative risk of the GAM-PCA-VAR model,

computed similarly to (8), is denoted here by R̂R
∗∗

.

Remark 1. Another model to GAM-PCA-VAR, called hereafter GAM-VAR-PCA
can be derived by interchanging the order of VAR filter and PCA. Namely, the multi-
collinearity amongst the original covariates is eliminated by PCA firstly and then the
serial dependence is handled by VAR modelling. More precisely, let Ar be defined as in

Section 2.3 and Z
(r)
t = A>r Xt for all t. We fit a VAR(1) model to the r-dimensional

process {Z(r)
t }, that is Z

(r)
t = ΨrZ

(r)
t−1 +W

(r)
t , where Ψr is a matrix of dimension r× r

and {W (r)
t }, W

(r)
t = (W

(r)
1t , . . . ,W

(r)
rt )>, is an r-dimensional white noise process. The

link function of the GAM-VAR-PCA model is

µt(υ0,υ,Ar,Ψr) = exp


r∑
i=0

υiW
(r)
it +

p∑
j=q+1

fj(Xjt)


= exp

υ0 + υ>A>r Xt − υ>ΨrA
>
r Xt−1 +

p∑
j=q+1

fj(Xjt)

 ,

(15)

which looks like (13). Nevertheless, there is an important difference between these two
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formulations. Whereas in the GAM-PCA-VAR model, the vector Z
(r)
t = (Z1t, . . . , Zrt)

>

in (13) is a white noise process with uncorrelated components Zi ≡ {Zit}, i = 1, . . . , r,

in the GAM-VAR-PCA model, the vector W
(r)
t in (15) is also a white noise process but

its components are not necessarily uncorrelated. Hence, the new covariates of the GAM-
VAR-PCA model involved into the GAM model are no longer uncorrelated and thus, the
estimators of its parameters may present bias and high variance. For this reason, the
GAM-VAR-PCA model is not a true alternative.

2.5. Goodness-of-fit
The comparison of the proposed procedures is performed by means of some goodness-of-
fit statistics, such as the mean square error (MSE), Akaike information criterion (AIC)
and Bayesian information criterion (BIC). The estimated mean square error is defined
as:

MSE =
1

n

n∑
i=1

(Yi − Ŷi)2,

where Ŷi is the predicted value of Yi, the number of hospital treatments. The Akaike
information criterion (AIC), see Akaike (1973), and the Bayesian information criterion
(BIC), see Schwarz (1978), which are widely applied for model selection, are defined as:

AIC = −2̂̀+ 2k and BIC = −2̂̀+ k ln(n),

where ̂̀ is the maximized value of the log-likelihood function defined by (1), (7) and (14)
for the GAM, GAM-PCA and GAM-PCA-VAR models, respectively, k is the number of
free parameters to be estimated and n is the sample size. Note that k = 1 + r(q + 2)−
r(r+1)/2 for GAM-PCA and k = 1+r(q+2)+q2−r(r+1)/2 for GAM-PCA-VAR since
the degree of freedom in q× r orthogonal real matrices is rq− r(r+ 1)/2. In this study,
the log-likelihood ` is evaluated at the parameter values resulted from the proposed two-
and three-stage estimation methods for GAM-PCA and GAM-PCA-VAR, respectively.

3. Results

3.1. Simulation study
In order to evaluate the effect in the parameter estimation, and hence in the RR esti-
mates, of a GAM model in the presence of temporal correlation in both, the dependent Yt
and independent Xt = (X1t, . . . , Xqt)

> vector, a simple simulation study was conducted.
The data were generated under three scenarios: independent data (S1); the dependent
variable is a time series and the covariates are independent random vectors in time
(S2); and both the dependent and independent variables are time series (S3). For the 3
scenarios, the data were generated from a conditional Poisson model, Yt|Xt ∼ Poi(µt).

