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The problem of state and parameter estimation is addressed for systems with cascade structure including
finite-dimensional dynamics followed in series with infinite-dimensional dynamics. The formers are
captured through an ODE that is state- and parameter-affine. The latter, referred to as sensor dynamics,
are represented by a diffusion parabolic PDE. Both equations are subject to parameter uncertainty.
Furthermore, the connection point between the ODE and the PDE blocs is not accessible tomeasurements.
The aim is to get online estimates of all inaccessible states and unknown parameters of both the ODE
and the PDE subsystems. This observation problem is dealt with by combining the backstepping design
method and the extended Kalman observer approach. The obtained adaptive observer is shown to be
exponentially convergent under an ad-hoc persistent excitation condition.

1. Introduction

An intensive research activity has been devoted to observer de-
sign over the past three decades. This activity has mainly been
focused on (finite-dimensional) nonlinear systems described by
ordinary differential equations (ODEs) leading to numerous ob-
server design techniques and related stability and convergence
results. So far, much less research effort has been devoted to
the problem of state observation for systems involving partial
differential equations (PDEs). In this respect, the emphasis has
been put on the problem of designing exponential boundary ob-
servers for various types of systems including linear wave equa-
tion (Guo & Xu, 2007), semilinear diffusion equation (Fridman &
Blighovsky, 2012). Attention has also been paid to designing finite-
time convergent observers, see e.g. Miranda, Moreno, Chairez, and
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Francoise.Lamnabhi-Lagarrigue@lss.supelec.fr (F. Lamnabhi-Lagarrigue).

Fridman (2012) and sampled-data exponentially convergent ob-
servers for parabolic-type PDEs (Ahmed-Ali, Fridman, Giri, Burlion,
& Lamnabhi-Lagarrigue, 2015, 2016; Ahmed-Ali, Giri, Krstic, &
Lamnabhi-Lagarrigue, 2016).

In Smyshlyaev and Krstic (2005), a quite different approach
to boundary observer design has been developed for a class
of parabolic partial integro-differential equations. The resulting
observers involve gain kernels that are constructed using the
continuum version of the backstepping design method. This
approach has been applied to observer design for various systems
described by PDEs e.g. magnetohydrodynamic system (Vazquez,
Schuster, &Krstic, 2008), linear hyperbolic system (Vazquez, Krstic,
& Coron, 2011), and drilling system (Hauge, Aamo, & Godhavn,
2013). Later on, the backstepping-like approach has proved to be
applicable to various other classes of systems including cascades of
ODEs and PDEs. For these cascade systems, the aim is to recover the
(finite-dimensional) state of the systemODE part and the (infinite-
dimensional) state of the PDE part. Amajor difficulty lies in the fact
that the connection point between the twoparts is not accessible to
measurements. In Krstic and Smyshlyaev (2008), the observation
problem has been addressed for linear ODE–PDE cascade systems
where the PDE part can be seen as representing sensor dynamics.
The latter have been captured by a (purely convection) first-
order hyperbolic PDE which models transport delays. Using the
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backstepping design approach, new state transformations and
Lyapunov–Krasovskii functional have been employed in observer
design resulting in a new family of boundary predictor observers.
A similar design approach has been developed in Krstic (2009)
to get state observers for ODE–PDE cascades where the PDE
part is a (diffusion) parabolic equation (describing e.g. heat
diffusion phenomena). Like the system, the observer structure
is an ODE–PDE cascade augmented by innovation terms with
observer gains. The design PDEs yielding observer gains, which
were hyperbolic of first order in the delay problem considered in
Krstic and Smyshlyaev (2008), have turned out to be hyperbolic
of second-order in the diffusion problem studied in Krstic (2009).
Extensions of this observer design to sampled-output ODE–PDE
systems have been proposed in Ahmed-Ali, Karafyllis, Giri, Krstic,
and Lamnabhi-Lagarrigue (2016) and Karafyllis, Ahmed-Ali, Giri,
Krstic, and Lamnabhi-Lagarrigue (2016).

In this paper, the problem of state observation for ODE–PDE
systems, where the PDE is a diffusion parabolic equation, is
addressed in presence of parametric uncertainty. The unknown
parameter vectors come linearly in the finite- and infinite-
dimensional subsystem, but the associated regression vectors are
allowed to be nonlinear in the system output adding thus extra
nonlinear dynamics. Clearly, this class of systems is much wider
than that of Krstic and Smyshlyaev (2008) which was limited
to parameter-uncertainty-free linear ODE–PDE systems. We seek
an observer that provides online estimates of the ODE and PDE
states and their unknown parameters. This observation problem
is dealt with by designing an adaptive observer making use of
the (infinite-dimensional) backstepping design technique and the
(finite-dimensional) Kalman observer approach. Interestingly, the
resulting observer turns out to be a nonlinear adaptive version
of the generalized-predictor observer of Krstic (2009). It involves
design PDEs yielding observer gains similar to those of their
nonadaptive counterparts. Besides, the adaptive observer includes
additional filters, defined by ODEs and PDEs, that define the (time-
varying) direction alongwhich the parameter adaptive laws evolve
in the parameter space.

