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SUMMARY

This paper deals with the problem of control of partially known nonlinear systems, which have an open–
loop stable equilibrium, but we would like to add a PI controller to regulate its behavior around another 
operating point. Our main contribution is the identification of a class of systems for which a globally stable 
PI can be designed knowing only the systems input matrix and measuring only the actuated coordinates. 
The construction of the PI is done invoking passivity theory. The difficulties encountered in the design of 
adaptive PI controllers with the existing theoretical tools are also discussed. As an illustration of the theory 
we consider a class of thermal processes. Copyright ©c 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In many practical applications the plant to be controlled has an open–loop stable equilibrium, e.g.,

at the origin, and we would like to add a controller to regulate its behavior around another operating 
point. In the case of linear systems the dynamics remains invariant under coordinate shifts, therefore

this task can be easily accomplished using the incremental model of the plant. Unfortunately, this 
is not the case for nonlinear systems, for which there is no obvious advantage of working with the

incremental model.

Another common requirement in applications is the use of standard PI controllers, which 
overwhelmingly dominate the industrial market. Although commissioning a PI to operate around
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a single operating point is relatively easy, the performance will be below par in wide operating

regimes, which is the scenario in modern high–performance applications. To overcome this

drawback the current practice is to re–tune the gains of the PI controllers based on a linear model

of the plant evaluated at various operating points, a procedure known as gain–scheduling. There are

several disadvantages of gain–scheduling including the need to switch (or interpolate) the controller

gains and the non–trivial definition of the regions in the plants state space where the switching takes

place—both problems are exacerbated if the dynamics of the plant is highly nonlinear. Another

common commissioning procedure is to use auto–tuners, that heavily rely on the availability of

a “good” linear approximation of the plant dynamics. To avoid the need to rely on linearization

it is necessary to develop a procedure to design robust PI controllers for nonlinear systems with

uncertain parameters.

Motivated by the discussion above in this paper we identify a class of (input affine) nonlinear

systems for which it is possible to design a PI controller with the following features.

F1 Regulation of the closed–loop system around the desired (non–zero) operating point should

be guaranteed.

F2 The PI controller should berobust, in the sense that reduced knowledge of the system

parameters is required.

F3 To simplify the controllers commissioning, a well defined admissible range of variation for

the PI proportional and integral gains, preserving closed–loop stability, should be provided.

We propose the construction of a PI controller with the features F1–F3 for plants with unknown

dynamics verifying the following assumptions.

A1 The open–loop system isunknownbut has a stable equilibrium at the origin.

A2 The desired equilibrium belongs to the assignable set and admits aconvexLyapunov function.

A3 The Lyapunov function is the sum of two functions, depending on the un–actuated and

actuated coordinates, respectively. The first function isunknownwhile the second one is

separable and linearly parameterized in terms of someunknown parameters.

A4 The input matrix is constant,known and hasn−m zero rows, wheren andm are the

dimensions of the state and input vectors, respectively.

As indicated in the article’s title we exploit the fundamental property ofpassivityto design the

PI, which will be referred in the sequel as PI Passivity–based Control (PI–PBC). The first step in

the design is to, relying on A1 above, invoke the celebrated theorem of Hill and Moylan [1] to

identify a suitable passive output for the system, with storage function the Lyapunov function of

the open–loop system. Since our interest is the regulation of non–zero equilibria, we then use the

results of [2] to create a new passive output for the incremental model with a storage function that

has a minimum at the desired equilibrium. As shown in [2], feeding back the passive output through

a PI controller ensures stability of the desired equilibriumfor all positive definite PI gains. It is

important to underscore that, since the passivity property has been established for the incremental

model, the equilibrium can also be stabilized setting the control input equal to the (constant) value

that assigns the equilibrium, sayu∗, which is univocally defined. However, this open–loop control

will, obviously, be non–robust. In the robustness context of the present paper neither the plant

dynamics nor the Lyapunov function are known and, consequently, we cannot compute neither the
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passive output noru∗. It is at this point that we invoke A3 and A4 above to prove that, under these

assumptions, it is possible to define suitable proportional and integral gains that make the PI–PBC

implementable and, consequently, guarantee stability of the equilibrium. Another important feature

of the proposed PI–PBC is that it requires only partial measurement of the state, namely, only them

state variables associated to the non–zero rows of the input matrix, referred in the sequel asactuated

coordinates.In this way, our approach is oriented towards a characterization of a class ofsystems

that can be regulated by means of the PI–PBC with a minimum knowledge of the system parameters

Several practical applications of PI–PBC have been reported in the literature.This include, RLC

circuits [3], power converters [4], fuel cells [5], electric drives [6] and mechanical systems [7]. In

[8] a procedure to add an integral action to a non–passive output for a class of port–Hamiltonian

systems was first proposed, and later extended in [9], [10]. To the best of our knowledge, the present

paper is the first attempt to design PI–PBCs with guaranteed stability properties for systems with

partially known dynamics.

