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Performance Enhancement of Parameter Estimators
via Dynamic Regressor Extension and Mixing∗

Stanislav Aranovskiy1,2, Member, IEEE, Alexey Bobtsov2, Senior Member, IEEE, Romeo Ortega3, Fellow
Member, IEEE, Anton Pyrkin2, Member, IEEE

Abstract—A new procedure to design parameter estimators
with enhanced performance is proposed in the paper. For classical
linear regression forms it yields a new parameter estimator whose
convergence is established without the usual requirement of
regressor persistency of excitation. The technique is also applied
to nonlinear regressions with “partially” monotonic parameter
dependence—giving rise again to estimators with enhanced
performance. Simulation results illustrate the advantages of the
proposed procedure in both scenarios.

Index Terms—Estimation, persistent excitation, nonlinear re-
gressor, monotonicity

I. INTRODUCTION

A new procedure to design parameter identification schemes
is proposed in this article. The procedure, called Dynamic
Regressor Extension and Mixing (DREM), consists of two
stages, first, the generation of new regression forms via the
application of a dynamic operator to the data of the original
regression. Second, a suitable mix of these new data to obtain
the final desired regression form to which standard parameter
estimation techniques are applied.

The DREM procedure is applied in two different scenarios.
First, for linear regression systems, it is used to generate a new
parameter estimator whose convergence is ensured without a
persistency of excitation (PE) condition on the regressor. It
is well known that standard parameter estimation algorithms
applied to linear regressions give rise to a linear time–varying
system, which is exponentially stable if and only if a certain
PE condition is imposed—this fundamental result constitutes
one of the main building blocks of identification and adaptive
control theories [2], [3]. To the best of the authors’ knowledge
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there is no systematic way to conclude asymptotic stability
for this system without this assumption, which is rarely
verified in applications. Relaxation of the PE condition is a
challenging theoretical problem and many research works have
been devoted to it in various scenarios, see e.g., [4]–[9] and
references therein. Due to its practical importance research on
this topic is of great current interest.

The second parameter estimation problem studied in this ar-
ticle is when the parameters enter nonlinearly in the regression
form. It is well known that nonlinear parameterizations are
inevitable in any realistic practical problem. On the other hand,
designing parameter identification algorithms for nonlinearly
parameterized regressions is a difficult poorly understood
problem. An interesting case that has recently been explored
in the literature is when the dependence with respect to the
parameters exhibit some monotonicity properties; see [10]–
[12]. Unfortunately, it is often the case that this property holds
true only for some of the functions entering in the regression
stymying the application of the proposed techniques. Our sec-
ond contribution is the use of the DREM technique to “isolate”
the good nonlinearities and be able to exploit the monotonicity
to achieve consistent parameter estimation for nonlinearly
parameterised regressions with factorisable nonlinearities—not
imposing PE conditions.

Notation For x ∈ Rn, |x|2 = x>x. All functions are assumed
sufficiently smooth. For functions of scalar argument g : R→
Rs, g′ denotes its first order derivative. For functions V :

Rn → R we define the operator ∇V := (∂V∂x )>.

II. CONSISTENT ESTIMATION FOR LINEAR REGRESSIONS

WITHOUT PE

In this section the DREM technique is applied to classical
linear regressions. The main contribution is the removal of
the—often overly restrictive—assumption of regressor PE to
ensure parameter convergence.