Compared to Ahmed-Ali, Giri, Krstic, Burlion, and
Lamnabhi-Lagarrigue (2015), Ahmed-Ali, Giri, Krstic, and
Lamnabhi-Lagarrigue (2015) and Ahmed-Ali, Giri, Krstic, Burlion,
and Lamnabhi-Lagarrigue (2016), the observation problem that
is presently studied is quite different. Indeed, the class of sys-
tems considered in Ahmed-Ali, Giri, Krstic, Burlion, and Lamnabhi-
Lagarrigue (2016, 2015) is described using solely a semilinear
heat PDE, i.e. no ODE subsystem was involved in those systems.
Furthermore, the adaptive observers in Ahmed-Ali, Giri, Krstic,
Burlion, and Lamnabhi-Lagarrigue (2015) and Ahmed-Ali, Giri,
Krstic, Lamnabhi-Lagarrigue, and Burlion (2016) necessitated as
many sensors as the number of unknown parameters. In Ahmed-
Ali, Giri, Krstic, and Lamnabhi-Lagarrigue (2015), an ODE–PDE sys-
tem structure was considered but the system was not subject to
parameter uncertainty and so the proposed observerwas not adap-
tive. In Ahmed-Ali, Fridman et al. (2016); Ahmed-Ali, Giri, Krstic,
and Lamnabhi-Lagarrigue (2016), the problem of observer design
is considered for delayed ODE systems subject to parameter un-
certainty. The constant delay is described by first-order hyperbolic
PDE leading to an ODE–PDE representation of the system. As the
parameter uncertainty only enters in the ODE, the adaptive ob-
server design problem proves to bemuch simpler than the present
problem where parameter uncertainty also affects the PDE.

The paper is organized as follows: in Section 2, the observation
problem under study is formulated and an adaptive observer
is proposed; the observer convergence is analyzed in Section 3
and numerical simulation results are provided in Section 4; a
conclusion and reference list end the paper. To alleviate the
presentation, some technical proofs are appended.

Fig. 1. System structure.

Notations. Throughout the paper, Rn denotes the n dimensional
real space and the corresponding Euclidean norm is denoted ∥·∥.
This also denotes the induced matrix norm in Rn×m, the set of all
n×m real matrices. Functions that are continuously differentiable
with respect to all their arguments are denoted C1. L2[0, D] is the
Hilbert space of square integrable functions and the corresponding

L2 norm is denoted ∥·∥2. Accordingly, ∥w∥2 =


 D

0
w2(ς)dς

1/2

for all w ∈ L2[0, D]. H1(0,D) is the Sobolev space of absolutely
continuous functions w : [0,D] → R; x → w(x) with
dw/dx ∈ L2[0,D]. H2(0,D) is the Sobolev space of scalar functions
w : [0,D] → R; x → w(x) with absolutely continuous dw/dx ∈
L2[0,D] and d2w/dx2 ∈ L2[0,D]. For any w ∈ H1(0,D) such that
w(0) = 0 orw(D) = 0, the followingWirtinger’s inequalities hold:
 D

0

w2(x)dx ≤
4D

π2

 D

0

w2
x (x)dx (1a)

max
0≤x≤D

w2(x) ≤ D

 D

0

w2
x (x)dx. (1b)

Finally, given a two-dimensional function w : [0,D] × R+ →
R; (x, t) → w(x, t), the notation w[t] and wx[t] refer to the
functions defined on 0 ≤ x ≤ D by (w[t])(x) = w(x, t) and
(wx[t])(x) = ∂w(x, t)/∂x.

2. Problem formulation and adaptive observer statement

The system under study is composed of a finite-dimensional
nonlinear subsystem connected in series with an infinite-
dimensional subsystem as depicted in Fig. 1. The former assumes
the following state-space representation:

Ẋ(t) = AX(t)+ φ1(t)θ1, t ≥ 0, (2)

with X(0) = X0 ∈ Rn is arbitrary. The infinite-dimensional
subsystem is modeled by a parabolic PDE of the form,

ut(x, t) = uxx(x, t)+ φ2(x, t)θ2, 0 ≤ x ≤ D (3a)

ux(0, t) = 0, u(D, t) = CX(t) (3b)

where A ∈ Rn×n and C ∈ R1×n are known constant matrices
and the pair (A, C) is observable; φ1 ∈ C1([0,∞) : Rn×m1) and
φ2 ∈ C1([0,D] × [0,∞) : R1×m2) are known bounded functions;
the domain length D > 0 is a known scalar. The state vector
X(t) ∈ Rn and the distributed state u(x, t) ∈ R are not accessible to
measurement, except for the boundary state u(0, t) which stands
as the output of the whole system. The system parameter vectors
θ1 ∈ Rm1 and θ2 ∈ Rm2 are not known but their dimensions
(m1,m2) are.