A natural question that arises at this point is the incorporation of adaptation in the design of the

PI (or PID). In the power converter application of [4] a parameter that enters in the definition of the

passive output,i.e., the load resistance, is adaptively identified—however, all other parameters are

assumed to be known. In the interesting paper [11] it is shown that it is possible to adaptively

estimateu∗ for a general nonlinear system with scalar input, keeping the estimate in a known

interval, provided the passive output is known. In spite of a large number of publications the problem

of designing aprovably stableadaptive PID for systems with unknown parameters remains, as far as

we know, open. The difficulty of this task was identified already in 1984 in [12]. As is well–known

[13], the stability of indirect adaptive methods relies on parameter convergence that, in its turn,

requires persistency of excitation—a property that is not satisfied in the regulation tasks where PI

control is effective. On the other hand, the application of direct methods is stymied by the absence

of a suitable parameterization of this structure–constrained controller. For the PI–PBC studied in

this paper the main difficulty is the need to estimate two objects, that appear multiplicatively in the

Lyapunov analysis: the passive output and the ideal control signalu∗. This point is further elaborated

in Subsection 5.2.

The remaining of the paper is organized as follows. Section 2 presents the problem formulation.

To streamline the presentation of the main result, which is given in Section 4, some preliminary

lemmata are given in Section 3. In Section 5 we discuss the reasons that stymie the use of adaptation

and the inability to state a robustness result based on continuity and approximate prior knowledge

of the plant. Section 6 is devoted to application of the proposed PI–PBC for port–Hamiltonian

(pH) systems [1] and a temperature regulation problem. The paper is wrapped–up with concluding

remarks in Section 7. A preliminary version of this paper was reported in [14].

Notation In is the n× n identity matrix and0n×s is an n× s matrix of zeros,0n is an n–

dimensional column vector of zeros. Givenai ∈ R, i ∈ n̄ := {1, . . . , n}, we denote with col(ai)

the n–dimensional column vector and diag{ai} the diagonaln× n matrix with elementsai. For

x ∈ R
n, |x| is the Euclidean norm. For mappings of scalar argumentg : R → R

s, g′ andg′′ denote

first and second order differentiation, respectively. For mappingsf : Rn → R, ∇f := (∂f
∂x

)⊤ and

∇2f := ∂2f
∂x2 . For the distinguished elementx∗ ∈ R

n and any mappingF : Rn → R
s we denote

F ∗ := F (x∗) and the error signal̃F (x) := F (x)− F ∗.
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2. PROBLEM FORMULATION

In this section we formulate the control problem addressed in the paper, enunciate the assumptions

made on the plant to solve it and make some remarks on these assumptions.

2.1. Robust PI control problem

Consider the nonlinear, input affine, system

ẋ = f(x) +Gu, (1)

where x ∈ R
n, u ∈ R

m, n > m, f : Rn → R
n is an unknownsmooth mapping,G ∈ R

n×m is

constantverifying rank(G) = m.

The following is a key assumption made throughout the paper.

Assumption 1

The matrixG hasn−m zero rows. Without lost of generality† it is assumed of the form

G =

[
0(n−m)×m

G2

]
, (2)

whereG2 ∈ R
m×m is known.

This assumption can be easilyobviated introducing state and input changes of coordinates.

Indeed, it is well–known—see,e.g., Theorem 2 of Section 2.7 of [15]—that for any full rank, matrix

G ∈ R
n×m there exists (elementary) full rank matricesT ∈ R

n×n andS ∈ R
m×m such that

TGS =

[
0(n−m)×m

Im

]
.

Consequently, introducingz = Tx andv = S−1u the system (1) takes the desired form

ż = w(z) +

[
0(n−m)×m

Im

]
v,

wherew(z) = Tf(T−1z). We should note, however, that a change of state representation destroys—

in general—theoriginal structure of the system, whose knowledge may be critical for the

verification of the second assumption below. This fact is clearly illustrated in the physical examples

considered in Section 6. For this reason, we prefer to leave it as an standing assumption.