Initially, only one covariate X1 was considered. In this case, for (S1), the predictor
is given by log(µt) = β0 +β1X1t where X1t ∼ N(0, 1) for all t, which means that neither
{Yt} nor {X1t} are time series. Under Scenarios 2 and 3, the predictor is given by
log(µt) = β0+β1X1t+εt, where {εt} ∼ AR(1) with autoregressive coefficient ϕ = 0.1, 0.5
and 0.9. The difference between Scenarios 2 and 3 is that, for the first, X1t ∼ N(0, 1)
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Table 1. Simulation results for a single covariate
Model Parameter Mean Bias MSE
S1: Independent β0 = 1 0.9958 -0.0042 0.0049

β1 = 1.5 1.5010 0.0010 0.0026
S2: ϕ=0.1 β0 = 1 1.4873 0.4873 0.2921

β1 = 1.5 1.4457 -0.0543 0.0671
S2: ϕ=0.5 β0 = 1 1.6084 0.6084 0.4782

β1 = 1.5 1.4091 -0.0909 0.1116
S2: ϕ=0.9 β0 = 1 2.7779 1.7779 4.7168

β1 = 1.5 1.3189 -0.1811 0.2544
S3: ϕ=0.1 β0 = 1 1.4732 0.4732 0.3673

β1 = 1.5 1.3903 -0.1097 0.1180
S3: ϕ=0.5 β0 = 1 1.6512 0.6512 0.5727

β1 = 1.5 1.3790 -0.1210 0.1528
S3: ϕ=0.9 β0 = 1 2.8475 1.8475 5.0797

β1 = 1.5 1.2518 -0.2482 0.2918

for all t and, for the later, {X1t} ∼ AR(1) with φ = 0.5. Thus, Scenario 2 represents
the case where {Yt} is a time series, but {X1t} is not and Scenario 3 represents the case
where both {Yt} and {X1t} are time series. For these three scenarios, β0 = 1, β1 = 1.5,
the sample size n = 100 and the number of Monte Carlo simulations was equal to 1000.
The empirical values of mean, bias and mean square error (MSE) are displayed in Table
1. All results were obtained by using R-code.

In the case of independent data (S1), the estimate of β1 is very close to the true
value, as expected. However, the picture changes dramatically especially in Scenario 3.
It can be seen that the estimate of β1 is heavily affected by the autocorrelation structure
present in the data, by presenting a negative bias which increases in absolute value as
ϕ increases positively. Hence, the estimated MSE also increases substantially with ϕ.
In particular, for the last scenario when both {Yt} and {X1t} are time series, it can
be seen that the fitted GAM model tends to severely underestimate β1. As the RR is
a function of β1, its bias also introduces bias in the RR estimates in the sense that it
tends to decrease when the autocorrelation structure increases. Hence, the correlation
structure present in the data may attenuate the true RR estimate, which can lead to
a false positive conclusion (this empirical evidence was also discussed in Dionisio et al.
(2016) in a different simulation scenario). Thus, if a GAM model is fitted to time series
variables, without mitigating the temporal correlation structure of the covariates as, for
example, by removing this from the data, the RR estimate may not correspond to the
true relation between the variables.

Next, we evaluate the effect in the parameter estimation of a GAM model when there
are two covariates, Xt = (X1t, X2t)

>. The setup is the same one as described previously
for scenarios S1, S2 and S3, with two covariates instead of a single one. Thus, under
S1 the predictor is given by log(µt) = β0 + β1X1t + β2X2t, where X1t, X2t ∼ N(0, 1)
are independent for all t. Under S2 and S3, the predictor is given by log(µt) = β0 +
β1X1t + β2X2t + εt, where {εt} ∼ AR(1), with ϕ = 0.5. Now the difference between S2
and S3 is that, for the first one, X1t, X2t ∼ N(0, 1), mutually independent, and, for the
later, (X1t, X2t)

> forms a VAR(1) process with autoregressive coefficient matrix Φ of
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Table 2. Simulation results for two covariates, X1 and X2

Model Parameter Mean Bias MSE
S1: Independent β0 = 1 0.9964 -0.0036 0.0048

β1 = 1.5 1.5015 0.0015 0.0026
β2 = 0.5 0.4999 -0.0001 0.0020

S2 β0 = 1 1.5955 0.5955 0.5180
β1 = 1.5 1.4799 -0.0201 0.0701
β2 = 0.5 0.4719 -0.0281 0.0621