The aim is to design an observer able to provide accurate online
estimates of the system state functions X(t) and u(x, t) (t > 0,≤
x ≤ D), on the one hand, and the unknown parameter vectors
θ1 and θ2, on the other. The observer must only make use of the
system output y(t) = u(0, t). The uncertain quantities in (2) and
(3a) constitute a new feature of this study compared to Krstic
(2009) where φ1(t)θ1 = φ2(x, t)θ2 = 0. On the other hand, the
functions φ1(t) and φ2(x, t) are presently allowed to be output
dependent i.e. one might have φ1(t) = ψ1(t, y(t)) and φ2(x, t) =
ψ2(x, t, y(t)) for some functions ψ1(·, ·) and ψ2(·, ·). That is, the
present observer design is not limited to linear systems, unlike
Krstic (2009).

To cope with the observation problem at hand, the adaptive
observer of Table 1 is proposed.
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Table 1

Adaptive observer.

State observer:
˙̂
X(t) = AX̂(t)+ φ1(t)θ̂1(t)− K (û(0, t)− u(0, t))+ λ1(t)

˙̂
θ1(t)+ λ2(t)

˙̂
θ2(t) (4a)

ût (x, t) = ûxx(x, t)+ φ2(x, t)θ̂2(t)− CM(x)M−1(D)K(û(0, t)− u(0, t))

+


λ3(x, t)+ CM(x)M−1(D)λ1(t)
 ˙̂
θ1(t)

+


λ4(x, t)+ CM(x)M−1(D)λ2(t)
 ˙̂
θ2(t)

(4b)

ûx(0, t) = 0, û(D, t) = CX̂(t) (4c)

for all t ≥ 0 and all x ∈ [0, D], where K ∈ Rn is such that

A − KCM−1(D) is Hurwitz.

Parameter adaptive law
˙̂
θ(t) = −ρR(t)Λ(t)ũ(0, t) (4d)

Ṙ(t) = R(t)− R(t)Λ(t)ΛT (t)R(t) (4e)

with θ̂ (t) =


θ̂ T1 (t) θ̂
T
2 (t)

T

∈ Rm , R(t) ∈ Rm×m ,m = m1 + m2 , and

Λ(t) =


CM−1(D)λ1(t)+ λ3(0, t) CM
−1(D)λ2(t)+ λ4(0, t)

T
∈ Rm, (4f)

where θ̂ (0) ∈ Rm , R(0) = RT (0) > 0 and ρ > 0 are arbitrary.

Filters

λ̇1(t) = (A − KCM−1(D))λ1(t)+ φ1(t)− Kλ3(0, t) (4g)

λ̇2(t) = (A − KCM−1(D))λ2(t)− Kλ4(0, t) (4h)

λ3,t (x, t) = λ3,xx(x, t)− CM(x)M−1(D)φ1(t) (4i)

λ4,t (x, t) = λ4,xx(x, t)+ φ2(x, t) (4j)

λ1(0) = 0 ∈ Rn×m1 , λ3(D, t) = 0 ∈ R1×m1 ,

λ3,x(0, t) = 0, λ2(0) = 0 ∈ Rn×m2 (4k)

λ4(D, t) = 0 ∈ R1×m2 , λ4,x(0, t) = 0 (4l)

M(x) = (I 0) exp



0 A

I 0



x



I

0



∈ Rn×n (4m)

Remark 1. (a) Relevant properties of the matrix function M(x)
defined by (4m) are described in Appendix B. Accordingly, one has
A = M(D)AM−1(D)which implies

A − KCM−1(D) = M(D)AM−1(D)− KCM−1(D)

= M(D)


A − M−1(D)KC


M−1(D). (5)

This shows a similarity between the matrices A − KCM−1(D) and
A−M−1(D)KC which then have identical eigenvalues. On the other
hand, we know that the pair (A, C) is observable (by assumption).
Therefore, A − M−1(D)KC can be made Hurwitz by appropriately
choosing the gain K . The same conclusion applies to the similar
matrix A−KCM−1(D). It is thus demonstrated that the requirement
on the gain K (to be selected so that A − KCM−1(D) is Hurwitz) is
not an issue.

(b) A well posedness analysis of the system and the adaptive
observer is outlined in Appendix A.