†See R6 in the next subsection and Subsection 5.1 for more general forms ofG.
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Motivated by Assumption 1 we find convenient to define a partition of the state vector into its

un–actuated and actuated components as

x =

[
xu

xa

]
, xu :=




x1

x2
...

xn−m



, xa :=




xn−m+1

xn−m+2

...

xn



.

It is assumed thatonlyxa is available for measurement.

The unforced system, that is,ẋ = f(x), has a stable equilibrium at the origin with apartially

knownLyapunov function. We are interested in controlling the system with a PI at a non–zero

equilibrium—a situation that arises in most practical applications. Thus, we are given a desired

equilibrium point,x⋆ ∈ R
n, and the control goal is to ensurestabilityof this equilibrium using a PI

control law of the form

ż = −KIψ(xa, x
∗)

u = −KPψ(xa, x
∗) + z

where z ∈ R
m is the controller state,KP ∈ R

m×m andKI ∈ R
m×m are tuning gains andψ :

R
m ×R

n → R
m is a mapping designed with the partial knowledge of the aforementioned Lyapunov

function.

The following, practically reasonable, assumption is made throughout the paper.

Assumption 2

The desired equilibrium pointx⋆ belongs to the assignable equilibrium set, that is,

x⋆ ∈ E :=
{
x ∈ R

n |
[
In−m | 0(n−m)×n

]
f(x) = 0

}
. (3)

2.2. Assumptions on the open–loop plant

The following assumption identifies the class of vector fieldsf(x) for which we provide an answer

to the problem.

Assumption 3

For the system (1) there exists a twice–differentiable, positive definite functionH : Rn → R≥0,

verifying the following.

(i) [∇H(x)]⊤f(x) ≤ 0.

(ii) [∇H(x)−∇H(x⋆)]⊤f̃(x) =: −Q(x) ≤ 0.

(iii) The functionH(x) is of the form

H(x) = Hu(xu) +Ha(xa)
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with

Ha(xa) =

n∑

i=n−m+1

diφi(xi), (4)

where the functionHu : Rn−m → R and the constantsdi > 0 areunknownbut the functions

φi : R → R areknown.

(iv) The functionsHu(xu) andφi(xi) areconvex.

2.3. Discussion

The following remarks regarding the assumptions are in order.

R1 Although the set of assignable equilibriaE is not known, it is reasonable to assume that we

have enough prior knowledge about the plant to select the desired operating point as a feasible

equilibrium. Hence, Assumption 2 is practically reasonable.

R2 A corollary of Assumption 2 is that the constant inputu⋆, that assigns the equilibrium, is

uniquely defined as

u⋆ :=
(
G⊤

2 G2

)−1
[
0m×(n−m) G⊤

2

]
f⋆. (5)

Notice that, without knowledge off(x), this constant cannot be computed.

R3 Since the open–loop system (1) has a stable equilibrium at the origin Assumption 3 (i) follows

as a corollary of Lyapunov’s converse theorems [16]. As will become clear below Assumption

3 (ii) and (iv) are required to prove passivity of the incremental model as done in [2].

R4 We underscore that no assumption, beyond twice differentiability and convexity, is imposed

on the unknown componentHu(xu) of the Lyapunov function of the open–loop systemH(x).

On the other hand, stricter conditions are imposed on the second componentHa(xa), with

uncertainty captured by the unknown constantsdi.

R5 Assumptions 3 (iii) and Assumption 1 are the key requirements imposed on the plant to design

the robust PI–PBC. This assumption is satisfied by a large class of physical systems, including

the thermal systems studied in Section 6 and a class of port–Hamiltonian systems [1].

R6 It can be noticed that the class of port-Hamiltonian systems of the form:

ẋ = (J −R)∇H(x) +Gu (6)

with constant interconnectionJ = −J⊤ and dampingR = R⊤ ≥ 0 matrices satisfies

Assumption 3 (i) and (ii). Indeed, Assumption 3 (i) is satisfied since

[∇H(x)]⊤(J −R)∇H(x) = −[∇H(x)]⊤R∇H(x) ≤ 0.

Similarly, Assumption 3 (ii) holds since

[∇H(x)−∇H(x∗)]⊤(J −R)[∇H(x)−∇H(x∗‘)] =

−[∇H(x)−∇H(x∗)]⊤R[∇H(x)−∇H(x∗)] ≤ 0.
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R7 Regarding Assumptions 1, in the more general case whenG is not of the form (2) an additional

shuffling of the rows ofG is needed in the design. This procedure is explained in Subsection

5.1.

