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Abstract

This paper deals with the estimation of seasonal long-memory time series mod-
els in the presence of ‘outliers’. It is long known that the presence of outliers
can lead to undesirable effects on the statistical estimation methods, for example,
substantially impacting the sample autocorrelations. Thus, the aim of this work
is to propose a semiparametric robust estimator for the fractional parameters in
the seasonal autoregressive fractionally integrated moving average (SARFIMA)
model, through the use of a robust periodogram at both very low and seasonal
frequencies. The model and some theories related to the estimation method are
discussed. It is shown by simulations that the robust methodology behaves like
the classical one to estimate the long-memory parameters if there are no outliers
(no contamination). On the other hand, in the contaminated scenario (presence
of outliers), the standard methodology leads to misleading results while the pro-
posed method is unaffected. The methodology is applied to model and forecast

∗Corresponding author. Department of Statistics, Federal University of Espírito Santo, 29075-
910, 514, Vitoria, ES, Brazil. Tel.: +5502740092903.
E-mail address: valderioanselmoreisen@gmail.com (V. A. Reisen).

Preprint submitted to Mathematics and Computers in Simulation October 27, 2017



sulfur dioxide (SO2) pollutant concentrations which have seasonal long-memory
features and occasional large peak pollutant concentrations.

Keywords: Forecasting; Robust periodogram; Large peak; Outliers; SO2

pollutant; Long-memory.

1. Introduction

Sulfur dioxide (SO2) is part of a group of highly reactive gases known as “ox-
ides of sulfur”. The main sources of SO2 emissions into the atmosphere come
from fossil fuels (coal and petroleum products), power and other industrial plants.
Other emission sources of SO2 are as follows: industrial processes such as steel
and mining, burning fuels containing high sulfur level due to transportation vehi-
cles such as locomotives and large ships, pulp industry, and natural sources such
as volcanic emissions (Andersson et al. [1]). High levels of pollution emissions
can result in peaks of SO2 concentration in the atmosphere.

The high SO2 concentrations are associated with several effects on population
health, as for instance the increase of chronic bronchitis (Kanaroglou et al. [25]).
The exposure to SO2, even for short periods of time (ranging from 5 minutes
to 24 hours), may cause respiratory problems, including bronchoconstrictor and
increased asthma symptoms. Consequently, these can cause an increase in hospital
admissions of the population at high risk, such as elderly, children and asthmatics.

Several statistical methods have been employed to study the impacts of SO2

pollution on the environment, such as: principal component and cluster analy-
sis (Cheng and Lam [11]); artificial neural networks for predicting sulfur dioxide
concentrations (Saral and Ertürk [51]) and other pollutants (Brunelli et al. [7]);
multiple regression models to investigate the influence of emission sources and
meteorological conditions on SO2 pollution (Luvsan et al. [31]); among others. In
terms of forecasting, statistical models based on multiple regression and time se-
ries tools, such as the autoregressive integrated moving average (ARIMA) model
have been widely used.

Many time series data exhibit a seasonality pattern. For pollutants, seasonal
variation is often associated with the changes in meteorological parameters. Fur-
thermore, the reduction of emission levels during weekends can also induce sea-
sonality in the series. Thus, it is very important to consider statistical tools which
take into account the seasonality effect.

More recently, several authors have studied time series with long-range de-
pendence (often named long memory property). In time domain analysis, the
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long-memory dependence is generally characterized by a slow decay of the auto-
correlation function. Granger and Joyeux [18] and Hosking [20] proposed the au-
toregressive fractionally integrated moving average (ARFIMA) model to describe
the long-memory feature of a time series. The ARFIMA process is an extension
of the ARIMA, where the parameter of integration d assumes fractional values.
The methods proposed for estimating the parameters of the ARFIMA model are
classified either as parametric or semiparametric. Parametric methods consist of
simultaneous estimation of model parameters, usually by maximum likelihood.
On the other hand, semiparametric estimation is performed in two steps: firstly
the parameter d is estimated, and, in a second step, using the estimated d from
the first step, the autoregressive and moving average parameters are estimated.
The most popular semiparametric estimator was proposed in Geweke and Porter-
Hudak [16]. For a recent review on this subject, see Palma [36], for instance.
Modifications of this estimator have been developed by Reisen [42], Lobato and
Robinson [30], Delgado and Robinson [12], Velasco [57], among others. More
specifically, Sena et al. [53], Molinares et al. [34] and Reisen et al. [43] inves-
tigated the estimator under various model specifications, such as the presence of
non-gaussian errors and outliers.

Due to the important features of the ARFIMA model, it has often been used to
analyze environmental problems. As an example, Iglesias et al. [24] adopted an
ARFIMA model as the underlying generating process of pollutant concentrations
which present long memory and missing values. These phenomena are widely
found in time series of different areas of interest.