(c) Introduce the variable change L = M−1(D)K . Then, A −
LC = M−1(D)



A − KCM−1(D)


M(D) is clearly Hurwitz and the
adaptive observer (4a)–(4c) rewrites in terms of L as follows:

˙̂
X(t) = AX̂(t)+ φ1(t)θ̂1(t)− M(D)L ũ(0, t)

+ λ1(t)
˙̂
θ1(t)+ λ2(t)

˙̂
θ2(t) (6a)

ût(x, t) = ûxx(x, t)− CM(x)Lũ(0, t)+ φ2(x, t)θ̂2(t)

+


λ3(x, t)+ CM(x)M−1(D)λ1(t)
 ˙̂
θ1(t)

+


λ4(x, t)+ CM(x)M−1(D)λ2(t)
 ˙̂
θ2(t) (6b)

ûx(0, t) = 0, û(D, t) = CX̂(t). (6c)

Clearly, ifφ1(t), φ2(x, t) and
˙̂
θ i(t) (i = 1, 2) are all set to zero then,

the adaptive observer (6a)–(6c) boils down to the (nonadaptive)
observer (84)–(87) of Krstic (2009).

(d) The observer proposed in Ahmed-Ali, Giri, Krstic, and
Lamnabhi-Lagarrigue (2015) concerned a class of ODE–PDE
systems involving no parameter uncertainty. That non-adaptive
high-gain type observer is quite different from the present
adaptive observer of Table 1.

(e) In Ahmed-Ali, Fridman et al. (2016); Ahmed-Ali, Giri, Krstic,
and Lamnabhi-Lagarrigue (2016), ODEs with output delay and
parameter uncertainty were considered. Following Krstic and
Smyshlyaev (2008), the observer design was performed on the
basis of an ODE–PDE representation where the PDE, a first-
order hyperbolic subject to no parameter uncertainty, represents
the constant well-known delay. The resulting adaptive observer
turned out to be a much simpler version of the present adaptive
observer, e.g. while the parameter adaptive law in the former
involved a single filter, the present adaptive law involves four
interconnected filters, i.e. (4g)–(4l). In this respect, note also that
the present adaptive observer is not an extension of the one in
Ahmed-Ali, Giri, Krstic, Burlion, and Lamnabhi-Lagarrigue (2016).
Indeed, the former does not boil down to the latter in the simpler
case where θ2 = 0 because the PDEs are different in the two
papers. That is, the adaptive observers in both papers are quite
different from each other.

3. Adaptive observer analysis

Introduce the state and parameter estimation errors:

X̃ = X̂ − X, ũ = û − u,

θ̃1 = θ̂1 − θ1, θ̃2 = θ̂2 − θ2.
(7a)

Also, for convenience, the following notations are introduced:

θ =


θ T1 θ
T
2

T
∈ Rm, θ̃ = θ̂ − θ. (7b)

Using (1)–(2) and (3a)–(3b), it is readily seen that these errors
undergo the following equations:

˙̃
X = AX̃ + φ1(t)θ̃1 − K ũ(0, t)+ λ1(t)

˙̃
θ1(t)+ λ2(t)

˙̃
θ2(t) (8a)

ũt(x, t) = ũxx(x, t)+ φ2(x, t)θ̃2(t)− CM(x)M−1(D)Kũ(0, t)

+


λ3(x, t)+ CM(x)M−1(D)λ1(t)
 ˙̃
θ1(t)

+


λ4(x, t)+ CM(x)M−1(D)λ2(t)
 ˙̃
θ2(t) (8b)

ũ(D, t) = CX̃(t) (8c)
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ũx(0, t) = 0 (8d)

˙̃
θ(t) = −ρR(t)Λ(t)ũ(0, t) (8e)

Ṙ−1 = −R−1 +ΛΛT (8f)

where the penultimate equation is obtained noticing that
˙̃
θ(t) =

˙̂
θ(t),

˙̃
θ i(t) =

˙̂
θ i(t) (i = 1, 2) and the argument t is omitted

(when clear) to alleviate expressions. In (8f), Ṙ−1 refers to the
derivative dR−1/dt . Eq. (8f) is equivalent to (4e) provided that
R(t) is uniformly invertible. To meet this requirement, a persistent
excitation (PE) property is needed. To this end, the following
notation is introduced:

Λ(t) =


CM−1(D)λ1(t)+ λ3(0, t) CM−1(D)λ2(t)+ λ4(0, t)
T
.