S3: φ11 = 0.7, φ12 = 0 β0 = 1 1.6254 0.6254 0.7941
φ21 = 0, φ22 = 0.5 β1 = 1.5 1.3708 -1.1292 0.1208

β2 = 0.5 0.4596 -0.0404 0.0701
S3: φ11 = 0.7, φ12 = 0.4 β0 = 1 1.6654 0.6654 1.3042

φ21 = 0, φ22 = 0.5 β1 = 1.5 1.3559 -0.1441 0.1299
β2 = 0.5 0.4487 -0.0513 0.0933

dimension 2× 2. The results are displayed in Table 2.
From Table 2, similar conclusions are drawn as in the case of a single covariate (Table

1), that is, the coefficients of X1 and X2 are always underestimated when the process is
generated by time series, either in the response or in the covariate vector. Nevertheless,
the bias in the estimates is much larger in a more complex model structure compared to
the case of a single covariate.

The next empirical study has the aim to illustrate, with a simple simulated model,
the time-correlation effect in the PCA as discussed in Section 2.2, more specifically,
the result of (4). For this purpose one sample {X1, ...,X500} was generated from the
process {Xt} in (11) that follows a two-dimensional VAR(1) model with φ11 = φ22 = 0.5,
φ12 = 0.1 and φ21 = 0.8 and Gaussian white noise vector with

Σε =

(
1 0.3

0.3 1

)
.

The estimated PCs, that is, Ẑ1t, Ẑ2t, t = 1, ..., 500, were computed from the 2× 2 sam-
ple covariance matrix of {X1, ...,X500}. The sample correlation and cross-correlation

functions of the PCs are displayed in Figure 1, in which Ẑ1t and Ẑ2t correspond to PC1
and PC2, respectively. As can be seen, the plots clearly indicate that the correlation
structure of the models is transferred to the principal components as shown in equation
(4). Based on the above empirical evidences, as well as on the discussion of the previous
sections, it is clear that the temporal correlation can not be neglected when using PCA
in regression models with covariates being time series data, otherwise the conclusions can
be totally erroneous and lead to severe consequences. Therefore, the use of the proposed
methodology discussed in Subsection 2.4 can be an alternative approach to mitigate this
problem. These issues are also discussed in the next section, but with a real data set.

3.2. Data Analysis
In this study, the number of hospital admissions for respiratory diseases (RD) was ob-
tained from the main childrens emergency department in the Vitória Metropolitan Area
(called Hospital Infantil Nossa Senhora da Gloria). Respiratory diseases are classified
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Fig. 1. Sample autocorrelation function (ACF) and cross-correlation function (CCF) of the PCs.

according to the International Classification of Diseases (ICD-10), and the investigated
group consisted of children under 6 years old. The study was performed between January
1, 2005 and December 31, 2010 (n=2191).

The following atmospheric pollutants were studied: particulate material (PM10), sul-
phur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3) and carbon monoxide (CO).
Information on the daily levels of the aforementioned pollutants and data for mete-
orological variables were obtained from the State Environment and Water Resources
Institute (IEMA), where the data were collected at 8 monitoring stations (RAMQAr).

The data collection for all the pollutants occurred over a 24-hour period that began
in the first half-hour of the day. The following data were obtained at each station: the
24-hour average concentration for PM10 and SO2, 8-hour moving average concentrations
for CO and O3, and the 24-hour maximum concentration for NO2. The daily averages
among the stations at which these variables were recorded were used as the covariates
in the regression approaches suggested here.