An extension of the ARFIMA to handle time series with seasonality is the
SARFIMA model, which has already been addressed in the literature by several
authors. Porter-Hudak [38] applied the seasonal fractionally differenced model
to study the monetary aggregates of the United States. Reisen et al. [47] esti-
mated the fractional and seasonal parameters of SARFIMA models by means of a
semiparametric procedure, considering a nonconstant conditional error variance.
Reisen et al. [48] studied the properties of the SARFIMA model when the data
exhibits one and two seasonal periods and short-memory components. Ye et al.
[58] proposed a new method to estimate the fractional difference parameter in
the SARFIMA model using tapered periodogram. Hsu and Tsai [21] proposed a
semiparametric estimation method for seasonal long-memory time series, by con-
sidering a generalized exponential model in the frequency domain. Chan and Tsai
[8] have studied the autocorrelation structure and the spectral density function of
SARFIMA processes in aggregated discrete-time process, using the Whittle esti-
mator. Tsai at al. [56] evaluated the properties of the Whittle likelihood estimation
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in SARFIMA models in the presence of measurement errors.
Furthermore, environmental time series often contain unusual observations

influenced by external events that can cause changes in their dynamics. These
observations transient or permanent changes are known in the literature as out-
liers (sometimes referred to as aberrant or atypical observations) and, depending
on their nature, their effects on inference can be substantial. For example, the
presence of outliers can increase the estimated variance of the stochastic process,
which implies a decrease in the estimated autocorrelations and consequent loss
of information about the autocorrelation structure of the process see, for exam-
ple, Chan [9, 10]. Although long-memory models in the presence of outliers has
recently been a subject of much interest to some researchers, especially in the ar-
eas of economics and finance (Beran [5]; Franses et al. [15]; Tolvi [55]), very
few papers have been devoted to this topic in the environmental field. One of the
contributions of this paper is to fill this gap. To this purpose, it concatenates long-
memory modeling (with more than one fractional parameter), robust estimation
and pollution data.

Based on the above discussion, the main goal of this paper is to propose a ro-
bust semiparametric estimator for both non-seasonal and seasonal long-memory
parameters in SARFIMA models based on a robust autocovariance function esti-
mator. Some model and estimation properties are discussed and a small sample
size investigation is conducted to show the method’s performance under contami-
nated and uncontaminated SARFIMA models. In addition, the method is applied
to model and forecast SO2 concentrations, measured at the air quality automatic
monitoring network (AQAMN) of the Greater Vitória Region (GVR), ES, Brazil.
This series exhibits seasonality, long memory behaviour and high levels (or large
peaks) of SO2 concentrations. These observations may produce sample densi-
ties with heavy tails and it can strongly influence sample functions such as the
standard mean, the covariance and the periodogram. Since the estimation of time
series models is connected with these sample functions, the final estimated model
can be strongly affected by the large peaks of concentration.

This paper is organized as follows. Section 2 introduces the model, discusses
its properties and summarizes its estimation methods. Section 3 presents a sim-
ulation study and Section 4 deals with the analysis, modeling and forecasting of
SO2 concentrations. Some conclusions are drawn in Section 5.
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2. Model definitions and a robust parameter estimation method

2.1. Model definition and properties
Let Xt ≡ {Xt}t∈Z be a zero-mean process with infinite MA representation

Xt = Ψ(B)εt where

Ψ(B) = ψ(B)∇α1,...,αL
ω1,...,ωL

(B) = ψ(B)
L∏
ι=1

(1 − 2 cosωι.B + B2)αι , (1)

{εt}t∈Z is a white noise with E(εt) = 0; Var(εt) = σ2
ε ,ωι ∈ (−π, π]; B is the backward

shift operator satisfying BkYt = Yt−k for any process {Yt}t∈Z, αι = −dι, dι ∈ R
(dι > −1), (dι , 0) and dι is defined as the fractionally differencing parameter.
The following assumptions are made for the power expansion of Ψ(B):

(A1) The function ψ(z) is analytic inside and on the unit circle, |z| ≤ 1 for all z ε
C, that is, the coefficients ψ j, j = 0, 1, ..., of ψ(z) satisfy

∑∞
j=0 ψ

2
j < ∞.

(A2) |dι| < 1
2 ∀ ι = 1, ..., L.

Under assumptions A1 and A2, Xt is a stationary process with spectral density
of the form:

fX(ω) = gψ(ω)|ω|−2d
L∏
ι=1

ξι∏
j=1

|ω − ωι j|
−2dι , (2)

where ω ∈ (−π, π] and gψ(ω) is a continuous function, bounded above and away
from zero and ωι j , 0 are poles for j = 1, ..., ξι, ι = 1, ..., L. The autocovariance
function of Xt behaves like γX(h) ∼ K j2dι−1 cos( jω) as h→ ∞ and K is a constant
that does not depend on h. See, for example, Giraitis and Leipus [17], Palma [36],
Arteche [2], Arteche and Robinson [3], Reisen et al. [48] and references therein.

For suitable choices of the fractionally differencing parameters dι, ι = 1, ..., L,
Xt may have a finite number of zeros or singularities of order d1,...,dL on the unit
circle which allows the modeling of long and short memory data containing sea-
sonal periodicities.

A stationary long-memory time series with memory parameter ϕ ∈ (−0.5, 0.5)
has autocovariance function γ(h) and spectral density f (ω) satisfying, respec-
tively,

(A3)
γ(h) ∼ h2ϕ−1L1(h), as h −→ ∞, (3)
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(A4)
f (ω) ∼ |ω|−2ϕL2(ω), as ω −→ 0. (4)

where L1 and L2 are slowly varying functions, L1 at infinity and L2 at zero (see, for
example, Taqqu [54]). When 0 < ϕ < 1/2, the autocovariance is not absolutely
summable and the spectral density becomes unbounded at zero frequency. The
properties given by Assumptions 3 and 4 can also be extended for any frequency
ω ∈ (−π, π], as here discussed (see Remark 2 for the spectral density function)
and in Reisen et al. [48] among others.

Now, let ψ(B) =
θp(B)
φq(B) where θq(z) and φp(z) are polynomials with order p and

q, respectively. It is assumed that these polynomials have no common roots and
satisfy the conditions φp(z), θq(z) , 0, for all z ε C, such that |z| ≤ 1. Then,
Xt becomes the ARUMA(p, d1,..., dL, q) model introduced by Giraitis and Leipus
[17]. Let now dι, ι = 1, ..., L, satisfying the following assumption,

(A5)

|dι| <

1/2, 0 < ω < π,

1/4, ω = 0, π.