R8 For quadratic Lyapunov functions of the formH(x) = x⊤Px, with P > 0, Assumption 3 (ii)

is satisfied if the open–loop system isconvergentin the sense of Demidovich [17]. That is, if

it satisfies

P∇f(x) + [∇f(x)]⊤P ≤ 0.

3. PRELIMINARY LEMMATA

Unless otherwise indicated, throughout the rest of the paper Assumption 1 holds. Define for the

system (1) the output

y = G⊤∇H(x) = G⊤
2 DΦ(xa), (7)

where

D :=




dn−m+1 0 . . . 0

0 dn−m+2 . . . 0
...

...
...

...

0 0 . . . dn



> 0

Φ(xa) :=




φ′n−m+1(xn−m+1)
...

φ′(xn)


 .

A corollary of the theorem of Hill and Moylan [1] is that, if Assumption 3 (i) holds, the system (1),

(7) defines a passive mappingu 7→ y with storage functionH(x).

To operate the system at a non–zero equilibrium it is necessary to shift the minimum of the

storage function and define the passivity property between the incremental input and the output

error. Towards this end, we recall Proposition 1 of [2] and state it as a lemma below.

Lemma 1

Consider the incremental model of the system (1), (7)

ẋ = f(x) +Gu⋆ +Gũ,

e = G⊤
2 DΦ̃(xa),

(8)

whereũ = u− u⋆ is the incremental input. Under Assumptions 1–3 the mappingũ 7→ e is passive

with storage functionU : Rn → R≥0 given by

U(x) = H(x)− x⊤u∇H
∗
u − x⊤aDΦ⋆ + k, (9)

wherek is a constant that ensuresU(x⋆) = 0. More precisely,

U̇ = −Q(x) + e⊤ũ, (10)
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whereQ(x) is defined in Assumption 3 (ii).

One of the main interests of passive systems is that they can be globally stabilized with PI controls

(with arbitrary positive definite gains). This well–known fact is stated in the lemma below, whose

proof is given to streamline the presentation of our main result.

Lemma 2

Consider the system (1) verifying Assumptions 1–3 in closed–loop with the PI–PBC

e = G⊤
2 DΦ̃(xa)

ż = −KIe

u = −KP e+ z.

(11)

For all positive definite gain matricesKP ∈ R
m×m andKI ∈ R

m×m all trajectories are bounded,

the equilibrium point(x, z) = (x∗, u∗) is globally stable(in the sense of Lyapunov) and the

augmented error signal

ea :=

[
Q(x)

e

]
(12)

whereQ(x) is defined in Assumption 3 (ii), verifies

lim
t→∞

ea(t) = 0. (13)

Moreover, if ea is a detectable output for the closed–loop system then the equilibrium point is

asymptoticallystable.

Proof

Defining z̃ := z − u∗ the last two equations of the controller (11) may be written in the form

˙̃z = −KIe

ũ = −KP e+ z̃.
(14)

Consider the Lyapunov function candidate

W (z̃, x) = U(x) +
1

2
z̃⊤ΛI z̃, (15)

whereΛI > 0. The time derivative of the Lyapunov function along the trajectories of the closed–

loop system is
Ẇ = −Q(x) + e⊤ũ+ z̃⊤ΛI

˙̃z

= −Q(x)− e⊤KP e+ z̃⊤e− z̃⊤ΛIKIe.
(16)

SettingΛI = K−1
I yields

Ẇ = −Q(x)− e⊤KP e.

The proof is complete invoking standard Lyapunov arguments [16]. ✷✷✷
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4. THE ROBUST PI–PBC

As indicated in R4 of Subsection 2.3 the matrixD is unknown. Hence, the error signale cannot be

constructed and the PI–PBC (11) is not implementable. This motivates our main result given below.

Proposition 1

Consider system (1) verifying Assumptions 1–3 in closed–loop with the robust PI–PBC

u = −KP Φ̃(xa) + z

ż = −KIΦ̃(xa),
(17)

with the controller gains

KP = G−1
2 ΓP

KI = G−1
2 ΓI . (18)

For all diagonal, positive definite matricesΓP ∈ m×m andΓI ∈ R
m×m we have the following.

(i) All trajectories are bounded and the equilibrium point(x, z) = (x∗, u∗) is globally stable(in

the sense of Lyapunov).

(ii) The augmented error signalea defined in (12) verifies (13).

(iii) If ea is a detectable output for the closed–loop system then the equilibrium point is globally

asymptoticallystable.

