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SUMMARY

This paperdealswith the problemof control of partially known nonlinearsystemswhich havean open—
loop stableequilibrium, but we would like to adda PI controller to regulateits behavioraroundanother
operatingpoint. Our main contributionis the identificationof a classof systemdor which a globally stable
PI can be designedknowing only the systemsnput matrix and measuringonly the actuatedcoordinates.
The constructionof the Pl is doneinvoking passivitytheory. The difficulties encounteredn the designof
adaptivePI controllerswith the existingtheoreticaltools arealsodiscussedAs anillustration of thetheory
we consider a class of thern@alocesses. Copyright 0900John Wiley& Sons, Ltd.
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1. INTRODUCTION

In manypracticalapplicationghe plantto be controlledhasan open—loopstableequilibrium,e.g.,
attheorigin, andwe would like to adda controllerto regulateits behavioraroundanothermperating
point.In the caseof linearsystemgshedynamicsemaingnvariantundercoordinateshifts,therefore
this task can be easilyaccomplishedisingthe incrementaimodel of the plant. Unfortunately,this
is not the casefor nonlinearsystemsfor which thereis no obviousadvantagef working with the
incrementamodel.
Another common requirementin applicationsis the use of standardPI controllers, which
overwhelminglydominatethe industrial market. Although commissioninga PI to operatearound
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a single operating point is relatively easy, the performance will be below par in wide operating
regimes, which is the scenario in modern high—performance applications. To overcome this
drawback the current practice is to re—tune the gains of the Pl controllers based on a linear model
of the plant evaluated at various operating points, a procedure known as gain—scheduling. There are
several disadvantages of gain—scheduling including the need to switch (or interpolate) the controller
gains and the non-trivial definition of the regions in the plants state space where the switching takes
place—both problems are exacerbated if the dynamics of the plant is highly nonlinear. Another
common commissioning procedure is to use auto—tuners, that heavily rely on the availability of
a “good” linear approximation of the plant dynamics. To avoid the need to rely on linearization
it is necessary to develop a procedure to design robust Pl controllers for nonlinear systems with
uncertain parameters.

Motivated by the discussion above in this paper we identify a class of (input affine) nonlinear
systems for which it is possible to design a Pl controller with the following features.

F1 Regulation of the closed—loop system around the desired (non—zero) operating point should
be guaranteed.

F2 The PI controller should beobust, in the sense that reduced knowledge of the system
parameters is required.

F3 To simplify the controllers commissioning, a well defined admissible range of variation for
the PI proportional and integral gains, preserving closed-loop stability, should be provided.

We propose the construction of a PI controller with the features F1-F3 for plants with unknown
dynamics verifying the following assumptions.

Al The open-loop system isiknownbut has a stable equilibrium at the origin.

A2 The desired equilibrium belongs to the assignable set and adotts/ad_yapunov function.

A3 The Lyapunov function is the sum of two functions, depending on the un—actuated and
actuated coordinates, respectively. The first functiomnknownwhile the second one is
separable and linearly parameterized in terms of sonk@own parameters.

A4 The input matrix is constanknownand hasn — m zero rows, where, and m are the
dimensions of the state and input vectors, respectively.

As indicated in the article’s title we exploit the fundamental propertypadsivityto design the

P1, which will be referred in the sequel as Pl Passivity—based Control (PI-PBC). The first step in
the design is to, relying on Al above, invoke the celebrated theorem of Hill and Moylan [1] to
identify a suitable passive output for the system, with storage function the Lyapunov function of
the open-loop system. Since our interest is the regulation of non—zero equilibria, we then use the
results of [2] to create a new passive output for the incremental model with a storage function that
has a minimum at the desired equilibrium. As shown in [2], feeding back the passive output through
a PI controller ensures stability of the desired equilibriftonall positive definite PI gains. It is
important to underscore that, since the passivity property has been established for the incremental
model, the equilibrium can also be stabilized setting the control input equal to the (constant) value
that assigns the equilibrium, say, which is univocally defined. However, this open—loop control