Under the conditions on φp(z) and θq(z) and Assumption 5, Theorem 2 in Gi-
raitis and Leipus [17] states that the process Xt is causal, invertible and has the
unique stationary solution

Xt =
θq(B)
φp(B)

∇−d1,...,−dL
ω1,...,ωL

εt =

∞∑
j=0

ψ j∇
−d1,...,−dL
ω1,...,ωL

εt− j. (5)

Additionally, the authors show that the spectral density is given by

fX(ω) = |θq(e−iω)|2φp(e−iω)|−2 f∇(ω) (6)

where f∇(ω) =
σ2
ε

2π
|∇−d1,...,−dL(e−iω)|2 and the autocovariance is

γX(h) =

L∑
j=1

|θq(e−iω j)|2φp(e−iω j)|−2a j | h |2dJ−1 (cos hω j + o(1)) as h→ ∞, (7)

where a j, j = 1, ..., L, are constants that depend on d j, that is, they do not depend
on h.
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Remark 1. If there exists at least one dι > 1/2, the process in Equation (5) is
non-stationary and therefore the spectral representation given in Equation (6) does
not exist. Nevertheless, the model is still adequate to adjust time series with long-
memory and seasonality. There is a large amount of papers in the literature related
to the estimation of non-stationary ARFIMA models (see, for example, Hurvich
and Ray [22] and Olbermann et al. [35]).

The SARFIMA model is a particular case of the ARUMA process, that is, it
is intrinsically related to the model and assumptions described before. As previ-
ously discussed, the SARFIMA model has been widely studied, theoretically and
empirically, and applied to a variety of real data set (see, for example, Ray [41],
Marques [33], Hassler [19], Reisen et al. [46, 45], Arteche and Robinson [4],
Palma and Chan [37], among others). Reisen et al. [48] studied the SARFIMA
process which encompasses two seasonal fractional and short memory parameters
by deriving the model and the asymptotic properties of the semiparametric ordi-
nary least square estimator (OLS). Under some conditions, they showed that the
fractional OLS estimators are asymptotically Normally distributed. In their study,
the theoretical properties were investigated for finite sample sizes under differ-
ent scenarios. In this direction, hereafter, the SARFIMA model considered is a
particular case of the one discussed by Reisen et al. [48], that is, the SARFIMA
model with two fractional parameters (at zero and seasonal frequencies), but in
the context of robustness of the OLS long-memory estimators.

Let now
∇d = (1 − B)d(1 − Bs)D, (8)

where d = (d,D)′ is the memory parameter vector; d and D are the fractional
parameters at the zero (or long-run) and seasonal frequencies, respectively, satis-
fying Assumption 5 and s ∈ N∗ = N − {0} is the seasonal length. D = 0 implies
that the process does not have seasonal poles. The process Xt ≡ {Xt}t∈Z is now
defined as a zero-mean SARFIMA process satisfying

Xt = ψ(B)∇−dεt =
θq(B)
φp(B)

∇−dεt, (9)

where the process εt, the fractional vector d = (d,D)′ and the coefficients φp(B)
and θq(B) satisfy the conditions previously stated.
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In addition, the fractional filters are

(1 − Bk)x =

∞∑
j=0

(
x
j

) (
−Bk

) j
, k = 1, s, and x = d,D,

where (
x
j

)
=

Γ(x + 1)
Γ( j + 1)Γ(x − j + 1)

,

and Γ(·) is the well-known Gamma function.

Remark 2. If |d + D| < 1/2, |d| < 1/2 and |D| < 1/2, Xt is a stationary and
invertible process. These conditions are derived by Assumption 5. At seasonal
frequencies ωs ∈ (0, π], the spectral density becomes unbounded and behaves as

f (ω + ωs) ∼ C1|ω|
−2D, ω→ 0, (10)

and at the zero frequency,

f (ω) ∼ C2|ω|
−2(d+D), ω→ 0, (11)

where 0 < C1,C2 < ∞ (see Proposition 1 in Reisen et al. [48]). From the above,
it can be seen that the process has spectral density with poles at zero and seasonal
frequencies.

If, in addition to long-memory and periodicity features, Xt also presents out-
liers, it is necessary to build a model estimation method that encompasses this type
of characteristic. To achieve this, the fractional parameter estimation procedure
here suggested concatenates the methods given in Reisen et al. [48], Lévy-Leduc
et al. [29, 28, 27] and Molinares et al. [34] to estimate the fractional parameters of
the model presented in Equation (9). The robust estimation method is discussed
in the next sub-section.

2.2. A robust semiparametric estimator for the vector d in the SARFIMA model
Let {X1, . . . , Xn} be a sample from the process in Equation (9). The peri-

odogram function of Xt is given by

In,X(ω j) =
1

2πn

∣∣∣∣∣∣∣
n∑

t=1

Xteiω jt

∣∣∣∣∣∣∣
2

, (12)
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where ω j =
2π j

n , j = 1, . . . , ( n
2 − 1), are the Fourier frequencies. Since Xt is a

stationary process, In,X(ω j) can be also written as follows:

In,X(ω j) =
1

2π

n−1∑
k=−(n−1)

γ̂X(k)e−iω jk, (13)

where γ̂X(k) is the sample autocovariance function of {X1, . . . , Xn}.
An alternative robust spectral estimator for the ARFIMA process was pro-

posed in Molinares et al. [34] which replaces the classical sample autocovariance
γ̂X(k) in Equation (13) by the robust autocovariance function given in Ma and
Genton [32]. The main asymptotic results of the robust autocorrelation function
(ACF) for long-memory processes are discussed in Lévy-Leduc et al. [29]. Here,
as previously mentioned, the robust ACF estimator (Ma and Genton [32]) will be
used to obtain the estimates of the parameters d and D in Model (9). Therefore,
the estimation approach here proposed is an extension to the methods discussed
by Reisen et al. [48].