Proof

Some simple manipulations prove that

KP Φ̃(xa) = G−1
2 ΓPD

−1 −⊤
2 G⊤

2 DΦ̃(xa) = ΛP e, (19)

where we defined the matrix

ΛP := G−1
2 ΓPD

−1G−⊤
2 , (20)

and used the definition ofe in (11). Invoking Sylvester’s Law of Inertia [15], and the fact thatΓP

andD are diagonal and positive definite, we have thatΛP > 0.

Next choose

ΛI := G⊤
2 Γ−1

I G2, (21)

that is, also, positive definite for all diagonal, positive definiteΓI . Then

ΛIKIΦ̃(x) = G⊤
2 DΦ̃(xa) = e. (22)

Replacing (19) and (22) in the controller equations yields

ũ = −ΛP e+ z̃

˙̃z = −Λ−1
I e.
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Consequently, the time derivative of the Lyapunov function (16) becomes now

Ẇ = −Q(x)− e⊤ΛP e, (23)

completing the proof. ✷✷✷

To obtain an implementable version of the robust PI–PBC it was necessary to carry–out two tasks.

First, to make the damping injection, introduced by the proportional term, function of the unknown

matrixD. Indeed, replacing (20) in (19) we get

KP Φ̃(x) = G−1
2 ΓPD

−1G−⊤
2 e.

Second, make the gainΛI of the Lyapunov function (15) also a function ofD—see (21).

An important observation is that, even though the controller only requires measurement of the

actuated terms of the statexa, it achieves regulation of the full state vector.

5. ADDITIONAL REMARKS ON THE PI–PBC

In this section we explain how to proceed whenG is not of the form (2), discuss the reasons that

stymie the use of adaptation and the inability to state a robustness result based on continuity and

approximate prior knowledge of the matrixD.

5.1. GeneralG (with n−m zero rows)

Instrumental to design the robust PI–PBC was the particular form ofH(x) defined in Assumption 3

(iii). In view of the construction of the robust PI–PBC, it is clear that ifG is not of the form (2) the

assumption must be modified redefining the actuated and un–actuated coordinates.

To avoid cluttering the notation we will explain the procedure only for the case whenn = 3 and

m = 2—the general case followsverbatim. Assume, furthermore, thatG is of the form

G =




g⊤1

01×2

g⊤3


 .

The form ofH(x) given in Assumption 3 (iii) must be, accordingly, modified to

H(x) = Hu(x2) + d1φ(x1) + d3φ(x3).

In this case the passive outpute for the incremental model becomes

G⊤[∇H(x)−∇H(x∗)] = Gs

[
d1 0

0 d3

][
Φ̃1(x1)

Φ̃3(x3)

]
.

where

Gs :=
[
g1 | g3

]
.
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The robust PI–PBC is given by

u = −G−1
s ΓP

[
Φ̃1(x1)

Φ̃3(x3)

]
+ z

ż = −G−1
s ΓI

[
Φ̃1(x1)

Φ̃3(x3)

]
,

whereΓP andΓI are arbitrary, diagonal, positive definite matrices.

Before closing this subsection we remark that our constructioncritically relies on the assumption

of existence ofn−m zero rows inG. Indeed, it is possible to show that if this is not the case, even

assumingH(x) of the form

H(x) =

n∑

i=1

diφi(xi)

it is not possible to find anm×m positive definite matrixΛ, which will depend onD, such that the

matrixΛG⊤D is independentof D. The fact that this isnot possiblefor all matricesG is obvious

considering the counterexampleG = col(1, 1). Hence, the assumption of existence ofn−m zero

rows inG is necessaryto solve the problem.

5.2. Difficulties for adaptation

A natural alternative to the robust PI–PBC presented above is to assume a parametrisation off(x)

and try to estimate this parameters or, in a direct approach, estimate the matrixD that defines

the passive output. The indirect approach, as is well–known, relies on parameter convergence that

requires persistency of excitation—a property that is not satisfied in the regulation tasks where PI

control is effective.

Let us see what are the difficulties for the application of a direct adaptation approach. Towards

this end, we propose the adaptive PI–PBC

˙̂
D = F (x, z)

ê = G⊤
2 D̂ Φ̃(xa)

ż = −KI ê

u = −KP ê+ z,

where the parameter adaptation lawF : Rn ×R
m → R

m×m is to be defined.‡ Defining ẽ := ê− e

the last two equations of the controller may be written in the form

˙̃z = −KI(e+ ẽ)

ũ = −KP (e+ ẽ) + z̃.