will, obviously, be non-robust. In the robustness context of the present paper neither the plant
dynamics nor the Lyapunov function are known and, consequently, we cannot compute neither the



passie output nor:*. It is at this point that we invoke A3 and A4 above to prove that, under these
assumptions, it is possible to define suitable proportional and integral gains that make the PI-PBC
implementable and, consequently, guarantee stability of the equilibrium. Another important feature
of the proposed PI-PBC is that it requires only partial measurement of the state, namely, anly the
state variables associated to the non—zero rows of the input matrix, referred in the seaqtigh B
coordinateslin this way, our approach is oriented towards a characterization of a claysteins

that can be regulated by means of the PI-PBC with a minimum knowledge of the system parameters

Several practical applications of PI-PBC have been reported in the liter&hiseinclude, RLC
circuits [3], power converters [4], fuel cells [5], electric drives [6] and mechanical systems [7]. In
[8] a procedure to add an integral action to a non—passive output for a class of port—Hamiltonian
systems was first proposed, and later extended in [9], [10]. To the best of our knowledge, the present
paper is the first attempt to design PI-PBCs with guaranteed stability properties for systems with
partially known dynamics.

A natural question that arises at this point is the incorporation of adaptation in the design of the
PI1 (or PID). In the power converter application of [4] a parameter that enters in the definition of the
passive output,e., the load resistance, is adaptively identified—however, all other parameters are
assumed to be known. In the interesting paper [11] it is shown that it is possible to adaptively
estimateu™ for a general nonlinear system with scalar input, keeping the estimate in a known
interval, provided the passive output is known. In spite of a large number of publications the problem
of designing grovably stableadaptive PID for systems with unknown parameters remains, as far as
we know, open. The difficulty of this task was identified already in 1984 in [12]. As is well-known
[13], the stability of indirect adaptive methods relies on parameter convergence that, in its turn,
requires persistency of excitation—a property that is not satisfied in the regulation tasks where PI
control is effective. On the other hand, the application of direct methods is stymied by the absence
of a suitable parameterization of this structure—constrained controller. For the PI-PBC studied in
this paper the main difficulty is the need to estimate two objects, that appear multiplicatively in the
Lyapunov analysis: the passive output and the ideal control sign@his point is further elaborated
in Subsection 5.2.

The remaining of the paper is organized as follows. Section 2 presents the problem formulation.
To streamline the presentation of the main result, which is given in Section 4, some preliminary
lemmata are given in Section 3. In Section 5 we discuss the reasons that stymie the use of adaptation
and the inability to state a robustness result based on continuity and approximate prior knowledge
of the plant. Section 6 is devoted to application of the proposed PI-PBC for port—Hamiltonian
(pH) systems [1] and a temperature regulation problem. The paper is wrapped—up with concluding
remarks in Section 7. A preliminary version of this paper was reported in [14].

Notation I,, is the n x n identity matrix ando,,., is ann x s matrix of zeros,0,, is an n—
dimensional column vector of zeros. Givepe R, i € n:= {1,...,n}, we denote with col(g
the n—dimensional column vector and diag}dhe diagonal x n matrix with elements:;. For
x € R", |z| is the Euclidean norm. For mappings of scalar argumer — R?, ¢’ andg” denote
first and second order differentiation, respectively. For mappjhgR™ — R, Vf := (%)T and
v2f .= 2L For the distinguished element € R” and any mapping : R” — R* we denote

ox?
F* := F(z*) and the error signaf'(z) := F(z) — F*.




2. PROBLEM FORMULATION

In this section we formulate the control problem addressed in the paper, enunciate the assumptions
made on the plant to solve it and make some remarks on these assumptions.

2.1. Robust PI control problem

Consider the nonlinear, input affine, system
i = f(z) + Gu, )

wherez € R, u € R™, n>m, f:R™ — R" is an unknownsmooth mappingG € R"*™ is
constantverifying rank G) = m.
The following is a key assumption made throughout the paper.