A. Standard procedure and the PE condition

Consider the basic problem of on–line estimation of the
constant parameters of the q–dimensional linear regression

y(t) = m>(t)θ, (1)
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where1 y : R+ → R and m : R+ → Rq are known, bounded
functions of time and θ ∈ Rq is the vector of unknown
parameters. The standard gradient estimator

˙̂
θ = Γm(y −m>θ̂), (2)

with a positive definite adaptation gain Γ ∈ Rq×q yields the
error equation

˙̃
θ = −Γm(t)m>(t)θ̃, (3)

where θ̃ := θ̂ − θ are the parameter estimation errors. It is
well–known [2], [3] that the zero equilibrium of the linear
time–varying system (3) is (uniformly) globally exponentially
stable if and only if the regressor vector m is PE, that is, if∫ t+T

t

m(s)m>(s)ds ≥ δIq, (4)

for some T, δ > 0 and for all t ≥ 0, which will be denoted as
m(t) ∈ PE. If m(t) /∈ PE, which happens in many practical
circumstances, very little can be said about the asymptotic
stability of (3), hence about the convergence of the parameter
errors to zero.

Remark 1. In spite of some erroneous claims [13], it is
well known that the PE conditions for the gradient estimator
presented above and more general estimators—like (weighted)
least squares—exactly coincide [14]. Since the interest in the
paper is to relax the PE condition, and in the interest of brevity,
attention is restricted to the simple gradient estimator.

B. Dynamic regressor extension and mixing procedure

To overcome the limitation imposed by the PE condition the
DREM procedure generates q new, one–dimensional, regres-
sion models to independently estimate each of the parameters
under conditions on the regressor m that differ from the PE
condition (4).

The first step in DREM is to introduce q − 1 linear, L∞–
stable operators Hi : L∞ → L∞, i ∈ {1, 2, . . . , q−1}, whose
output, for any bounded input, may be decomposed as

(·)fi(t) := [Hi(·)](t) + εt, (5)

with εt is a (generic) exponentially decaying term. For in-
stance, the operators Hi may be simple, exponentially stable
LTI filters of the form Hi(p) = αi

p+βi
, with p := d

dt and αi 6= 0,
βi > 0; in this case εt accounts for the effect of the initial
conditions of the filters. Another option of interest are delay
operators, that is [Hi(·)](t) := (·)(t− di), where di ∈ R+.

Now, we apply these operators to the regressor equation (1)
to get the filtered regression2

yfi = m>fiθ.

1When clear from the context, in the sequel the arguments of the functions
are omitted.

2To simplify the presentation in the sequel we will neglect the εt terms,
which will be incorporated in the analysis later.

Piling up the original regressor equation (1) with the q −
1 filtered regressors we can construct the extended regressor
system

Ye(t) = Me(t)θ, (6)

where we defined Ye : R+ → Rq and Me : R+ → Rq×q as

Ye := col(y, yf1 , · · · , yfq−1),M>e :=
[
m mf1 · · · mfq−1

]
.

(7)
Premultiplying (6) by the adjunct matrix of Me we get q scalar
regressors of the form

Yi(t) = φ(t)θi (8)

with i ∈ q̄ := {1, 2, . . . , q}, where we defined the determinant
of Me as

φ(t) := det{Me(t)}. (9)

and the vector Y : R+ → Rq

Y (t) := adj{Me(t)}Ye(t). (10)

The estimation of the parameters θi from the scalar regres-
sion form (8) can be easily carried out via

˙̂
θi = γiφ(Yi − φθ̂i), i ∈ q̄, (11)

with adaptation gains γi > 0. From (8) it is clear that the latter
equations are equivalent to

˙̃
θi = −γiφ2θ̃i, i ∈ q̄. (12)

Solving this simple scalar differential equation we conclude
that

lim
t→∞

θ̃i(t) = 0 ⇐⇒ φ(t) /∈ L2. (13)

The derivations above establish the following proposition.

Proposition 1. Consider the q–dimensional linear regression
(1) where y : R+ → R and m : R+ → Rq are known,
bounded functions of time and θ ∈ Rq is the vector of un-
known parameters. Introduce q−1 linear, L∞–stable operators
Hi : L∞ → L∞, i ∈ {1, 2, . . . , q − 1} verifying (5). Define
the vector Ye and the matrix Me as given in (7). Consider
the estimator (11) with φ and Yi defined in (9) and (10),
respectively. The equivalence (13) holds.