‡Notice that, in contrast to the robust PI–PBC, we have assumed that the full state is measurable.
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The time derivative of the Lyapunov function (15) withΛI = K−1
I is now

Ẇ = −Q(x)− ê⊤KP ê− ũ⊤ẽ

= −Q(x)− ê⊤KP ê− ũ⊤G⊤
2 D̃Φ̃(xa)

where we underscore the presence of the last right hand term. Ifũ were known the standard

procedure of augmenting the Lyapunov function with a term trace(D̃⊤D̃) and cancelling the sign–

indefinite term with a suitable choice ofF (x, z) would do the job. Alas,u∗ is not known, hence this

approach is not feasible.

Adding an adaptation for the constantu∗ is also not a trivial task, because of the bilinear nature

of the joint estimation problem.

5.3. Comments on robustness based on continuity

The availability of abona fideLyapunov function for the known parameters PI–PBC,i.e.,W (x, z̃),

suggests that stability will be preserved if the matrixD is replaced by a “good”,constantestimate

of it, sayD0. More precisely, it is expected that replacing the controller (11) by

e0 = G⊤
2 D0Φ̃(xa)

ż = −KIe0

u = −KP e0 + z,

where

D = D0 +∆, ∆ := diag{δi}

would ensure stability if|col(δi)| is sufficiently small. Unfortunately, since the Lyapunov function

is not strict, this conjecture cannot be analytically validated. Indeed, in this case the time derivative

of the Lyapunov function (15) withΛI = K−1
I is now

Ẇ = −Q(x) + e⊤ũ− z̃⊤(e−G⊤
2 ∆Φ̃(xa))

= −Q(x)− e⊤0 KP e0 − (KP e0 − z̃)⊤G⊤
2 ∆Φ̃(xa).

While the terme⊤0 KPG
⊤
2 ∆Φ̃(xa) can be dominated for “small”∆, there is no way we can dominate

the remaining term̃z⊤KIG
⊤
2 ∆Φ̃(xa) and the Lyapunov analysis cannot be completed with standard

techniques.

This unfortunate situation does not mean, of course, that a continuity result of this type cannot be

established. It simply reveals our inability to do it with the tools used to analyze the ideal case.

6. APPLICATION TO TEMPERATURE REGULATION

In this subsection we design a robust PI–PBC for the temperature regulation of a class of

thermal systems—the so–called, Rapid Thermal Processes (RTP). Attention is concentrated on the

verification of Assumption 3. Hence, unless otherwise indicated, Assumption 1 is not imposed.
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6.1. System Description

Similarly to [18, 19] we consider the following model of Rapid Thermal Processes

Ṫ = A1 [Ψ(T )−Ψ(Trad)] +A2 (T − Tconv) +Gu, (24)

whereT ∈ R
n
≥0 represents the vector of temperatures,Ψ(T ) := col(T4

i ) andTrad, Tconv ∈ R
n
≥0 are,

respectively, the vectors of temperatures related to the radiation heat emission from environment

and the convection air flows. The constant matricesA1, A2 ∈ R
n×n areHurwitz and contain the

radiation and the convection heat transfer coefficients. Also, the entries ofG ∈ R
n×m correspond

to the heat transfer coefficients of the heating elements. Finally,u ∈ R
m is the controlled power

applied to the heating elements. Physically, considering matrixG as (2) means that form heating

elements there aren−m measured points that are not directly heated by these elements.

In the model above, as in [19], it is considered that the plant is heated almost uniformly so that

the contribution of energy from conduction is too small with respect to the radiation transfer. Hence,

the conduction heat transfer is neglected. We also assume the steady environment conditions, i.e.,

the valuesTrad andTconv are constant.

To simplify the notation we re–write the system (24) in the form

Ṫ = A1Ψ(T ) +A2T + E +Gu (25)

where

E := −A1Ψ(Trad)−A2Tconv.

Unlike A1, A2 andE that are highly uncertain, the input matrixG—that is defined by the induced

heat flow—can be precisely identified. Thecontrol objectiveis then to design a robust PI,i.e., that

does not require the knowledge of the uncertain parameters, to regulate the process around some

desired temperature, which isnot equalto the open–loop equilibrium, but belongs to the assignable

equilibrium set, that is,

T ⋆ ∈
{
T ∈ R

n
≥0 | G

⊥[A1Ψ(T ) +A2T + E] = 0
}
, (26)

whereG⊥ ∈ R
(n−m)×n is a full-rank left-annihilator ofG.