Assumption 1
The matrixG hasn — m zero rows. Without lost of generalityt is assumed of the form

O(n—m) Xm

Go

G= ) (2)

whereG, € R™*™ js known.

This assumption can be easibpviatedintroducing state and input changes of coordinates.
Indeed, it is well-known—see,g., Theorem 2 of Section 2.7 of [15]—that for any full rank, matrix
G € R™*™ there exists (elementary) full rank matricEs R™*™ andS € R™*™ such that

TGS =

O(nfm) xXm
Im |

Consequently, introducing= Tz andv = S~!u the system (1) takes the desired form

Z2=w(z)+

O(n—m) xm v
I ’

wherew(z) = T'f(T~!z). We should note, however, that a change of state representation destroys—
in general—theoriginal structure of the system, whose knowledge may be critical for the
verification of the second assumption below. This fact is clearly illustrated in the physical examples
considered in Section 6. For this reason, we prefer to leave it as an standing assumption.

tSee R6 in the next subsection and Subsection 5.1 for more general focins of



Motivated by Assumption 1 we find convenient to define a partition of the state vector into its
un—actuated and actuated components as

T Tn—m—+1
Ty, T2 Tn—m+2
T = I I’u = 9 xa =
La
Tn—m L

It is assumed thatnly z, is available for measurement.

The unforced system, that i$,= f(z), has a stable equilibrium at the origin withpartially
known Lyapunov function. We are interested in controlling the system with a Pl at a non-zero
equilibrium—a situation that arises in most practical applications. Thus, we are given a desired
equilibrium point,z* € R”, and the control goal is to enswsgability of this equilibrium using a Pl
control law of the form

z = —Kr(zq,x*)
u = —Kp(xg,x*)+ 2
where z € R™ is the controller stateKp € R™*™ and K; € R™*™ are tuning gains ang :
R™ x R™ — R™ is a mapping designed with the partial knowledge of the aforementioned Lyapunov

function.
The following, practically reasonable, assumption is made throughout the paper.

Assumption 2
The desired equilibrium point* belongs to the assignable equilibrium set, that is,

# €= {seR" | [ Lim | Opuomyn | f2) =0} @3)

2.2. Assumptions on the open—loop plant

The following assumption identifies the class of vector figlds) for which we provide an answer
to the problem.

Assumption 3
For the system (1) there exists a twice—differentiable, positive definite funéfioR™ — Rx,
verifying the following.

() [VH@)] f(x) < 0.
(i) [VH(x) - VH(@@")]" f(x) = —Q(x) < 0.

(iii) The function H(x) is of the form

H(r) = Hy(vy) + Ho(za)



with

n

Ho(zq) = Z dipi(x), (4)
i=n—m-+1
where the functiorf{,, : R*~™ — R and the constant$; > 0 areunknownbut the functions
¢; : R — R areknown.

(iv) The functionsH,,(x,) and¢;(z;) areconvex.

2.3. Discussion

The following remarks regarding the assumptions are in order.

R1 Although the set of assignable equilibéias not known, it is reasonable to assume that we
have enough prior knowledge about the plant to select the desired operating point as a feasible
equilibrium. Hence, Assumption 2 is practically reasonable.

R2 A corollary of Assumption 2 is that the constant inpat that assigns the equilibrium, is
uniquely defined as

v = (GTG) [Omxm-m) G;} . (5)

Notice that, without knowledge of(x), this constant cannot be computed.

R3 Since the open—loop system (1) has a stable equilibrium at the origin Assumption 3 (i) follows
as a corollary of Lyapunov’s converse theorems [16]. As will become clear below Assumption
3 (i) and (iv) are required to prove passivity of the incremental model as done in [2].

R4 We underscore that no assumption, beyond twice differentiability and convexity, is imposed
on the unknown compone#i, (z,,) of the Lyapunov function of the open—loop systéi).
On the other hand, stricter conditions are imposed on the second comgdleny, with
uncertainty captured by the unknown constahts

R5 Assumptions 3 (iii) and Assumption 1 are the key requirements imposed on the plant to design
the robust PI-PBC. This assumption is satisfied by a large class of physical systems, including
the thermal systems studied in Section 6 and a class of port—Hamiltonian systems [1].