���

Remark 2. It is important to underscore that for any matrix
A ∈ Rq×q we have that adj{A}A = det{A}Iq , even if A is
not full rank [15].

Remark 3. If we take into account the presence of the
exponentially decaying terms εt in the filtering operations the
error equation (12) becomes ˙̃

θi = −γiφ2θ̃i + εt, i ∈ q̄. The
analysis of this equation may be found in Lemma 1 of [4]
where it is shown that (13) still holds.
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C. Discussion

Two natural questions arise at this point.

Q1. Is the condition φ(t) /∈ L2 weaker than m(t) ∈ PE?
Q2. Given a regressor m(t) /∈ PE is it possible to select

operators Hi to enforce the condition φ(t) /∈ L2?

Regarding question Q2 notice that

M>e =
[

1 H1 · · · Hq−1

]
m,

which is a linear operation. However, computing the de-
terminant of Me is nonlinear—hence the question is far
from obvious. A (partial) answer to it is given in the sub-
section II-D. Regarding the question Q1 we underline the
following observation that underscores the different nature
of the two conditions. From definition (4) it is clear that
the PE condition is a requirement imposed on the minimal
eigenvalue of the matrix as illustrated by the equivalence
λmin

{∫ t+T
t

m(s)m>(s)ds
}
≥ δ > 0⇐⇒ m(t) ∈ PE, where

λmin{·} denotes the minimal eigenvalue. On the other hand,
the condition φ(t) /∈ L2 is a restriction on all eigenvalues
of the matrix Me. Indeed, this is clear recalling that the
determinant of a matrix is the product of all its eigenvalues
and that for any two bounded signals a, b : R+ → R we have
a(t)b(t) /∈ L2 =⇒ a(t) /∈ L2 and b(t) /∈ L2. Consequently, a
necessary condition for parameter convergence of the estima-
tors (11) is that all eigenvalues of the matrix Me are not square
integrable.

D. An example

To provide a (partial) answer to question Q2 above let us
consider the simplest case of q = 2 with m = col(m1,m2).
In this case

φ = m1m2f −m1fm2. (14)

The simple fact below identifies a class of regressors m(t) /∈
PE but φ(t) /∈ L2 for the case of H a simple LTI filter.

Fact 1. Define the set of differentiable functions

G := {g : R+ → R | g(t) ∈ L∞, ġ(t) ∈ L∞, ġ(t) /∈ L2,

lim
t→∞

g(t) = lim
t→∞

ġ(t) = 0}

For all g ∈ G the regressor m(t) = [1, g+ ġ]> /∈ PE. Let the
operator H be defined as

[H(·)](t) =

[
1

p+ 1
(·)
]

(t).

The function φ defined in (14) verifies φ(t) /∈ L2.

Proof. The fact that m(t) /∈ PE is obvious because
limt→∞m2(t) = 0. Now, we have that m1f = 1 + εt and
from the filter equations we get ṁ2f = −m2f +m2. On the

other hand, from the definition of m we have ġ = −g +m2.
Substracting these two equations we get

d

dt
(m2f − g) = −(m2f − g),

consequently m2f = g + εt. Replacing these expressions in
(14) yields

φ = m2f − (1 + εt)m2

= (g + εt)− (1 + εt)(g + ġ) = −ġ + εt,

where we have used the fact that g(t) ∈ L∞ and ġ(t) ∈ L∞
to obtain the last equation. This completes the proof. ���

Remark 4. An example of a function g ∈ G is g(t) =

sin(t)(1 + t)−
1
2 . The corresponding regressor is

m(t) =

[
1

sin t+cos t

(1+t)
1
2
− sin t

2(1+t)
3
2

]
. (15)

E. Simulation results

We first evaluate the performance of the classical parameters
estimator (2) with m(t) given by (15). From the analysis of
Subsection II-A we know that the LTV system (3) is stable,
but it is not exponentially stable since m(t) 6∈ PE, and PE is
a necessary condition for exponential stability.