Table 3 shows the descriptive statistics (i.e., the averages, standard deviations, and
quantile values, among others) of the variables considered. The average number of
daily treatments was 27.1 with a standard deviation of 6.15. The concentrations of the
pollutants considered exceeded neither the primary air quality standard recommended
by the Brazilian National Council for the Environment (CONAMA), nor the guidelines
suggested by the World Health Organization (WHO). However, other studies have shown
that human exposure to air pollutants levels below the acceptable standards can also
cause deleterious human health effects, see Bakonyi et al. (2004).
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Table 3. Descriptive statistics for the variables under study (Vitória Metropolitan Area, Jan 2005
to Dec 2010) †

Percentile
Mean Standard deviation Minimum 25 50 75 Maximum

PM10 33.45 8.83 8.98 27.90 32.75 38.39 86.74
SO2 12.44 3.11 4.89 10.06 12.16 14.57 26.48
O3 31.86 8.36 12.10 25.97 30.73 36.58 72.34
NO2 24.82 6.93 9.03 19.59 24.13 29.37 62.59
CO 885.79 231.28 295 724.82 866.60 1031.09 2141.50
Tmin 20.86 2.47 13.10 19.08 21.15 22.80 25.98
Tave 24.43 2.45 17.00 22.62 24.40 26.35 30.80
Tmax 29.35 3.28 19.40 27.20 29.41 31.60 39.70
RH 77.43 6.03 61.60 73.24 77.19 81.14 97.28
NT 27.09 6.15 1.00 13.00 24.00 37.00 121.00
† T= Temperature (◦C); RH= Air relative humidity (%); NT= Number of treatments for
respiratory diseases. The measure of concentration of pollutants is µg/m3.

Table 4. Correlation among pollutants, meteorological variables and number of
treatments †

PM10 SO2 NO2 CO O3 Tmax Tmin RH NT
PM10 1.00
SO2 0.31 1.00
NO2 0.34 0.04 1.00
CO 0.35 0.22 0.61 1.00
O3 -0.04 -0.08 0.04 -0.40 1.00
Tmax 0.20 0.44 -0.43 -0.06 -0.23 1.00
Tmin -0.10 0.16 -0.48 -0.10 -0.16 0.62 1.00
RH -0.28 -0.29 0.23 0.26 -0.22 -0.44 -0.03 1.00
NT 0.05 -0.33 0.09 0.09 -0.08 -0.15 -0.19 0.14 1.00
† T= Temperature (◦C); RH= Air relative humidity (%); NT= Number of
treatments for respiratory diseases.
All correlations were significant at a 5% level.

The average maximum temperature used in the model was 29.35◦C with a standard
deviation of 3.28◦C, and the average relative humidity of the air was 77.43% with a
standard deviation of 6.03%.

The graphs in Figure 2 show that the series of air pollutants concentration and the
number of hospital admissions for RD possess seasonal behaviour, which was to be
expected for these phenomena. Another characteristic observed in the series was an
apparently weak stationarity. This result is confirmed in the graphs of the sampling
functions of the autocorrelations shown in Figure 3.

Table 4 shows the correlations among the atmospheric pollutants, the meteorolog-
ical variables and the treatments. Although some sample correlations appear not to
be numerically significant, the non-parametric Pearson correlation test indicated that
correlation among the atmospheric pollutants is significant for all pairs of variables at
level 5% and for most pairs at level 0.1%. For example, the test displayed 0.0476 as
the maximum empirical level, which was found for the correlation between PM10 and
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Fig. 2. Concentration of CO; NO2; SO2; PM10; O3 and the Number of treatments for RD.

O3. The minimum and maximum temperatures were negatively correlated with the pol-
lutants O3 and NO2 and positively correlated with the pollutant PM10. The positive
correlation between the maximum and minimum temperatures and the pollutant PM10

could be explained by the acceleration of the pollutant dispersion during the hotter pe-
riods and the accumulation of pollutants in the air at low temperatures, which impeded
the dispersion of the particles and kept them at the atmospheric level.

The aforementioned descriptive and graphical analysis motivated the use of the PCA
technique in the GAM for the atmospheric pollutant data, even though the pollutants
had an apparently weak correlation and self-correlation structure.