R6 It can be noticed that the class of port-Hamiltonian systems of the form:

&= (J — R)VH(z) + Gu (6)

with constantinterconnection7 = —7 " and dampingR = RT > 0 matrices satisfies
Assumption 3 (i) and (ii). Indeed, Assumption 3 (i) is satisfied since

VH(x)]'(J —R)VH(x) = —[VH(x)]"RVH(z) <0.
Similarly, Assumption 3 (ii) holds since

[VH(z) = VH(z*)]"(J = R)[VH(z) — VH(a*)] =
—[VH(z) — VH(z*)]"R[VH (z) — VH(z*)] < 0.



R7 Regarding Assumptions 1, in the more general case witismot of the form (2) an additional
shuffling of the rows of7 is needed in the design. This procedure is explained in Subsection
5.1.

R8 For quadratic Lyapunov functions of the folfd{z) = =" Pz, with P > 0, Assumption 3 (ii)
is satisfied if the open—loop systemcisnvergentn the sense of Demidovich [17]. That is, if
it satisfies

PV f(x)+[Vf(2)] P <0.

3. PRELIMINARY LEMMATA

Unless otherwise indicated, throughout the rest of the paper Assumption 1 holds. Define for the
system (1) the output

y =G VH(z) = G3 D®(z,), ©)
where
[ dnferl 0 0
0 dn7m+2
D = . >0
0 0 dp

¢;L—7n+1 (Trn—m+1)
D(z,) = :

L ¢'(xn)
A corollary of the theorem of Hill and Moylan [1] is that, if Assumption 3 (i) holds, the system (1),
(7) defines a passive mapping— y with storage functior (z).
To operate the system at a non—zero equilibrium it is necessary to shift the minimum of the
storage function and define the passivity property between the incremental input and the output

error. Towards this end, we recall Proposition 1 of [2] and state it as a lemma below.

Lemma 1
Consider the incremental model of the system (1), (7)

& = f(z) + Gu* + G,

8
e =G Dd(z,), ®)

wheret = u — u* is the incremental input. Under Assumptions 1-3 the mapping e is passive
with storage functio : R™ — Rx given by

U(x) = H(z) — 2, VH! — 2] D®* +k, 9)
wherek is a constant that ensur&gz*) = 0. More precisely,

U=-Q(z)+e'a, (10)



whereQ(z) is defined in Assumption 3 (ii).

One of the main interests of passive systems is that they can be globally stabilized with Pl controls
(with arbitrary positive definite gains). This well-known fact is stated in the lemma below, whose
proof is given to streamline the presentation of our main result.

Lemma 2
Consider the system (1) verifying Assumptions 1-3 in closed—loop with the PI-PBC

e =Gy Dd(x,)
z = 7K[€ (11)

For all positive definite gain matriceKp € R™*™ and K; € R™*™ all trajectories are bounded,
the equilibrium point(z, z) = (z*,u*) is globally stable(in the sense of Lyapunov) and the
augmented error signal

Cq i= l Q@) ] (12)

e

whereQ(z) is defined in Assumption 3 (ii), verifies

lim e, (t) = 0. (13)

t—o0

Moreover, ife, is a detectable output for the closed—loop system then the equilibrium point is
asymptoticallystable.

Proof
Definingz := z — u* the last two equations of the controller (11) may be written in the form

zZ= 7K[6
(14)
uw=—Kpe+2Z
Consider the Lyapunov function candidate
1
W(z,z)=U(x)+ =2 As2, (15)

whereA; > 0. The time derivative of the Lyapunov function along the trajectories of the closed—
loop system is
W=-Qz)+e a+2"Ar2

(16)
=—-Q(z) — e Kpe+3le—2TAjKje.

SettingA; = K ! yields
W=-Q(z)—e' Kpe.