The transient behavior of the parameter errors θ̃(t) with
Γ = γI2 and θ = col(−3, 3) is shown in Fig. 1 for θ̃(0) =

col(3,−3), γ = 3 and γ = 10. It is worth noting that it is
not possible to conclude from the simulations whether θ̃(t)
converges to zero asymptotically or not. The plots show that
convergence has not been achieved even after a reasonably
long period of 500. The graphs also show that increasing γ

that, in principle, should speed–up the convergence, makes the
situation even worse, cf. Fig. 1 (a) and (b). If the adaptation
gain is taken as Γ = diag{γ1, γ2} it is possible to improve
the transient performance, but this requires a time–consuming,
trial–and–error tuning stage that is always undesirable.
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Fig. 1: Transient performance of the parameter errors θ̃(t) for
the gradient estimator (2) with m(t) given by (15).

Next we study performance of the DREM estimator (11)
with the same m(t) and θ = col(−3, 3). The transient behavior
of θ̃(t) is given in Fig. 2 for θ̃(0) = col(3,−3), γ1,2 = 3 and
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γ1,2 = 10. The simulations illustrate significant performance
improvement both in oscillatory behavior and in convergence
speed—notice the difference in time scales. Moreover, since
the role of the gains γi in the DREM estimator is obvious,
their tuning is straightforward, cf. Fig. 2 (a) and (b).
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Fig. 2: Transient performance of the parameter errors θ̃(t) for
the DREM estimator (11) with m(t) given by (15).

III. PARAMETER ESTIMATION OF “PARTIALLY”
MONOTONIC REGRESSIONS

In this section we propose to use the DREM technique for
nonlinearly parameterised regressions with factorisable non-
linearities. In contrast with [11], we consider the case where
some—but not all—of the functions verify a monotonicity
condition. The main objective is to generate a new regressor
that contains only these “good’ nonlinearities.

We consider factorisable regressions of the form

y(t) = m(t)ψ(θ), (16)

where y : R+ → Rn and m : R+ → Rn×p contain
measurable functions, the mapping ψ : Rq → Rp is known
and θ ∈ Rq is the unknown parameter vector. It is clear
that the nonlinear regression (16) can be “transformed” into a
linear one defining the vector η := ψ(θ) to which the standard
gradient estimator

˙̂η = Γm>(y −mη̂) (17)

can be applied. However, overparametrization suffers from
well–known shortcomings, cf. [2], [3], [11].

A. Main result

To state the main result of this section we make the
following assumption.

Assumption 1. Consider the regression form (16). There are
q functions ψi that, reordering the outputs yi, we arrange in a
vector ψg : Rq → Rq , verifying

P∇ψg(θ) + [∇ψg(θ)]>P ≥ ρ0Iq > 0, (18)

for some positive definite matrix P ∈ Rq×q .

Consistent with Assumption 1 we rewrite (16) as

yN (t) =
[
mg(t) mb(t)

] [ψg(θ)
ψb(θ)

]
, (19)

where yN : R+ → Rn is the reordered output vector, mg :

R+ → Rn×q , mb : R+ → Rn×(p−q), ψg : Rq → Rq and
ψb : Rq → Rp−q .

As will become clear below DREM must accomplish two
tasks, on one hand, generate a regression without mb. On
the other hand, to be able to relax the PE condition, the
new regressor matrix should be square (or tall). Given these
tasks, to obtain a sensible problem formulation the following
assumption is imposed.

Assumption 2. The regression (19) satisfies

q < p (20)

n < p. (21)

If (20) does not hold all functions ψi, i = 1, . . . , p, satisfy
the monotonicity condition and there is no need to eliminate
any one of them. On the other hand, if (21) is not satisfied
a square regressor without the “bad” part of the regressor ψb
can be created without the introduction of the operators Hi.
Indeed, if n = p the matrix mb is tall and it admits a full–
rank left annihilator m⊥b : R+ → Rq×n. Moreover, the new
regressor matrix m⊥b mg is square. A similar situation arises
if n > p.