For a sample ν = (ν1, ν2, . . . , νn′)′, Rousseeuw and Croux [49, 50] suggested
the scale robust estimator Qn′(.), which is based on the τth order statistic of

(
n′

2

)
distances {|ν j − νk|, j < k}, and can be written as

Qn′(ν) = c × {|ν j − νk|; j < k}(τ), (14)

where c is a constant used to guarantee consistency (c = 2.2191 for the normal

distribution) and τ =

⌊
(n′

2 )+2
4

⌋
+ 1.

Based on the scale robust estimator Qn′(ν), Ma and Genton [32] proposed the
following robust sample autocovariance function

γ̂Qn′ ,y(h) =
1
4

[
Q2

n′−h,y(u + v) − Q2
n′−h,y(u − v)

]
, (15)

where u and v are vectors containing the initial n′ − h and the final n′ − h ob-
servations, respectively, of a time series sample Y1, ...,Yn′ of a process Yt∈Z with
absolutely summable autocovariance function, that is,

∑∞
h=0 |γy(h)| < ∞ where

γy(h) is the autocovariance of Yt at the lag h .
As pointed out by the authors, the robust estimator of the autocorrelation func-

tion could be obtained by dividing γ̂Qn′ ,y(h) in Equation (15) by the product of
Qn′,y(u) and Qn′,y(v). However, this would not be a natural autocorrelation esti-
mator because it would not be bounded between -1 and 1. Thus, a highly robust
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autocorrelation estimator can be computed by

ρ̂Qn′ ,y(h) =
Q2

n′−h,y(u + v) − Q2
n′−h,y(u − v)

Q2
n′−h,y(u + v) + Q2

n′−h,y(u − v)
. (16)

It can be shown that |̂ρQn′ ,y(h)| ≤ 1 for all h. As previously mentioned, the
asymptotic properties of γ̂Qn′ ,y(h) when the time series Yt has short and long-memory
properties are discussed in Lévy-Leduc et al. [29, 28, 27]. Here, some of their re-
sults are addressed in the following remarks.

Remark 3. Under the assumption that Yt∈Z follows a Gaussian long-memory pro-
cess with memory parameter 0 < ϕ < 1/2 (see Assumptions 3 and 4 ), Lévy-
Leduc et al. [29] showed asymptotic results for Qn′,y(.) and γ̂Qn′ ,y(h). In particular,
the authors demonstrated that for 1/4 < ϕ < 1/2, the robust autocovariance es-
timator γ̂Qn′ ,y(h) has the same asymptotic behavior as the classical autocovariance
estimator γ̂y(h). In this case, there is no loss of efficiency. For 0 < ϕ < 1/4,
γ̂Qn′ ,y(h) has the same rate of convergence of γ̂y(h), but with different variances.
The standard Gaussian ARFIMA(p, ϕ, q) is one particular case of the model dis-
cussed by the authors.

Remark 4. Note that, although the Gaussian distribution is required to obtain the
asymptotic distribution properties of Qn′,y(.) and γ̂Qn′ ,y(h), the finite sample size
investigation given in Lévy-Leduc et al. [29] showed that the estimation method
also performs well under non Gaussian observations, that is, the robust autoco-
variance estimator does not seem to be affected by the skewness of the data. Ad-
ditionally, Molinares et al. [34], Lévy-Leduc et al. [29, 28] and Sarnaglia et al.
[52], using finite sample size, discuss the finite sample robustness property of
γ̂Qn′ ,y(h) under different scenarios of the data contaminated with additive outliers,
that is, observations which can produce skewness in the series. Their investiga-
tions strongly suggest the use of γ̂Qn,y(h) in this context. A thorough search of
the relevant literature on this topic indicated that, under skewness distribution, the
asymptotic property of γ̂Qn,y(h) is very difficult to be obtained and it is still an open
problem.

Remark 5. From Equation (7), it can be seen that the autocovariances of the pro-
cess Xt, given in Equation (9), show an asymptotic slow decay typical of Equation
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(3) but with oscillations that depend on the frequency ω, as shown in Proposition
1 of Reisen et al. [48]. Additionally, from Remark 2, the process has spectral den-
sity with poles at zero and seasonal frequencies. Under the assumption that the
innovations εt are from a Gaussian distribution, the SARFIMA model in Equation
(9) satisfies the model conditions given in Lévy-Leduc et al. [29] (see Assump-
tions 3 and 4) and, therefore, the asymptotic results for the robust autocovariance
discussed in Lévy-Leduc et al. [29] for the ARFIMA model are also valid for
samples from the SARFIMA process (see, Remark 3). The finite sample proper-
ties discussed in Remark 4 are also expected for the model here studied (see the
finite sample size investigation analysis in Subsection 3).

Based on the previous discussion and on Molinares et al. [34], for the sample
X1, ..., Xn of Model (9), a robust spectral estimator can be computed as follows

IQn,X(ω) =
1

2π

∑
|h|<n

κ(h)̂γQn,X (h) cos(hω), (17)

where κ(h) is defined as

κ(h) =

1, |h| ≤ ξ,
0, |h| > ξ.