The proof is complete invoking standard Lyapunov arguments [16]. oog



4. THE ROBUST PI-PBC

As indicated in R4 of Subsection 2.3 the matfis unknown. Hence, the error sigratannot be
constructed and the PI-PBC (11) is not implementable. This motivates our main result given below.

Proposition 1
Consider system (1) verifying Assumptions 1-3 in closed—loop with the robust PI-PBC

u=—Kp®(z,) + 2

- 17)
Z.JZ—K]@(.’L‘,I),
with the controller gains
Kp = G;'Tp
K; = G;'T;. (18)

For all diagonal, positive definite matric€s € ™>™ andl'; € R™*™ we have the following.

(i) All trajectories are bounded and the equilibrium pdintz) = (z*, u*) is globally stable(in
the sense of Lyapunov).
(i) The augmented error signa} defined in (12) verifies (13).
(i) If e, is a detectable output for the closed—loop system then the equilibrium point is globally
asymptoticallystable.

Proof
Some simple manipulations prove that

Kp®(z,) = G5 'TpD™" 5 TG) D®(z,) = Ape, (19)

where we defined the matrix
Ap:=Gy'TpD'G; T, (20)

and used the definition efin (11). Invoking Sylvester's Law of Inertia [15], and the fact tiiat
andD are diagonal and positive definite, we have that> 0.
Next choose
Ar:=Gy T;'Go, (21)

that is, also, positive definite for all diagonal, positive defifiite Then
MK ®(z) = Gy DB (x,) = e. (22)

Replacing (19) and (22) in the controller equations yields
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Consequently, the time derivative of the Lyapunov function (16) becomes now
W =-Q(z)—e' Ape, (23)
completing the proof. oo

To obtain an implementable version of the robust PI-PBC it was necessary to carry—out two tasks.
First, to make the damping injection, introduced by the proportional term, function of the unknown
matrix D. Indeed, replacing (20) in (19) we get

Kp®(z) = G;'TpD~1G; Te.

Second, make the gaiky; of the Lyapunov function (15) also a function bf—see (21).
An important observation is that, even though the controller only requires measurement of the
actuated terms of the statg, it achieves regulation of the full state vector.

5. ADDITIONAL REMARKS ON THE PI-PBC

In this section we explain how to proceed wh@ns not of the form (2), discuss the reasons that
stymie the use of adaptation and the inability to state a robustness result based on continuity and
approximate prior knowledge of the matiix

5.1. General? (with n — m zero rows)

Instrumental to design the robust PI-PBC was the particular forfh(ef defined in Assumption 3
(iii). In view of the construction of the robust PI-PBC, it is clear thafifs not of the form (2) the
assumption must be modified redefining the actuated and un—actuated coordinates.

To avoid cluttering the notation we will explain the procedure only for the case whes and
m = 2—the general case followserbatim. Assume, furthermore, thaltis of the form

g/

G = O1x2
95
The form of H(x) given in Assumption 3 (iii) must be, accordingly, modified to

H(x) = Hy(x2) + di¢(21) + d3p(x3).

In this case the passive outputor the incremental model becomes
dl 0 2131 (561)
0 ds ®3(x3)

Gs:=[91 | 93}

G'|VH(z) — VH(z*)] = G,

where
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The robust PI-PBC is given by

u=-G;'Tp ~1(x1) +z
3(373

fo GO, ‘?1@1) ,
3(73

wherel'p andI'; are arbitrary, diagonal, positive definite matrices.

Before closing this subsection we remark that our constructiically relies on the assumption
of existence ofi — m zero rows inG. Indeed, it is possible to show that if this is not the case, even
assumingH («) of the form

H(z) = Z didi(x;)

it is not possible to find am x m positive definite matrix\, which will depend oD, such that the
matrix AG " D is independenbf D. The fact that this isiot possiblefor all matricesG is obvious

considering the counterexample= col(1,1). Hence, the assumption of existencenof m zero

rows inG is necessaryo solve the problem.

5.2. Difficulties for adaptation

A natural alternative to the robust PI-PBC presented above is to assume a parametrisgtion of
and try to estimate this parameters or, in a direct approach, estimate the matnixt defines
the passive output. The indirect approach, as is well-known, relies on parameter convergence that
requires persistency of excitation—a property that is not satisfied in the regulation tasks where PI
control is effective.