Table 5 shows the results of applying the PCA technique to the correlation matrix
of the PM10, SO2, NO2, O3 and CO data. Here, in order to keep the notation consis-
tent with the previous sections, PC1,. . . , PC5 correspond to Ẑ1t, . . . , Ẑ5t, respectively.
The first three components correspond to 83.2% of the total variability. The highest
coefficients (in eigenvectors) of principal components 1, 2 and 3 are those of the pol-
lutants CO, O3 and SO2, respectively. As a complement to the analysis in Table 5, a
cluster division was performed for each component to group, for example, the pollutants
with factor loadings higher than 0.45. In Table 5, the (*) symbol indicates the possible
clusters for each principal component.

Figure 4 shows the time behaviour of some principal components obtained from the
pollutant concentration series, i.e., the original data. The figure shows that PC1 is
autocorrelated and that the cross-correlations are non-null, corroborating the results
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Fig. 3. Sample autocorrelation function (ACF) of the pollutants.

discussed in Subsections 2.2 and 3.1. The components also clearly exhibited the sea-
sonal behaviour of the pollution variables, as expected. That is, the graphs show that
the autocorrelation structure of the pollutants persists in the components. Therefore,
the PCA technique should be applied carefully even for processes with an apparently
weak autocorrelation structure. This is an argument contrary to page 299 in Jolliffe
(2002), in which the author argues that “when the main objective of PCA is only de-
scriptive, complications such as non-independence (temporal) does not seriously affect
this objective” (see, also, Zamprogno (2013) and Vanhatalo and Kulachi (2016)).

The cumulative proportion of the variance was the choice criterium for the compo-
nents to be included in the GAM. Thus, following the parsimony criterium, the first
three components were chosen as covariates (highlighted in bold in Table 5), which cor-
responds to 83.2% of the total variability and the simplest model as possible to handle
the complex correlation structure of the data. The number of daily treatments for res-
piratory diseases was considered to be the dependent variable, and each outcome was
modelled based on the assumption that the count of respiratory disease events (i.e.,
hospital admissions) followed a Poisson distribution.

The analysis involved several procedures implemented in stages. Initially, the short-
term seasonality was treated using indicator variables for weekdays and holidays. A loess
smoothing function, see Friedman (1991), was used to model the long-term seasonality to
control for the non-linear dependence. The confounding covariates (i.e., the temperature
and the relative humidity) were modelled using splines smoothing curves (see Friedman
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Table 5. Results of factor loadings and statistics applying PCA for the pollutants
PC1 PC2 PC3 PC4 PC5

Standard deviation † 1.4315 1.0431 1.0115 0.7741 0.4904
Proportion of variance 0.4098 0.2176 0.2046 0.1198 0.0481
Cumulative proportion 0.4098 0.6274 0.8320 0.9519 1.0000
of variance
CO -0.6074* -0.1999 -0.2311 -0.2146 -0.7012
NO2 -0.5058* 0.3316 -0.4786 -0.2599 0.5810
O3 0.2523 0.8615* -0.0363 -0.1995 -0.3911
PM10 -0.4680* 0.3213 0.2784 0.7746 -0.0151
SO2 -0.3041 0.0680 0.7992* -0.4966 0.1327

† Standard deviation is the square root of the eigenvalue.

Fig. 4. Cross-correlation function (CCF) of the main components of the pollutants studied.

(1991) and Wahba (2001)). The best GAM-PCA fit was obtained based on a residual
analysis and the Akaike information criterion (AIC), Akaike (1973).

As previously mentioned, the unfiltered principal components are autocorrelated.
Consequently, this property was transferred to the residuals of the GAM-PCA model
(see Figure 5). Therefore, as a post-processing step, a SAR(1)(1)7 model was fitted
to the residuals of the GAM-PCA, resulting in the final GAM-PCA model with SAR
residuals, shortly the final GAM-PCA model, which has eliminated the autocorrelation
in the data. The parameter estimates for this model are given in Table 6. It should be
noted that the temperature was no longer significant and thus was dropped from the
final model. Figure 6 shows that there is no autocorrelation structure in the residuals of
the final GAM-PCA model after SAR filtering the residuals of the GAM-PCA model.