Then, the PE assumption is stated as follows:

PEAssumption. The vector signalΛ(t) is supposed to bepersistently
exciting in the sense that,

∃δ, ε0 > 0, ∀t > 0 :

 t+δ

t

Λ(s)ΛT (s)ds > ε0I (9)

where I ∈ Rm×m denotes the identity matrix.
Intuitively, the PE assumption means that the vector subset

{Λ(s); t ≤ s ≤ t + δ} spans the parameter vector space Rm,
whatever t . It is readily seen from (4g)–(4j) thatΛ(t) only depends
on the known input signals φ1(t) and φ2(0, t) and the auxiliary
function M(x) (i.e. Λ(t) does not depend on the state estimates
generated by the observer). Therefore, it is quite possible to check
whether the PE condition (9) is satisfied. Given that φ1(t) and
φ2(x, t) linearly enter (4g)–(4j), the PE requirement is met if the
power spectra of φ1(t) and φ2(0, t) are rich enough (e.g. Ioannou
& Sun, 2006). Now, it is shown in many places (e.g. Ioannou & Sun,
2006; Zhang, 2002) that if (9) holds then the time-varying matrix
gain inverse R−1(t) exists, is positive definite, and stays bounded
away from 0. Specifically, one then has

r0 ≤ R−1(t) ≤ r1, for all t ≥ 0 (10)

for some couple (r0, r1) of positive scalars. In the sequel, it is
supposed that property (9) holds so that one can make use of
(9)–(10).

Remark 2. Conditions (9)–(10) will prove to be crucial in making

the parameter estimation error θ̃ exponentially convergent to zero.
It is worth noting that the structure of the parameter adaptive law
(4d)–(4f) is quite similar to the so-called ‘‘forgetting-factor least-
squares’’ estimator (see e.g. Ioannou & Sun, 2006, p. 198). Except
for the structural similarity, the adaptive law (4d)–(4f) is novel due
to the way the regressorΛ(t) is generated. �

The exponential convergence of the adaptive observer is now
stated in the following theorem:

Theorem 1. Consider the adaptive observer of Table 1 and let there
the gain ρ of the parameter adaptive law be such that ρ > 1/2.
Then, when applied to the system (2)–(3), the observer is globally

exponentially convergent in the sense that the errors, X̃(t), θ̃ (t), and

the norm
 D

0
ũ2(x, t)dx, are exponentially vanishing (as t → ∞),

whatever the initial conditions are X̂(0) ∈ Rn, û[0] ∈ L2(0,D),

θ̂ (0) ∈ Rm. �

Proof. The proof of the theorem is divided in four parts. In the first
part, the four auxiliary state vectors, λ1(t) to λ4(x, t), generated by
(4g)–(4l) are shown to be bounded. The second part of the proof
is devoted to introducing a transformation of the error system
(8a)–(8f). The transformed system is shown in the third part to

be exponentially stable. Finally, the results of the theorem are
established in the final part.

Part 1. Boundedness of λ1(t), λ2(t), λ3(x, t) and λ4(x, t).
It will be shown that there exist real numbers, λi,max > 0

(i = 1, 2, 3, 4), such that the following properties hold:

∥λi(t)∥ ≤ λi,M (i = 1, 2) and ∥λi(x, t)∥ ≤ λ1,M

(i = 3, 4), for all t ≥ 0 and all x ∈ [0, D]. (11)

To alleviate the paper body, the proof of this result is placed in
Appendix C.

Part 2. Transformation of the error system (8a)–(8f).
Consider the following backstepping transformations, partly

inspired by Krstic (2009):

Z(t) = X̃(t)− λ1(t)θ̃1(t)− λ2(t)θ̃2(t), (12a)

ε(x, t) = ũ(x, t)− CM(x)M−1(D)X̃(t)

− λ3(x, t)θ̃1(t)− λ4(x, t)θ̃2(t). (12b)

Differentiating Z(t), one gets using (8a)–(8b), (12a)–(12b) and
(4m):

Ż =
˙̃
X − λ̇1θ̃1 − λ1

˙̃
θ1 − λ̇2θ̃2 − λ2

˙̃
θ2

= AX̃ + φ1(t)θ̃1 − Kũ(0, t)− λ̇1θ̃1 − λ̇2θ̃2 (using (8a))

= AZ + Aλ1θ̃1 + Aλ2θ̃2 + φ1(t)θ̃1 − K ũ(0, t)

− λ̇1θ̃1 − λ̇2θ̃2 (using (12a))

= AZ − Kε(0, t)− KCM−1(D)X̃(t)

− [Kλ3(0, t)+ λ̇1 − Aλ1 − φ1(t)]θ̃1

− [Kλ4(0, t)+ λ̇2 − Aλ2]θ̃2 (using (12b))

=


A − KCM−1(D)


Z − Kε(0, t)