(18)

κ(h) is a particular case of the lag window functions used in classical spectral
theory to obtain a consistent spectral estimator, and ξ is the truncation point which
is a function of n, say ξ = G(n), where G(n) must satisfy G(n) → ∞, n → ∞,
with G(n)

n → 0. G(n) is usually chosen to be G(n) = nβ, where 0 < β < 1
(see, e.g., Priestley [39, pp. 433–437]). In addition, the robust ACF estimator
given in Equation (16) does not have the same finite-sample properties as the
classical one. For large h, the number of observations in the calculation of γ̂Qn,X (h)
is very small and, consequently, ρ̂Qn,X (h) becomes very unstable. Therefore, the
bandwidth ξ will avoid these undesirable covariance estimates in the calculation
of the estimator given in Equation (17). See Assumption 3 in Molinares et al.
[34] for more discussion on the choice of G(n). Note that, similar to the classical
spectral estimation theories, other lag window functions can be used to obtain a
robust spectral estimator, as discussed in Molinares et al. [34].

To estimate d = (d,D)′ for the SARFIMA process in Equation 9, Reisen et
al. [48] suggest the ordinary least squares estimator (OLS) d̂CL = (d̂CL, D̂CL)′
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computed from the approximated multiple linear regression equation

log In,X(ωk j) � a0 − D log
[
2 sin

( sωk j

2

)]2
− d log

[
2 sin

(ωk j

2

)]2
+ uk j, (19)

where a0 is a constant and

uk j = log
In,X(ωk j)
fX(ωk j)

− E
[
log

In,X(ωk j)
fX(ωk j)

]
.

The frequencies ωk j, k = 0, 1, ..., [ s
2 ], 1 ≤ j ≤ M, are defined as

ωk j =

{ 2πk
s +

2π j
n , k = 0,

2πk
s ±

2π j
n , k = 1, ..., [ s

2 ] − 1.
(20)

ω[ s
2 ] j =

 2π[ s
2 ]

s −
2π j
n , s even;

2π[ s
2 ]

s ±
2π j
n , s odd.

In the above equations, M = M(n) is the bandwidth that has to satisfy

(A6) (M
n

)α
log M +

1
M
→ 0 , as n→ ∞ ,

for some α > 0. One suggestion is to use an α that avoids overlapping frequencies,
for example, M < n−1

2s (see, also, Remark 7).
Under some assumptions which also includes Gaussian innovations, Reisen et

al. [48] establish that

√
M(d̂CL − d)→ N

(
W−1b,

π2

6
W−1

)
, (21)

where b and W are a vector and a 2 × 2 matrix of constants, respectively. See,
Theorems 1 and 2 in Reisen et al. [48].

In this work, a robust OLS estimator d̂R = (d̂R, D̂R)′ is proposed replacing
In,X(ωk j) in Equation (19) by IQn,X (ωk j), given in Equation (17). The choice of
the bandwidths M = M(n) will be based on Assumption 6 under restrictions of
Equation (20).

Remark 6. Note that, although the asymptotic distribution of d̂R is still an open
problem, the consistency and distribution properties of the estimators, finite sam-
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ple properties of the estimators of the long-memory parameter and the sample
autocovariance functions in the ARFIMA model are investigated by Molinares et
al. [34] and Lévy-Leduc et al. [29], respectively. These works together with the
simulation results displayed in the following section for the SARFIMA process
support the use of the robust function (Equation 17) as an alternative spectral es-
timator to obtain robust fractional parameter estimates in a real time series that
presents long-memory and additive outliers features. The d̂R estimator is imple-
mented in R-project [40] and the code can be obtained upon request.

Remark 7. Note that, if AR and/or MA coefficients are introduced in the model
these short-memory parameters lead to biased estimates and the bias (positive or
negative) will depended on the size of the bandwidth M and on the values of the
AR/MA parameters. This issue is well-documented in Reisen et al. [48], Reisen
[42] and Hurvich and Ray [23]. See, also, Hassler [19] for the flexible SARFIMA
model.

3. A simulation study

In this section, the finite sample performance of the OLS robust fractional
parameter estimator (d̂R = (d̂R, D̂R)′) is investigated through Monte Carlo ex-
periments for SARFIMA models, with p = q = 0 and s = 12, and with i.i.d
innovations from a N(0, 1) distribution. For comparison purposes, the classical
OLS fractional estimator (d̂CL = (d̂CL, D̂CL)′), which is based on the classical pe-
riodogram (Reisen et al. [48]) is also considered in the simulation study. Since
the simulated models here do not have AR and/or MA components, the OLS esti-
mates were computed based on the bandwidth M = [(n−2s)/2s] in order to avoid
overlapping frequencies (see, also, Assumption 6 and Remark 7). For the robust
spectral estimator (Equations (17 ) and (18)), the bandwidth was G(n) = n0.7 (see,
Molinares et al. [34]). The sample size is n = 1000 and the mean and standard
deviation were calculated over 1000 replications. Other scenarios with smaller
sample sizes (for example, n = 500, s = 3) were also investigated resulting in
similar conclusions (they are available upon request).

Figure 1 shows the box-plots with the results of both estimators for series
generated without outliers (no contamination). It can be seen that, in general,
both methods perform similarly, that is, under the scenario of a non-contaminated
time series both estimation methods lead to comparable results, with estimates
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close to the real values of d and D. However, the robust estimates have slightly
smaller variation compared with the classical ones (see, also, Molinares et al. [34]
and Lévy-Leduc et al. [29] for ARFIMA models).