Let us see what are the difficulties for the application of a direct adaptation approach. Towards
this end, we propose the adaptive PI-PBC

D= F(z,2)
e =Gy D d(z,)
z=—-Kjye
u=—Kpé+z,

where the parameter adaptation l&w R” x R™ — R™*™ is to be defined.Definingé := é — e
the last two equations of the controller may be written in the form

fNotice that, in contrast to the robust PI-PBC, we have assumed that the full state is measurable.
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The time derivative of the Lyapunov function (15) with = K; ' is now

W=—-Q(z)—¢é Kpe—u'é
= —Q(z)— ¢ Kpée —i' Gy DO(z,)

where we underscore the presence of the last right hand terinwiére known the standard
procedure of augmenting the Lyapunov function with a term traceD) and cancelling the sign—
indefinite term with a suitable choice &f(z, z) would do the job. Alasy* is not known, hence this
approach is not feasible.

Adding an adaptation for the constaritis also not a trivial task, because of the bilinear nature
of the joint estimation problem.

5.3. Comments on robustness based on continuity

The availability of abona fideLyapunov function for the known parameters PI-PBE, W (z, 2),
suggests that stability will be preserved if the matffixs replaced by a “goodgonstantestimate
of it, say Dy. More precisely, it is expected that replacing the controller (11) by

€y = G;Do(i(l‘a)
z= 7KI€0

u=—Kpeg+ z,

where
D =Dy + A, A :=diag{s}

would ensure stability ifcol(d;)| is sufficiently small. Unfortunately, since the Lyapunov function
is not strict, this conjecture cannot be analytically validated. Indeed, in this case the time derivative
of the Lyapunov function (15) withh; = K; ' is now

W=-Q@)+e i—3"(c— G AD(z,))
= —Q(x) — e) Kpeo — (Kpeg — 2)TGJ Ad(x,).

While the terme] K pGJ A®(z,) can be dominated for “smally, there is no way we can dominate
the remaining terrﬁTKIGQTA%(xa) and the Lyapunov analysis cannot be completed with standard
techniques.

This unfortunate situation does not mean, of course, that a continuity result of this type cannot be
established. It simply reveals our inability to do it with the tools used to analyze the ideal case.

6. APPLICATION TO TEMPERATURE REGULATION

In this subsection we design a robust PI-PBC for the temperature regulation of a class of
thermal systems—the so—called, Rapid Thermal Processes (RTP). Attention is concentrated on the
verification of Assumption 3. Hence, unless otherwise indicated, Assumption 1 is not imposed.
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6.1. System Description

Similarly to [18, 19] we consider the following model of Rapid Thermal Processes
T = Ay [U(T) — U(Tyaq)] + A (T = Toony) + Gu, (24)

wherel € RZ, represents the vector of temperature€l’) := col(T}) andT,aa, Teonw € R, are,
respectively,_the vectors of temperatures related to the radiation heat emission from environment
and the convection air flows. The constant matridesA, € R™**™ are Hurwitz and contain the
radiation and the convection heat transfer coefficients. Also, the entri@s=dR™>*™ correspond

to the heat transfer coefficients of the heating elements. FinallyR™ is the controlled power
applied to the heating elements. Physically, considering métras (2) means that for. heating
elements there ane — m measured points that are not directly heated by these elements.

In the model above, as in [19], it is considered that the plant is heated almost uniformly so that
the contribution of energy from conduction is too small with respect to the radiation transfer. Hence,
the conduction heat transfer is neglected. We also assume the steady environment conditions, i.e.,
the valuesl’,.,; andT.,,,, are constant.