− [Kλ3(0, t)+ λ̇1 − Aλ1 − φ1(t)+ KCM−1(D)λ1]θ̃1

− [Kλ4(0, t)+ λ̇2 − Aλ2 + KCM−1(D)λ2]θ̃2

using (12a), where the arguments (x, t) have been omitted to
alleviate expressions. Using (4g) and (4j), the last equality further
simplifies to:

Ż =


A − KCM(0)M−1(D)


Z − Kε(0, t). (13a)

Similarly, differentiating ε(x, t)with respect to t , one obtains using
(8a)–(8b) and (12b):

εt = ũt − CM(x)M−1(D)
˙̃
X − λ3,t θ̃1 − λ3

˙̃
θ1 − λ4,t θ̃2 − λ4

˙̃
θ2

= ũxx − CM(x)M−1(D)AX̃

−


CM(x)M−1(D)φ1 + λ3,t


θ̃1 +


φ2 − λ4,t


θ̃2

(using (8a)–(8b))

= εxx + C



d2M

dx2
(x)M−1(D)− M(x)M−1(D)A



X̃

−


CM(x)M−1(D)φ1 + λ3,t − λ3,xx


θ̃1

+


φ2 − λ4,t + λ4,xx


θ̃2 (using (12b)).

Using (4i)–(4j) andAppendix B (Part 2), the last equality boils down
to:

εt(x, t) = εxx(x, t). (13b)

This is completed by the following two boundary conditions:

ε(D, t) = 0 (13c)

εx(0, t) = 0 (13d)

where (13c) is obtained from (12b) using (8c)–(8d); Eq. (13d) is
also obtained from (12b) using Appendix B (Part 1) and (4k)–(4l).
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In addition to (13a)–(13d), Eqs. (8e)–(8f) which govern θ̃ must be
retained but the term ũ(0, t) on the right side of (8e) has to be

expressed in terms of ε(0, t), Z(t) and θ̃ (t), using (12a)–(12b). The
resulting equation together with (13a)–(13d) constitutes the new
error system expressed in terms of the new coordinates, Z and ε.
For convenience, this new system is recapitulated here:

Ż =


A − KCM−1(D)


Z − Kε(0, t) (14a)

εt(x, t) = εxx(x, t) (14b)

ε(D, t) = 0 (14c)

εx(0, t) = 0 (14d)

˙̃
θ = −ρRΛΛT θ̃ − ρRΛ



ε(0, t)+ CM−1(D)Z


(14e)

Ṙ−1 = −R−1 +ΛΛT . (14f)

Part 3. Stability analysis of the transformed system (14a)–(14f).

To analyze the stability of this new error system, consider the
following Lyapunov functional candidate:

V = ZTPZ + a

 D

0

ε2(x, t)dx + θ̃ TR−1θ̃ (15)

with P any symmetric positive definite matrix satisfying the
algebraic equation,

P(A − KCM−1(D))+ (A − KCM−1(D))TP ≤ −µ I. (16)

The matrix P exists because (A − KCM−1(D)) is Hurwitz. At this
stage, the scalars a > 0 are arbitrary. Differentiating (15) yields,
using (16) and (14a)–(14f):

V̇ = ŻTPZ + ZTPŻ + 2a

 D

0

ε(x, t)εt(x, t)dx

+ θ̃ T Ṙ−1θ̃ + 2θ̃ TR−1 ˙̃
θ

=


[A − KCM−1(D)]Z − Kε(0, t)
T

PZ

+ ZTP


[A − KCM−1(D)]Z − Kε(0, t)


+ 2a

 D

0

ε(x, t)εxx(x, t)dx + θ̃ T [−R−1 +ΛΛT ]θ̃

+ 2θ̃ TR−1


−ρRΛΛT θ̃ − ρRΛ[ε(0, t)+ CM−1(D)Z]


≤ −µ






Z̃







2

− 2Z̃TPKε(0, t)− 2a

 D

0

ε2x (x, t)dx

− θ̃ TR−1θ̃ + (Λθ̃ )2 − 2ρ(ΛT θ̃ )2

− 2ρθ̃ TΛε(0, t)− 2ρθ̃ TΛCM−1(D)Z (17)

where an integration by parts and the boundary conditions (14c–d)
have been used in the last inequality. Applying Young’s inequality
to the cross products on the right side of (17), one gets:

V̇ ≤ −µ ∥Z∥2 − 2a

 D

0

ε2x (x, t)dx − θ̃ TR−1θ̃ − (2ρ − 1)(θ̃ TΛ)2

+ ξ ∥Z∥2 +
∥PK ∥2

ξ
(ε(0, t))2

+
ρ

υ
ε2(0, t)+ ρυ(θ̃ TΛ)2 + ρω ∥Z∥2

+
ρ


CM−1(D)