To place the problem in the context of Proposition 1 we first shift the equilibrium of the open–

loop system to the origin and then proceed to verify Assumption 3. For, we introduce the standard

change of coordinates

x = T − T̄

whereT̄ is the open–loop equilibrium that satisfies

A1Ψ(T̄ ) +A2T̄ + E = 0. (27)

Thus, the system (24) in the new coordinates takes the form (1) with

f(x) := A1Ψ(x+ T̄ ) +A2(x+ T̄ ) + E, (28)
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Associated to the desired temperatureT ⋆ we define the equilibrium to be stabilised

x⋆ := T ⋆ − T̄ . (29)

6.2. Passivity of the thermal system.

The lemma below identifies conditions under which the system (24) satisfies Assumption 3without

imposing Assumption 1, that is, avoiding the partition of the coordinates into actuated and un–

actuated. Towards this end, the following assumption is needed.

Assumption 4

The matrixA1 is diagonally stable[20]. That is, there existsP ∈ R
n×n, P = diag{pi} > 0 such

that

PA1 +A⊤
1 P =: −2S < 0. (30)

Moreover, the matrixA2 verifies

A⊤
2 Pdiag{T3i }+ diag{T3i }PA2 ≤ 0. (31)

Conditions for diagonal stability of a matrix have been studied intensively, see [20] for a survey.

Necessary and sufficient conditions were first reported in [21]—see also [22] for a simpler proof.

For a Hurwitz matrix, a sufficient condition given in [23] is that it is a Metzler matrix (namely, its

non diagonal elements are nonnegative). Note that due to physical nature of RTP systems the matrix

A1 usually belongs to this class.

SinceA2 is Hurwitz andTi ≥ 0, condition (31) is trivially satisfied ifA2 is diagonal, which is

assumed in RTP models [19, 24].

Lemma 3

If Assumption 4 holds the vector field (28) satisfies Assumption 3 with

H(x) =

n∑

i=1

piφi(xi) + k (32)

where

φi(xi) =
1

5
(xi + T̄i)

5 −Ψi(T̄ )xi. (33)

and

k = −
1

5

n∑

i=1

piT̄
5
i .

Proof

Point (iii) of Assumption 3 is trivially satisfied by (32).

We proceed now to prove point (i). Replacing (33) in (32) and grouping terms yields

H(x) =
1

5

n∑

i=1

pi(xi + T̄i)
5 − x⊤PΨ(T̄ ) + k,
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Now, notice that

∇H(x) = PΦ(x),

where

Φ(x) := Ψ(x+ T̄ )−Ψ(T̄ ). (34)

On the other hand, from (27) it follows that the systems vector field may be written as

f(x) = A1Φ(x) +A2x.

Consequently,

[∇H(x)]⊤f(x, θ) = Φ⊤(x)P [A1Φ(x) +A2x]

= −Φ⊤(x)SΦ(x) + Φ⊤(x)PA2x,

where we have used (30) to obtain the second identity. Now, condition (31) ensures that the function

h : Rn → R
n

h(x) := A⊤
2 PΨ(x),

is monotonically decreasing [17]. That is, for alla, b ∈ R
n,

[h(a)− h(b)]⊤(a− b) ≤ 0.

Consequently,

Φ⊤(x)PA2x = [h(x+ T̄ )− h(T̄ )]⊤x ≤ 0

completing the proof of point (i).

To prove point (ii) we notice that

f̃(x) = A1Φ̃(x) +A2x̃,

while

∇H(x)−∇H(x∗) = P Φ̃(x).

Hence, the claim is established invoking the same arguments used above and defining

Q(x) = Φ̃⊤(x)SΦ̃(x).

Finally, the second derivative of the functionsφi(xi) yields

φ′′i (xi) = 4(xi + T̄i)
3 = 4T 3

i ,

which is non–negative becauseTi ≥ 0. Hence, the functionsφi(xi) are convex as requested by

condition (iv) of Assumption 3. This completes the proof. ✷✷✷

Direct application of Lemma 1 leads to the following.
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Corollary 1

If Assumption 4 holds, the thermal system (24) defines a passive mapũ 7→ e with storage function

U(x), where

e = G⊤P Φ̃(x)

U(x) = H(x)− x⊤PΦ(x∗)−H(x∗) + (x∗)⊤PΦ(x∗)

6.3. Robust PI–PBC of the thermal system

To present the robust PI–PBC for systems verifying Assumption 1 we partition the vector of

temperatures into its un–actuated and actuated components

T =

[
Tu

Ta

]
, Tu :=




T1

T2
...