Following DREM we introduce nf operators, apply them
to some rows of (19) and pile all the regression forms to get[

yN
yNf

]
=
[
Mg Mb

] [ψg(θ)
ψb(θ)

]
. (22)

where we defined the matrices Mg : R+ → R(n+nf )×q , Mb :

R+ → R(n+nf )×(p−q)

Mg :=

[
mg

mgf

]
, Mb :=

[
mb

mbf

]
. (23)

To select the number nf of operators we notice that the matrix
to be eliminated, that is Mb, is of dimension (n+nf )×(p−q).
Therefore, to have a left annihilator for it with q rows, which
is needed to make the new regressor square, we must fix nf =

p− n. Define
Φ := M⊥b Mg. (24)

Multiplying on the left by adj{Φ}M⊥b the equation (22) yields
the desired regressor form

Y = det{Φ}ψg(θ), (25)

where

Y := adj{Φ}M⊥b

[
yN
yNf

]
. (26)
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We propose the estimator
˙̂
θ = det{Φ}ΓP [Y − det{Φ}ψg(θ̂)], (27)

with Γ ∈ Rq×q , Γ > 0. Using (25) the error equation is
˙̃
θ = −det2{Φ}ΓP [ψg(θ̂)− ψg(θ)].

To analyse its stability define the Lyapunov function candidate
V (θ̃) = 1

2 θ̃
>Γ−1θ̃, whose derivative yields

V̇ = −det2{Φ}(θ̂ − θ)>P [ψg(θ̂)− ψg(θ)]

≤ −det2{Φ} 2ρ1

λmax{Γ}
V.

If the matrix Φ(t) is full rank and det2{Φ(t)} ≥ κ > 0, then

V̇ ≤ − 2κρ1

λmax{Γ}
V,

and exponential stability of the error equation is ensured.
Otherwise, integrating the inequality yields

V (t) ≤ e−
2ρ1

λmax{Γ}
∫ t
0

det2{Φ(s)}dsV (0),

which ensures that θ̃(t)→ 0 as t→∞ if det{Φ(t)} /∈ L2.
We are in position to present the main result of this section,

whose proof follows from the derivations above.

Proposition 2. Consider the nonlinearly parameterised fac-
torisable regression (19) satisfying Assumptions 1 and 2.
Introduce p − n linear, L∞–stable operators Hi : L∞ →
L∞, i ∈ {1, 2, . . . , p − n} verifying (5). Define the matrices
Mg, Mb as given in (23). Consider the estimator (27) with Φ

and Y defined in (24), (26) and M⊥b : R+ → Rq×p a full–rank
left annihilator of Mb. The following implication holds

det{Φ(t)} /∈ L2 =⇒ lim
t→∞

|θ̃(t)| = 0.

Moreover, if det{Φ(t)} ≥ κ > 0, then |θ̃(t)| tends to 0

exponentially fast.

B. An example

Consider the simplest scalar case of n = 1, p = 2 and
q = 1. The regression (16) becomes

y(t) =
[
m1(t) m2(t)

] [ψ1(θ)

ψ2(θ)

]
, (28)

where y : R+ → R, mi : R+ → R and ψi : R → R,
for i = 1, 2. Assume that ψ1(θ) is strongly monotonically
increasing, that is, ψ′1(θ) ≥ ρ0 > 0. In this case, the function
ψ1 verifies [16]

(a− b)[ψ1(a)− ψ1(b)] ≥ ρ1(a− b)2, ∀a, b ∈ R, (29)

for some ρ1 > 0.
Following the DREM procedure we apply an operator H to

(28) and pile–up the two regressions as[
y(t)

yf (t)

]
=

[
m1(t) m2(t)

m1f (t) m2f (t)

][
ψ1(θ)

ψ2(θ)

]
.