To simplify the notation we re—write the system (24) in the form

T = AW(T) + AT + E + Gu (25)

where
E .= —Al\I/(T,-ad) - AQTCOTL’U'

Unlike A1, A and E that are highly uncertain, the input matii«—that is defined by the induced

heat flow—can be precisely identified. Tbentrol objectiveis then to design a robust Rle., that

does not require the knowledge of the uncertain parameters, to regulate the process around some
desired temperature, whichnst equalto the open—loop equilibrium, but belongs to the assignable
equilibrium set, that is,

T* € {T € RY, | GH[A1¥(T) + A;T + E] = 0}, (26)

whereG+ € R(»—™)x" is g full-rank left-annihilator of5.

To place the problem in the context of Proposition 1 we first shift the equilibrium of the open—
loop system to the origin and then proceed to verify Assumption 3. For, we introduce the standard
change of coordinates

x=T-T

whereT is the open—loop equilibrium that satisfies
A U(T) + AT+ E =0. (27)
Thus, the system (24) in the new coordinates takes the form (1) with

f@) =AY (z+T)+ Axy(x+T) + E, (28)
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Associated to the desired temperatiitewe define the equilibrium to be stabilised

=T -T. (29)

6.2. Passivity of the thermal system.

The lemma below identifies conditions under which the system (24) satisfies AssumpiithoGt
imposing Assumption 1, that is, avoiding the partition of the coordinates into actuated and un—
actuated. Towards this end, the following assumption is needed.

Assumption 4
The matrix A, is diagonally stablg20]. That is, there exist® € R"*", P = diag{p} > 0 such
that

PA, + Al P=:-25<0. (30)

Moreover, the matrixd, verifies

AJ Pdiag{7?} + diag{T?} PA, < 0. (31)

Conditions for diagonal stability of a matrix have been studied intensively, see [20] for a survey.
Necessary and sufficient conditions were first reported in [21]—see also [22] for a simpler proof.
For a Hurwitz matrix, a sufficient condition given in [23] is that it is a Metzler matrix (namely, its
non diagonal elements are nonnegative). Note that due to physical nature of RTP systems the matrix
A; usually belongs to this class.

Since A, is Hurwitz andT; > 0, condition (31) is trivially satisfied ifd is diagonal, which is
assumed in RTP models [19, 24].

Lemma 3
If Assumption 4 holds the vector field (28) satisfies Assumption 3 with

H(z) = szsz(fﬂz) +k (32)
=1
where )
¢i(z;) = 5(1‘1' +T;)° = Wi(T)a;. (33)
and
I~ s
k= 5 ;Psz :
Proof

Point (iii) of Assumption 3 is trivially satisfied by (32).
We proceed now to prove point (i). Replacing (33) in (32) and grouping terms yields

1 n B B
H(z) = : > pilwi + T0)° — " PU(T) + k,
i=1
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Now, notice that
VH(z) = PP(x),

where

O(z) = V(z+T)— ¥(T). (34)
On the other hand, from (27) it follows that the systems vector field may be written as
flz) = A19(z) + Aszx.
Consequently,

[VH(x)]" f(x,0) O (z)P[A,®(x) + Asx]

= —&"(2)SP(x)+ ' (x)PAyz,

where we have used (30) to obtain the second identity. Now, condition (31) ensures that the function
h:R™ — R"
h(zx) := Ay PU(z),

is monotonically decreasing [17]. That is, for allb € R",
[h(a) = h(B)] " (a —b) < 0.

Consequently,

&' (2)PAsxr = [h(z +T) —h(T)] 'z <0

completing the proof of point (i).
To prove point (ii) we notice that

flx) = Al(i)(x) + Ao,

while
VH(z) — VH(z*) = P®(z).

Hence, the claim is established invoking the same arguments used above and defining

Finally, the second derivative of the functiopgz;) yields
o7 (x:) = 4w; + T;)° = 4T7,

which is non—-negative becau§é > 0. Hence, the functiong;(x;) are convex as requested by
condition (iv) of Assumption 3. This completes the proof. oog

Direct application of Lemma 1 leads to the following.
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Corollary 1
If Assumption 4 holds, the thermal system (24) defines a passiveimag with storage function
U(x), where

e = G'Pd(z)
Ul(x) H(z) —x' P®(z*) — H(z*) + (z*) " P®(2*)

6.3. Robust PI-PBC of the thermal system

To present the robust PI-PBC for systems verifying Assumption 1 we partition the vector of
temperatures into its un—actuated and actuated components

Ty Tn—m—i—l

Tu T2 Tn7m+2
T= , T, = T, = _ :
T(l . .
Th-m Ty
partition P as
P— Py O(nfm)xm 7
(L (n—m) D

and do the same with the vector functi@qT’).
The following proposition is a consequence of Lemma 3 and Proposition 1.