Tn−m



, Ta :=




Tn−m+1

Tn−m+2

...

Tn



,

partitionP as

P =

[
P1 0(n−m)×m

0m×(n−m) D

]
,

and do the same with the vector functionΨ(T ).

The following proposition is a consequence of Lemma 3 and Proposition 1.

Proposition 2

Consider the system (24) verifying Assumptions 1 and 4. Fix any desired temperatureT ∗ verifying

(26) and define the PI–PBC
u = −KP Ψ̃a(Ta) + z

ż = −KIΨ̃a(Ta),

and the controller gainsKP andKI are given by (18).For all diagonal, positive definite matrices

ΓP ∈ R
m×m and ΓI ∈ R

m×m all trajectories are bounded and the equilibrium point(T, z) =

(T ∗, u∗) is globally asymptotically stable.

Proof

The proof of stability is established invoking item (i) of Proposition 1 and identifying

Φ̃a(xa)|xa=Ta−T̄a

= Ψ̃a(Ta).

To prove asymptotic stability we invoke item (ii) and observe that the augmented error signal (12)

is given in this case by

ea =

[
Ψ̃⊤(T )S

G⊤
2 D

]
Ψ̃(T ).

Sinceea verifies (13) andS is positive definite we conclude that̃Ψ(T (t)) → 0 and consequently

T (t) → T ⋆. ✷✷✷
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Figure 1. Simulation Result showing the system response : (a) For different gainsKp lettingKI = 3× 10
−6

.

(b) For different gainsKI lettingKp = 6× 10
−6

.

6.4. Numerical Simulation:

Consider the thermal system (25) with

A1 =

[
−a11 a12

a21 −a22

]
, A2 =

[
−α1 0

0 −α2

]
, G =

[
0

g

]
, C =

[
c1

c2

]

where aij ≥ 0, αi ≥ 0. Notice that the system satisfies Assumption 4. Then, the assignable

equilibria set is

E = {T : T2 ∈ R+, −a11T
4
1 + a12T

4
2 − α1T1 + c1 = 0} (35)

From Proposition 2, the controller

ż = −KI

(
T 4
2 − (T ⋆

2 )
4
)

u = −KP

(
T 4
2 − (T ⋆

2 )
4
)
+ z

whereKp = 1
g
Γp, KI = 1

g
ΓI and ΓP ,ΓI ∈ R+ asymptotically stabilizes the system atT = T ⋆.

The parameter values used in the simulation where:a11 = 1× 10−9, a12 = 1
2 ××10−9, a21 =

1× 10−9, a22 = 1× 10−9, α1 = 1× 10−4, α2 = 1
2 × 10−4, g = 1, c1 = 3, c2 = 1.7, Γp =

8× 10−5 and ΓI = 1× 10−5. In the simulation, the control objective is initially fixed at

T2⋆ = 500K, then it is suddenly changed toT2⋆ = 700K. From (35), the corresponding values for

T1⋆ are, respectively,430.06 K and592.20 K. Fig. 1 shows the simulation results. In Fig. 1a the

response of the system when varying control parameterKp and lettingKI = 3× 10−6 is depicted.

As it can be noticed from the same figure, the larger is the value inKp the faster is the convergence.

In Fig. 1b it is shown the response of the system whenKI is varying whileKP = 6× 10−6. From

the figure, it can be seen that large values inKI causes overshoots in the response ofT2.
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7. CONCLUDING REMARKS

In this work we identify a class of nonlinear systems for which it is possible to design robust PI

controllers with guaranteed stability properties (see also [14]). The class consists of input affine

systems with known, constant input matrixG and n−m zero rows. We assume that only the

states associated to the non–zero rows ofG are measurable.The systems have an open–loop stable

equilibrium, but is different from the desired operating point. To handle this situation, we follow [2]

and generate new passive outputs for the incremental model, hence the name PI–PBC. Associated

to the open–loop stable equilibrium a Lyapunov function of the form (4) is assumed to exist.

We underscore that, besides convexity, there is no assumption on the functionHu(xu), which is

unknown. Moreover, the controller does not require the measurement ofxu. The functionsφi(xi)

are assumed convex and known, but the coefficientdi are unknown. Under these conditions, we

show that, for a well identified class of PI tuning gains, see (18), global stability of the proposed

PI–PBC is guaranteed. Conditions that ensure global asymptotic stability, are also derived.
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