Multiplying on the left the equation above by the row vector
[m2f −m2] we get the desired regression involving only ψ1,
namely, Y(t) = Φ(t)ψ1(θ), where we defined the signals

Y := m2fy −m2yf , Φ := m2fm1 −m2m1f . (30)

From Proposition 2 we conclude that the estimator

˙̂
θ = γΦ[Y − Φψ1(θ̂)], γ > 0 (31)

ensures that θ̃(t)→ 0 as t→∞ if Φ(t) /∈ L2.
The simple fact below identifies a class of regressors m(t) /∈

PE but Φ(t) 6∈ L2 for a simple delay operator.

Fact 2. The regressor

m(t) =
[

sin(t)√
t+2π

1
]
/∈ PE.

Let the operator H be the delay operator, that is,

(·)f (t) = (·)(t− d), d ∈
[
π

2
,

3π

2

]
.

The function Φ defined in (30) verifies Φ(t) 6∈ L2.

Proof. The fact that m(t) /∈ PE is obvious because m1(t)→
0. Now, the function Φ defined in (30) takes the form

Φ(t) =
sin(t)√
t+ 2π

− sin(t− d)√
t+ 2π − d

.

Whence

Φ2(t) =
sin2(t)

t+ 2π
− 2 cos(d)

sin2(t)√
t+ 2π

√
t+ 2π − d

+
sin2(t− d)

t+ 2π − d
+ sin(d)

sin(2t)√
t+ 2π

√
t+ 2π − d

,

where some basic trigonometric identities have been used to
derive the identity. Note that the first three right hand terms
of the last identity are not integrable. Since cos(d) ≤ 0 in
the admissible range of d the sum of these terms is also not
integrable. On the other hand, the last right term verifies

sin(d)

∫ ∞
0

sin(2t)√
t+ 2π

√
t+ 2π − d

dt <∞.

Thus, Φ(t) 6∈ L2. ���

As an example consider the nonlinear regression

y(t) = m1(t)
(
θ − e−θ

)
+ m2(t) cos(θ),

which clearly satisfies condition (29). Simulations of the
overparametrized estimator (17) with θ = 1 are given in Fig.
3 while simulations of the DREM estimator (31) are shown
in Fig. 4.
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Fig. 3: Transient behaviour of the errors η̃(t) for the over–
parameterized parameter estimator (17) for different adaptation
gains and η̂(0) = 0.
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Fig. 4: Transient behaviour of the error θ̃(t) for the DREM
estimator (31) with different gains and θ̂(0) = 0.

IV. CONCLUDING REMARKS AND FUTURE RESEARCH

A procedure to generate new regression forms for which we
can design parameter estimators with enhanced performance
has been proposed. The procedure has been applied to linear
regressions yielding new estimators whose parameter conver-
gence can be established without invoking the usual, hardly
verifiable, PE condition. Instead, it is required that the new re-
gressor vector is not square integrable, which is different from
PE of the original regressor. For nonlinearly parameterised
regressions with monotonic nonlinearities the procedure allows
to treat cases when only some of the nonlinearities verify
this monotonicity condition. Similarly to the case of linear
regressions, convergence is ensured if the determinant of the
new regressor is not square integrable.

The design procedure includes many degrees of freedom
to verify the aforementioned convergence condition. Current
research is under way to make more systematic the choice of
this degrees of freedom. It seems difficult to achieve this end
at the level of generality presented in the paper. Therefore,
we are currently considering more “structured” situations, for
instance, when the original regression form comes from classes
of physical dynamical systems or for a practical application.
In [17] it is shown that DREM yields a convergent position
observer for synchronous motors even in the absence of
PE, and in [18] the DREM is used to improve transients

performance in a multiple frequency identification task.
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