Proposition 2
Consider the system (24) verifying Assumptions 1 and 4. Fix any desired tempefatueefying
(26) and define the PI-PBC

U= pr\ifa(Ta) + 2z

= —K1U,(T,),

and the controller gain&p» and K; are given by (18)For all diagonal, positive definite matrices
p € R™*™ and I'; € R™*™ all trajectories are bounded and the equilibrium pdifitz) =
(T*,u*) is globally asymptotically stable.

Proof
The proof of stability is established invoking item (i) of Proposition 1 and identifying

®4(a)lz,=1, -7, = Val(T0)-

a

To prove asymptotic stability we invoke item (ii) and observe that the augmented error signal (12)

is given in this case by

(TS
Gy D

a =

U(T).

Sincee, verifies (13) ands is positive definite we conclude that(T'(t)) — 0 and consequently
T(t) = T*. oog
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Figure 1. Simulation Result showing the system response : (a) For differentigaiesting K ; = 3 x 1075.
(b) For different gainss; letting K}, = 6 x 1075,

6.4. Numerical Simulation:

Consider the thermal system (25) with

0
g

—ai11 a12 C1

Ay = , Ao = , G = , C=

a21 —a22 C2

where a;; > 0, a; > 0. Notice that the system satisfies Assumption 4. Then, the assignable
equilibria set is

&= {T Ty e R+, —a11T14 + a12T24 -1+ = 0} (35)
From Proposition 2, the controller

i= K (Ty —(13)")
u=—Kp (T3 — (T3)") + =

where K, = %Fp, K= ;1“1 and I'p,I'; € R, asymptotically stabilizes the system At= 7~.
The parameter values used in the simulation wherg:=1 x 107, a5 = % x x1079, a9; =
1x107% ag =1x107% a; =1x107% ap =4 x 1074, g=1, 1 =3, o =17, T}, =

8x 107 and I'y =1 x 10~°. In the simulation, the control objective is initially fixed at
T5, = 500 K, then it is suddenly changed 14, = 700 K. From (35), the corresponding values for
T, are, respectively30.06 K and592.20 K. Fig. 1 shows the simulation results. In Fig. 1a the
response of the system when varying control parami€teand lettingk; = 3 x 10~¢ is depicted.
As it can be noticed from the same figure, the larger is the valig, ithe faster is the convergence.
In Fig. 1b it is shown the response of the system whgris varying whileKp = 6 x 10~°. From
the figure, it can be seen that large value&incauses overshoots in the responséxof
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7. CONCLUDING REMARKS

In this work we identify a class of nonlinear systems for which it is possible to design robust PI
controllers with guaranteed stability properties (see also [14]). The class consists of input affine
systems with known, constant input matiix and n — m zero rows. We assume that only the
states associated to the non—zero row& @fre measurable.The systems have an open—loop stable
equilibrium, but is different from the desired operating point. To handle this situation, we follow [2]
and generate new passive outputs for the incremental model, hence the name PI-PBC. Associated
to the open—loop stable equilibrium a Lyapunov function of the form (4) is assumed to exist.
We underscore that, besides convexity, there is no assumption on the fuRgtiog), which is
unknown. Moreover, the controller does not require the measurement dhe functionsp; (z;)

are assumed convex and known, but the coefficigrdgre unknown. Under these conditions, we
show that, for a well identified class of Pl tuning gains, see (18), global stability of the proposed
PI-PBC is guaranteed. Conditions that ensure global asymptotic stability, are also derived.
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