Figures 2 and 3 present the estimated densities of the classical and robust
estimators for SARFIMA models with d = D = 0.1 and d = 0.3 and D = 0.1,
respectively. Although, as previously stated, the asymptotic distribution of d̂R was
not yet proved, it can be seen that the standardized estimates are fairly close to
the density of the N(0, 1) distribution. Therefore, this simple simulation study can
give some support for the theoretical discussion presented in the previous remarks
and the use of the proposed estimation method in the context of this paper, that is,
in time series with long-memory, seasonality and outliers.
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(a) Estimates of d (classical d̂CL and robust
d̂R ).

D̂CL D̂R
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3
−

0.
1

0.
1
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3

(b) Estimates of D (classical D̂CL and robust
D̂R ).

Figure 1: Box-plots of the estimates d̂CL, d̂R, D̂CL and D̂R for the SARFIMA model with p = q = 0,
d = D = 0.1 and s = 12. Non-contaminated series.

The discussion of the performance of the robust autocovariance estimate un-
der non-Gaussian distribution made in Remark 4 is also valid for the parameter
estimation. Figure 4 displays the densities of the estimates when the innovations
follow a Student’s t-distribution with 3 degrees of freedom. The performance of
the estimates was similar to the Gaussian case. See, also, Lévy-Leduc et al. [26]
(Section 3.3) for non-Gaussian observations.

To investigate the robustness property of d̂R = (d̂R, D̂R)′ in a time series under
outliers, the SARFIMA model contaminated with additive outliers was simulated
according to the model structure given in Lévy-Leduc et al. [26] and Molinares

et al. [34] and this is summarized below.
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Figure 2: Empirical densities of the N(0, 1) and of the standardized estimates for the SARFIMA
with p = q = 0, d = D = 0.1 and s = 12.
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Figure 3: Empirical densities of the N(0, 1) and of the standardized estimates for the SARFIMA
model with p = q = 0, d = 0.3, D = 0.1 and s = 12.

Let now Yt be defined by

Yt = Xt +$Wt, (22)

where the parameter $ represents the magnitude of an additive outlier and Wt is a
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Figure 4: Empirical densities of the the standardized estimates for the SARFIMA model with
innovations generated from a t-student distribution (3 d.f.) and p = q = 0, d = 0.1, D = 0.1 and
s = 12.

random variable with probability distribution

P (Wt = −1) = P (Wt = 1) = δ/2 and P (Wt = 0) = 1 − δ ,

where E[Wt] = 0 and E[W2
t ] = Var(Wt) = δ. Note that Equation (22) is based on

the parametric models proposed by Fox [14]. Wt is the product of Bernoulli (δ)
and Rademacher random variables; the latter equals 1 or −1, both with probability
1/2. Xt and Wt are independent random variables.

Figure 5 presents the box-plots for the classical and robust estimators consid-
ering the series with outliers ($ = 15 and δ = 0.05). As can be seen from the
box-plots, the classical estimator is clearly affected by additive outliers while the
robust one keeps almost the same picture of the non-contaminated scenario. This
simple investigation leads to analogous conclusions given in Lévy-Leduc et al.
[26] and Molinares et al. [34], when the generated process follows an ARFIMA
model, that is, the classical OLS fractional estimator is completely influenced by
the outliers while, in general, the robust one is not. In the non-Gaussian series,
the methods displayed a similar performance and the results are available upon
request.
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Figure 5: Box-plots of the estimates d̂CL, D̂CL, d̂R and D̂R for the SARFIMA model with p = q = 0,
d = D = 0.1 and s = 12, for series with outliers.

4. An application to SO2 pollutant

The daily average SO2 concentration is expressed in µg/m3 and was measured
at the Air Quality Automatic Monitoring Network (AQAMN) of Cariacica, which
belongs to the Metropolitan area of the Great Vitória Region (GVR) - ES - Brazil.
GVR is comprised of seven cities with a population of about 1.7 million inhabi-
tants in an area of 2,331 km2. The region is situated along the South Atlantic coast
of Brazil (latitude 20◦19S, longitude 40◦20W) and has a warm tropical climate,
with average temperatures ranging from 24◦C (Celsius) to 30◦C.

The raw series has a sample size of 1826 daily observations (Figure 6), mea-
sured from January 1st 2005 to December 31st 2009. The maximum concentra-
tion is generally observed in the winter months (southern hemisphere) from July
to September. It can be seen that the series has some high concentration of SO2

in different points in time. As previously mentioned, these large peaks can be
viewed here as outliers, since their values can provoke serious damage to the sta-
tistical functions, such as the mean and the standard deviation and, therefore, may
affect the correlation structure of the series, leading to misleading results.

Since the variability in the series did not seem to be stable, a log transformation
was used (Zt = log(Xt)). Moreover, the series was divided into two parts: learning
and prediction sets. The 1626 observations from January 1st 2005 to June 14th
2009 were considered as learning set and the remaining 200 observations were
kept for the forecasting study.
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Figure 6: Daily SO2 concentrations (µg/m3) from 2005/01/01 to 2009/12/31.

The potential effect of the large concentrations on the sample summary func-
tions is now addressed The sample autocorrelation (ACF), the partial autocorre-
lation (PACF) and the periodogram functions of Zt are shown in Figure 7. These
plots indicate possible seasonal behavior with a period equal to seven, which is an
expected result since the data are daily mean levels.

The robust ACF, PACF and periodogram functions are displayed in Figures
8(a), 8(b) and 8(c), respectively, to compare them with the classical ones in order
to examine whether there is any effect of the large peaks on these functions. As can
be seen from these figures, the high levels of concentration reduce the size of the
classical ACF and PACF functions while increase the peaks of the periodogram;
that is, the classical periodogram across the frequencies close to zero are much
higher than the robust ones. In particular, the sample ACFs are smaller than the
robust ones, for instance, for lags h = 1, 3, 5, 10, the robust autocorrelations were
equal to 0.72, 0.49, 0.48 and 0.41, while the classical autocorrelations were equal
to 0.62, 0.42, 0.41 and 0.35, respectively. Such a behavior was theoretically justi-
fied in Corollary 1 of Molinares et al. [34]. Note that the long memory property
of the series is well observed by looking at the periodogram plots in Figures 7(c)
and 8(c). Both plots indicate high values for the frequencies close to zero.