2

ω
(θ̃ TΛ)2

≤ −(µ− ξ − ρω) ∥Z∥2 − θ̃ TR−1θ̃

−



2a −
D ∥PK ∥2

ξ
−

Dρ

υ

 D

0

ε2x (x, t)dx

−



2ρ − 1 − ρ(υ +



CM−1(D)




2

ω
)



(θ̃ TΛ)2 (18)

where the last inequality is obtained applyingWirtinger’s inequal-
ity (1b) and the scalars ξ > 0, υ > 0 and ω > 0 are arbitrary. Let
these free parameters be selected so that:

µ− ξ − ρω > 0 (19a)

2a −
D ∥PK ∥2

ξ
−

Dρ

υ
> 0 (19b)

2ρ − 1 − ρ(υ +



CM−1(D)




2

ω
) > 0. (19c)

The last inequality is satisfied provided the pair (υ, ρ) is set such

that υ +






CM−1(D)







2

ω
<

2ρ−1

ρ
. This is possible because ρ > 1/2.

Furthermore, letting ξ = 1 and noting that a is independent on
the rest of the parameters (especially D, K , P, ρ), it follows that
(19b) is satisfied provided that a is sufficiently large. In turn, (19a)
is satisfied by letting µ be sufficiently large. Using (19a)–(19c), it
follows from (18) and (15) that:

V̇ ≤ −(µ− 1 − ρω) ∥Z∥2 − θ̃ TR−1θ̃

−



2a − D ∥PK ∥2 −
Dρ

υ



π2

4D

 D

0

ε2(x, t)dx

≤ −min



1,
µ− 1 − ρω

λmax(P)
,
π2

4D
(2 −

D ∥PK ∥2

a
−

Dρ

aυ
)



V (20)

with λmax(P) being the largest eigenvalue of P , where Wirtinger’s
inequality (1a) has been used to get the first inequality. Clearly, this
implies that V is exponentially vanishing (as t → ∞). Due to (15),

so are Z(t), θ̃ (t) and
 D

0
ε2(x, t)dx.

Part 4. Exponential convergence of the original errors.

Using the fact that M(x), λ1(t) and λ3(x, t) are bounded

and Z̃(t), θ̃ (t) are exponentially convergent, it follows from

(12a)–(12b) that X̃(t) and ũ(x, t) are also exponentially vanishing
(as t → ∞). Theorem 1 is proved. �

Remark 3. The transformation defined by (12a)–(12b) and
(4g)–(4l) is a key feature of the observer design and analysis.
It is partly inspired by, but is also a generalization of, previ-
ous finite- or infinite-dimensional transformations. Indeed, the
finite-dimensional transformation in Zhang (2002), which applies
to adaptive observer design for ODEs, is obtained letting λ2(t),
λ3(x, t) and λ4(x, t) be zero and deleting (12b). Also, the infinite-
dimensional transformation in Krstic (2009), that applies to non-
adaptive observer design for ODE–PDEs, is obtained by letting all
of λ1(t), λ2(t), λ3(x, t) and λ4(x, t) be zero and deleting (12a).
The infinite-dimensional transformation in Ahmed-Ali, Giri, Krstic,
Burlion, and Lamnabhi-Lagarrigue (2015) and Ahmed-Ali, Giri,
Krstic, Lamnabhi-Lagarrigue, and Burlion (2016), used in adaptive
observer design for parabolic PDEs, is obtained letting λ1(t), λ2(t),
andλ3(x, t) be zero and deleting (12a). Leaving aside the difference
between the PDEs in this paper and in Ahmed-Ali, Fridman et al.
(2016); Ahmed-Ali, Giri, Krstic, and Lamnabhi-Lagarrigue (2016),
the transformation in the latter can be viewed as a particular case
of (12a)–(12b), obtained letting λ2(t) and λ4(x, t) be zero. Finally,
note that only the new transformation (12a)–(12b) features a cou-
pling between the (finite-dimensional) transformation, defined by
(12a) and (4g)–(4h), on one hand, and the transformation (12b)
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Fig. 2. System state variables X(t) = [x1(t) x2(t)]
T (solid) and their estimates

(dashed).

Fig. 3. System parameters (θ1, θ2) (solid) and their estimates (dashed).

and (4i)–(4j) (involving infinite-dimensional signals), on the other
hand. This coupling is part of the current transformation novelty
that makes the observer analysis harder.