For the GAM-PCA-VAR model proposed in this paper, a seasonal vector autore-
gressive model with a 7-day period, SVAR7(1), was used to adjust the pollutant vector.
Although the model discussed in the previous section is related to VAR(1), its extension
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Table 6. Results of the final GAM-PCA model to estimate the effects of pollu-
tants concentrations on the hospital admission in the Vitória Metropolitan Area
†

Variables Estimates Standard error Z value p-value
(Intercept) 4.4871 0.0901 49.82 0.0000***
Tuesday -0.1596 0.0152 -10.50 0.0000***
Wednesday -0.2176 0.0154 -14.14 0.0000***
Thursday -0.1321 0.0151 -8.76 0.0000***
Friday -0.1571 0.0154 -10.22 0.0000***
Saturday -0.1204 0.0150 -8.04 0.0000***
Sunday -0.0860 0.0154 -5.59 0.0000***
Holiday2‡ 0.1886 0.0440 4.29 0.0000***
Holiday3§ 0.3189 0.0384 8.30 0.0000***
Air relative humidity -0.0061 0.0009 -6.83 0.0000***
PC1 -0.0244 0.0040 -6.16 0.0000***
PC2 0.0163 0.0055 2.99 0.0028 **
PC3 -0.0157 0.0056 -2.79 0.0052***
† Significant: ’***’ 0.001 ’**’ 0.01
‡ Holiday2 = Corpus Christ + Our Lady of Penha
§ Holiday3 = Carnival + holiday (Tiradentes day) + Brazil’s Independence
day

using SVAR7(1) model instead is straightforward obtained. The seasonal VAR(1) model
was selected based on the standard fitting tools of multivariate time series model, e.g.,
the VAR package of R. Table 7 displays the results of applying the PCA technique to the
residual matrix of the seasonal VAR(1) model. It shows that the time structure of the
pollutants did not alter the cumulative proportion of the variance, that is, the variability
in the first three components explain 83% of the variability in the filtered data, which
is equivalent to the results in Table 5. This may be explained by the fact that the serial
dependence of the pollutants was not strong enough to produce an impact on the PCA,
Zamprogno (2013), or because of the effect of the high levels of the pollutant on the
estimation of the covariance matrix (see, for example, Reisen et al. (2017), Cotta et al.
(2017) and Zamprogno (2013)).

However, the clustering of the pollutants by factor loadings resulted in a different
interpretation, which is more coherent with the behaviour of the variables considered.
The clusters are indicated with (**) in the analysis. The results showed a correlation
between the NO2 and O3 pollutants that was not observed in the previous case. These
two pollutants are physically associated with each other because the formation of O3

depends on the release of the NO2 particle.

Figure 7 shows that the fitting of the seasonal VAR(1) model practically eliminated
the autocorrelation of PC1 and the cross-correlation, as expected from the aforemen-
tioned discussion. The residual plots (ACF and PACF) of GAM-PCA-VAR displayed
similar behaviour as the GAM-PCA with SAR residuals (the final GAM-PCA) shown
in Figure 6. These plots are available upon request. Additionally, Figure 8 shows the fit
(predicted values) obtained using the GAM-PCA-VAR model. This graph shows that
the model provided a good fit to the data for the variable of interest, i.e., the number
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Fig. 5. (a) Sample autocorrelation function and (b) sample partial autocorrelation function of the
residuals of the GAM-PCA model.

Table 7. Results of factor loadings and statistics applying PCA for the filtered
pollutants

PC1 PC2 PC3 PC4 PC5
Standard deviation † 1.4774 1.0223 0.9628 0.7228 0.5680
Proportion of variance 0.4366 0.2090 0.1854 0.1045 0.0645
Cumulative proportion 0.4366 0.6456 0.8310 0.9355 1.0000
of variance
CO 0.5711∗∗ -0.1431 0.2918 -0.1469 0.7393
NO2 0.4205 -0.6527∗∗ 0.2543 -0.0905 -0.5695
O3 -0.3693 -0.5801∗∗ -0.4685 -0.4896 0.2606
PM10 0.4012 -0.1409 -0.7040∗∗ 0.5663 0.0532
SO2 0.4468 0.4441 -0.3675 -0.6402 -0.2414