Additionally, in Figures 7(d) and 8(d) the log-periodogram is plotted against
the log of the frequencies, for classical and robust cases, respectively. The figures
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Figure 7: (a) ACF, (b) PACF and (c) periodogram of Zt and (d) log(In(ω j)) versus log(ω j).

also present the ordinary least square estimator of βi in the model log[I(ω j)] =

β0 + βilog(ω j), where i = 1, if classical, i = 2, if robust, and j = 1, . . . ,M, with
M = 33 (α = 0.465) which satisfies Assumption 6 and avoids the overlapping
frequencies. Comparing the intensity of the long memory dependency (the slopes
of the regressions in Figures 7(d) and 8(d)), it can be seen that the dependency is
larger for the robust estimator (|β̂1| < |β̂2|). However, as the SO2 concentrations
exhibit seasonality, any conclusion about the estimates β̂i, i = 1, 2, should be taken
with care.

The robust SARFIMA modeling strategy follows similar steps suggested in
Hosking [20] and investigated by Reisen [42] and Reisen and Lopes [44]. In
semiparametric procedures, the estimation of the model parameters is performed
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Figure 8: (a) Robust ACF, (b) robust PACF and (c) robust periodogram of Zt and (d) log(IQn (ω j))
versus log(ω j) (d).

in two steps: firstly, the parameter vector dR is estimated based on the procedures
presented in Section 2.2. Secondly, the truncated filter (1−B)d̂R(1−Bs)D̂R is used to
filter the observations. This new series is used to estimate the autoregressive and
moving average parameters. The fitted models and their accuracy are discussed in
the next subsections.

4.1. Adjusted models
The robust and classical estimates of the parameter vector d are displayed in

Table 1 for different bandwidths M, which corresponds to 0.4 < α < 0.55, as
discussed in Section 2.2. The values in brackets correspond to the standard de-
viations (s.d.). To compute the robust estimates, the bandwidth in Equation (18)
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was fixed as G(n) = n0.7. Note that the estimates in Tables 1 do not satisfy all the
stationary conditions, that is, the values do not satisfy |d + D| < 0.5 (see Remarks
1 and 2), but the model still has the mean reverting property in the sense that its
cumulative impulse response weights sum to a finite number. In addition, the plot
in Figure 6 suggests a phenomenon of mixture of stationary and nonstationary
blocks, which may imply that 0.5 < |d̂ + D̂| < 1.0, although the individual esti-
mates are in the stationary region. However, this possible nonstationarity behavior
of the series can be reduced to a stationary time series by differencing the series
with a long-memory filter, as is discussed in what follows.

Table 1: Estimates of dR and DR for different bandwidths (M) for Zt, using the robust and classical
periodogram

Robust estimates
M d̂R sd(d̂R) D̂R sd(D̂R)
25 0.4706 (0.0465) 0.2934 (0.0304)
28 0.4675 (0.0423) 0.2723 (0.0285)
33 0.4510 (0.0398) 0.2610 (0.0280)
38 0.4565 (0.0359) 0.2391 (0.0262)
43 0.4534 (0.0337) 0.2202 (0.0254)
49 0.4511 (0.0307) 0.2100 (0.0240)
57 0.4539 (0.0281) 0.1724 (0.0229)

Classical estimates
M d̂CL sd(d̂CL) D̂CL sd(D̂CL)
25 0.4295 (0.0578) 0.2214 (0.0378)
28 0.4303 (0.0552) 0.2080 (0.0372)
33 0.4301 (0.0500) 0.1925 (0.0351)
38 0.4221 (0.0481) 0.1923 (0.0351)
43 0.4099 (0.0451) 0.1952 (0.0341)
49 0.3983 (0.0420) 0.1661 (0.0329)
57 0.3876 (0.0386) 0.1440 (0.0315)

As mentioned in Remark 7, in the semiparametric approach, the choice of
estimates depends on the size of the bandwidth. For example, large M leads to
more bias in the fractional estimators, when there are short-run components in the
model. As expected all estimates in Table 1 using the classical periodogram were
lower than those adopting the robust periodogram. This is due to the presence of
observations with large peaks in the SO2 concentrations, as previously discussed.
The robust estimates at zero frequency are very stable across the values of M. This
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is an indication that, if there is a short-memory parameter in the estimated model,
it is not large enough to make an impact on the estimates of d (see, also, the ACF
plots in Figure 9). Therefore, M = 33 was chosen and thus, using the robust
periodogram, d̂R = 0.4510 and D̂R = 0.2610. Note that the robust estimates have
smaller s.d. than the standard ones, which is an expected result (see, for example,
Molinares at al. [34] and Lévy-Leduc et al. [29] for ARFIMA models).

Now, using the fractional differencing parameter estimates, showed in Table 1
with M = 33, the series η̂t = (1−B)d̂R(1−Bs)D̂RZt, t = 1, ..., 1626, was obtained.
Figure 9 shows the sample robust ACF and robust PACF functions of η̂t.
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Figure 9: Robust ACF and robust PACF of η̂t.

Based on the sample robust ACF and PACF functions displayed in Figure 9,
some models were considered to fit η̂t and the one which presented the small-
est AIC, equal to 1,570.21, was the MA(1) model. Table 2 shows the estimated
model. The MA(1) estimate was computed by the Hannan-Rissanen algorithm
(see, Brockwell and Davis [6]), in which the classical autocovariance was re-
placed by the robust one. Although the MA(1) component is adding only a small
contribution, the robust SARFIMA(0, dR, 1) × (0,DR, 0)7 was chosen for the SO2

average data.
Model adequacy is now addressed (Table 3). The Box-Pierce and Ljung-

Box statistics (robust tests) demonstrated that the sample residuals are not time-
correlated. In addition, the results indicated that the residuals are not normally
distributed, which was an expected result since the original data is skewed to the
right. Other classical residual plots were also analyzed and they led to similar
conclusions. These plots are available upon request.
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Table 2: Adjusted robust SARFIMA model for SO2 concentrations
Parameter Estimate sd

dR 0.4511 0.0398
DR 0.2610 0.0228
θ1 0.0225 0.0145

Table 3: Tests for normality* and non correlation (robust tests)**
Shapiro-Wilk* Jarque-Bera* Box-Pierce** Ljung-Box**

<0.0001 <0.0001 0.8403 0.8404

Note: the p-values correspond to the robust Box-Pierce and robust Ljung-Box test statistics with
lag 1. Other lags were tested and they presented similar conclusions.

An alternative way to demonstrate the usefulness, quality and forecasting per-
formance of the proposed model is to compare it to the standard SARFIMA mod-
els. The SARFIMA(0, dCL, 1) × (0,DCL, 0)7 model (with AIC equal to 1,640.03
and M = 33) was chosen to fit the raw data among other candidates and thus,
using the classical periodogram, d̂CL = 0.4301 and D̂CL = 0.1925. The residu-
als of standard SARFIMA model were right-skewed and uncorrelated. The fore-
cast performance of the robust SARFIMA(0, dR, 1) × (0,DR, 0)7 and the standard
SARFIMA(0, dCL, 1) × (0,DCL, 0)7 models is discussed in the next subsection.

4.2. Forecasting investigation
The objective of this section is to verify whether the standard SARFIMA

model may lead to less accurate forecasts compared to the robust estimation. As
stated before, the observations from June 15th 2009 to December 31st 2009 were
discarded from the modeling stage (200 observations) to be used in the out-of-
sample forecast study. Forecasts one to ten steps ahead are considered.

To measure the accuracy of the forecasts one to ten steps ahead, the crite-
ria used was the prediction mean square error (PMSE) and the values are dis-
played in Table 4. From this table, it can be seen that the robust SARFIMA model
yields more accurate forecasts than the standard SARFIMA model, especially for
long-term forecasts. In addition, the Diebold-Mariano test [13] showed that the
forecast of the two models are significantly different and confirmed the superi-
ority forecasting performance of the robust SARFIMA model. For example, for
h = 1 and 10, the statistical Diebold-Mariano test gave p-values of 0.4× 10−2 and
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0.035, respectively, showing rejection of the null hypothesis in favor of the robust
SARFIMA forecasting performance.

Table 4: PMSE of the fitted models values to the SO2 concentration
Horizon St. SARFIMA (A) Rob. SARFIMA (B) [(A/B)-1]*100

1 0.0875 0.0857 2.09%
2 0.1088 0.1034 5.27%
3 0.1159 0.1079 7.44%
4 0.1209 0.1126 7.37%
5 0.1241 0.1140 8.86%
6 0.1255 0.1156 8.60%
7 0.1289 0.1161 11.01%
8 0.1392 0.1264 10.15%
9 0.1380 0.1240 11.25%

10 0.1372 0.1236 10.99%

Note: St. = standard; and, Rob. = robust.

Figure 10 presents a visual analysis of the one-step-ahead forecast values of
the robust SARFIMA model, that is, from June 15th 2009 to December 31st 2009.
It indicated a reasonably good performance of the model and estimation method
proposed here to fit the data. The robust SARFIMA model is able to capture the
dynamics of the SO2 series for one-step-ahead forecasts. These results corrobo-
rate the better performance of the fitted robust SARFIMA model to forecast the
SO2 concentration over the standard SARFIMA model, especially for longer lead
times.

5. Concluding remarks

This article considered a robust SARFIMA model, with two fractional param-
eters, in the presence of additive outliers. To estimate the fractional parameters d
and D, this paper proposed an estimation procedure which is based on the methods
suggested in Reisen et al. [48], Lévy-Leduc et al. [29] and Molinares et al. [34].
Simulation studies demonstrated that the estimation method works well when the
series is contaminated with additive outliers. As an example of application, the
daily average SO2 concentration was analysed to show the usefulness of the pro-
posed methodology. This series presented seasonality, long memory phenomena
and some occasional large concentrations. As mentioned in the introduction, the
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Figure 10: Forecasted values by the robust SARFIMA model and SO2 concentrations (µg/m3)
from June 15th 2009 to December 31st 2009, one-step-ahead.

high levels of SO2 are regarded as potential outliers. Based on the robust estima-
tor of the fractional parameters, the SARFIMA(0, dR, 1) × (0,DR, 0)7 model was
used to fit the real data. The results suggested that the residuals were uncorrelated
and not normally distributed. The standard estimation method of the SARFIMA
model was also considered in the forecasting performance. The PMSE indicated
that the robust SARFIMA model had a better accuracy, especially to forecast for
long lead times. The robust method is an attractive procedure for estimating the
parameters of the SARFIMA model with long memory, seasonality and additive
outliers and it can be easily used in application areas. The results in this paper
will hopefully stimulate further research on using robust estimation methods and
long-memory models to represent and forecast environmental time series.
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