† Standard deviation is the square root of the eigenvalue.

of daily treatments for children under 6 years old in the metropolitan area.
The goodness-of-fit results for the three models (GAM, GAM-PCA and GAM-PCA-

VAR) using the MSE, AIC and BIC statistics, are given in Table 8. MSE of the GAM
model is approximately 35% higher than the MSE of the other two models, which was
an expected results since a more complex model may yield a better residual fit. The
AIC and BIC information criteria indicate that the GAM-PCA-VAR model is the best
to fit the data. All these empirical analyses, that is, the plots of the ACF and PACF
of the residuals which were shown to be uncorrelated, the behaviour of the estimated
PCs (Figure 7), the final fit (Figure 8) and the results in Table 8 support the fact that
the proposed model GAM-PCA-VAR is suitable, for the purpose of the paper, to model
this data. The final performance of this procedure to quantify the association between
respiratory disease and pollution is evaluated by means of the estimated RR as follows.

The RR estimates for each pollutant and model were calculated to compare the
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Fig. 6. (a) Sample autocorrelation function and (b) partial autocorrelation function of the resid-
uals of the final GAM-PCA model.

Table 8. Goodness-of-fit statistics for the esti-
mated models

Model MSE AIC BIC
GAM 1.480 24610 24720
GAM-PCA 1.143 24442 24245
GAM-PCA-VAR 1.144 24166 24190

performances of the GAM (R̂R), GAM-PCA (R̂R
∗
) and GAM-PCA-VAR (R̂R

∗∗
) models

for the variables under consideration. The results are displayed in Table 9 in terms
of the increase in the interquartile variation, which was based on performing the RR
analysis for pollutants at different scales. Most RR estimates were significant for all of
the considered models, i.e., in general, the pollutants contributed significantly to the
increase in the number of treatments for respiratory diseases. In the majority, the most
significant RR estimates were obtained using the developed GAM-PCA-VAR model.

As an example of a specific and comparative analysis of the RR values, the RR

estimates for the pollutant PM10 increased from approximately 2% (R̂R) to 3% (R̂R∗)

and 7% (R̂R
∗∗

). Substantial increases in the RR estimates were also observed for the

pollutant CO. In this case, R̂R = 1.020, R̂R
∗

= 1.048 and R̂R
∗∗

= 1.077.

Therefore, the developed GAM-PCA and GAM-PCA-VAR models generally showed
more pronounced results than the conventional GAM for the expected increase in the
number of treatments for respiratory diseases, since the procedure allows a set of pollu-
tants to be the explanatory variable.
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Fig. 7. Cross-correlation function (CCF) of the main components of the filtered pollutants.

Table 9. Relative risk (RR) and 95% confidence intervals for treatments for
respiratory diseases in children under 6 years old for an interquartile variation
in the pollutants PM10, SO2, NO2, O3 and CO in the Vitória Metropolitan Area
from Jan 2005 to Dec 2010 †

R̂R R̂R
∗

R̂R
∗∗

PM10 1.020(1.010,1.039) 1.029(1.001,1.090) 1.075(1.001,1.092)
SO2 1.040(1.010,1.080) 0.982(0.972,1.001) 1.027(1.010,1.040)
CO 1.020(1.010,1.030) 1.048(1.002,1.071) 1.077(1.020,1.100)
NO2 1.000(0.990,1.020) 1.028(1.010,1.040) 1.012(1.010,1.030)
O3 0.980(0.972,1.001) 1.081(1.003,1.093) 0.992(0.992,1.020)

† R̂R: GAM, R̂R
∗
: GAM-PCA and R̂R

∗∗
: GAM-PCA-VAR

4. Conclusion

A hybrid of three statistical tools, the vector autoregressive model (VAR), the principal
component analysis (PCA), and the generalized additive model (GAM), with Poisson
marginal distribution, was developed in this study to correlate the effect of atmospheric
exposure to pollutants PM10, SO2, NO2, O3 and CO with the number of treatments
for respiratory diseases in children under 6 years old in the Vitória metropolitan area,
Brazil, between 2005 and 2010. It should be noticed that, due to the complexity of the
real data, a marginal Poisson assumption would not be the most appropriated choice in
this case since the series presented overdispersion problem, which may come from many
features of the data such as changes in the mean and variance, observations with high
levels (which increases substantially the variance) among others. The overdispersion is
a common phenomenon in this kind of data, and the negative binomial (NB) and the
generalized Poisson (GP) models are frequently used to account for this problem. For
example, several statistics were proposed by Yang et al. (2007) in testing for a Poisson
regression model against NB or GP alternatives. However, the Poisson distribution is
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Fig. 8. Fitted GAM-PCA-VAR model to the number of treatments for RD.

the most popular distribution used in real applications when dealing with association
between pollution and health adverse problems. Besides, in this work the main objective
was to investigate the effect of serial and cross-correlation of the pollutants included in
the fit. Therefore, the use of a model that also handles the overdispersion problem
is an interesting and important issue to be considered in the context of the data here
analysed. Hence this point, and the effect of high concentration levels of the pollutants
in the estimate of RR and bootstrap intervals for this quantity will be part of future
work of the authors of the paper.

The developed models were denoted here by GAM-PCA and GAM-PCA-VAR. The
first model used the principal components (PCs) of the original pollutants as covariates in
the GAM model. The residuals of this model were fitted using the SAR(1)(1)7 model, re-
sulting in the final GAM-PCA model. In the second approach, a seasonal VAR(1) model
was used to filter the original pollutants, before building the PCs. These modified PCs
were then used as covariates in the GAM model, resulting in the hybrid model defined
as GAM-PCA-VAR. In this later model, the autocorrelation and cross-correlations of
the PCs were removed by the VAR model.

A simulation study was conducted to evaluate the effect in the parameter estimation
of GAM models when the explanatory variables possess serial correlation. The results
showed that, if the autocorrelation present in the independent variables is not taken
into account, the GAM fit tends to underestimate the true value of the coefficients,
and consequently, it leads to biased RR estimates. This means that a true effect of a
pollutant in the population health can be underestimated if the model is not correctly
adjusted. This issue was also recently explored in different scenario by Dionisio et al.
(2016).

The fitting adequacy of the aforementioned models was compared by means of goodness-
of-fit statistics, such as MSE, AIC and BIC. Based on these quantities, in general, the
three methods displayed close results, where the standard GAM presented the worst
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performance.

The deleterious health effects of the exposure to pollutants for the population of
children in the Vitória metropolitan area were obtained by estimating the RR of the
GAM, GAM-PCA and GAM-PCA-VAR regression models. In general, the RR estimates
were significant for all models considered in the study. It should be stressed here that,
in most cases, the estimated RR is larger for GAM-PCA-VAR when compared to the
GAM model. This can be explained by the results obtained in the simulation study.
Thus, the real effect of these pollutants in the number of respiratory diseases can be
underestimated if we use the standard GAM model under an inappropriate scenario as
it was the case of the data used here. For example, for the pollutant PM10, the estimated

relative risk increased from approximately 2% (R̂R) to 3% (R̂R
∗
) and 7% (R̂R

∗∗
). For

the GAM-PCA model, an increase of 10.49 µg/m3 (interquartile range) of the particulate

material (PM10) resulted in a R̂R
∗

value of 1.029 with 95% CI (1.001,1.09), while for the

GAM-PCA-VAR model a higher R̂R
∗∗

value of 1.075 with 95% CI (1.001,1.092). Similar
interpretations could be made for the other pollutants and developed models.

In this study, the results obtained using the GAM and GAM-PCA models were
coherent with those reported in Wang and Pham (2011), in which the morbidity was
correlated with the atmospheric pollutant concentrations using data registered in Korea.
Although the serial correlation of the data was ignored by the authors when using PCA,
the study also shows that the PCA technique improved the final relative risk estimates.
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