4. Simulation

To illustrate the performances of the adaptive observer of
Table 1, a system of the form (2)–(3) is considered with the
following parameters and functions:

A =



0 1
−1 0



; C =


1 0


;

D = 1; θ1 = 0.5; θ2 = 1.2

φ1(t) =



0

1 + (sin(3t))2



; φ2(x, t) = e0.2x


5 + (sin(3t))2


;

with the initial conditions X(0) =


1 −1
T

and u(x, 0) = 0 (0 ≤
x < D). The parameters of the adaptive observer of Table 1 are set
to K = [17.1 11.8]T (leading to the eigenvalues (−3,−6) of the
matrix A − KCM−1(D)), ρ = 1, and R(0) = 5I . The observer is run

with the initial conditions X̂(0) =


0 0
T
, û(x, 0) = 2 (0 ≤ x <

D), θ̂1(0) = 0, θ̂2(0) = 0. The resulting observer performances are
illustrated by Figs. 2–5. Clearly, all state and parameter estimates
converge to their true values confirming the theoretical result of
Theorem 1.

Fig. 4. PDE states u(0.1, t) (top) and u(0.7, t) (bottom). Solid: true system signals.

Dashed: signal estimates.

Fig. 5. Estimation error ũ(x, t) vs 0 ≤ x ≤ 1 and t ≥ 0.

5. Conclusion

The problem of state observation is addressed for ODE–PDE
cascades modeled by (2)–(3). The aim is to get online estimates
of the states X(t) and u(x, t) (0 ≤ x ≤ D), on the one
hand, and of the parameter vectors θ1 and θ2, on the other.
To this end, the adaptive observer of Table 1 is designed and
shown to be exponentially convergent. The gain matrix M(x), the
filters (4g)–(4l), and the forgetting-factor least-squares estimators
(4d)–(4f) are instrumental components of this observer. Also, the

presence of the parameter estimate speed
˙̂
θ in the state observer

(4a)–(4b) is an appealing feature. The observer analysis shows that
the backstepping transformation defined by (12a)–(12b) plays a
crucial role in the proof of exponential convergence.

Appendix A. Existence analysis

The well-posedness analysis of the system (2)–(3) can be
performed in many ways. One simple way is to introduce the
following backstepping transformation, for (x, t) ∈ [0, 1] ×
[0,+∞):

p(x, t) = u(x, t)− CM(x)M−1(D)X(t). (A.1)

Then, it is readily checked using (A.1) and Appendix B (Parts 1
and 2) that, the system (2)–(3) can be rewritten in the coordinates
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(X, p) as follows:

Ẋ(t) = AX(t)+ φ1(t)θ1, t ≥ 0, (A.2)

pt(x, t) = pxx(x, t)+ φ2(x, t)θ2 − CM(x)M−1(D)φ1(t)θ1 (A.3)

px(0, t) = p(D, t) = 0, for all t ≥ 0 (A.4)

u(x, t) = p(x, t)+ CM(x)M−1(D)X(t). (A.5)

One feature of the new system representation is that the infinite-
dimensional subsystem, here defined by (A.3)–(A.4), is decoupled
from the finite-dimensional subsystem described by (A.2) (while a
coupling existed in the initial model (2)–(3)). Then, the existence
of solutions of each parts can be analyzed separately. The existence
and uniqueness of the solution X ∈ C1([0,∞) : Rn) of (A.2) is
not an issue, due to the usual existence theorem of ODEs. Owing
to (A.3)–(A.4), this is a particular case of the more general semi-
linear PDE (21) in Fridman and Blighovsky (2012). It has been
proved that a unique strong solution p[t] exists in the Hilbert space
H1/2 = D((−Γ )1/2) =



w ∈ H1(0,D) : wx(0) = w(D) = 0


with

Γ = ∂2

∂x2
, where (−Γ )1/2 is the square root of −Γ . Then, a similar

result holds with u[t] due to (A.5).

To analyze the well posedness of the observer of Table 1, it is
more judicious to start analyzing the (transformed) error system
(14a)–(14f). First, the parabolic equation (14b)–(14d) has a well
known solution in H2(0,D) that can be found in many places (see
e.g. Smyshlyaev&Krstic, 2005, p. 315). Then, by the usual existence
theorem of ODEs, (14a) has a unique solution Z ∈ C1([0,∞) : Rn).
For the same reason, the ODEs (14e)–(14f) have unique solutions

θ̃ ∈ C1([0,∞) : Rm) and R−1 ∈ C1([0,∞) : Rm) and, by (10)

and (7b), one gets the unique existence of θ̂ ∈ C1([0,∞) : Rm)

and R ∈ C1([0,∞) : Rm). Well posedness of the parabolic PDEs
(4i)–(4j) can also be established applying the analysis of Fridman
and Blighovsky (2012). Accordingly, one gets that those equations
have strong solutions λ3[t] and λ4[t] in the Hilbert space H1/2

defined above. Then, by the usual existence theorem of ODEs,
(4g)–(4h) have unique solutions λ1 ∈ C1([0,∞) : Rn×m1) and
λ2 ∈ C1([0,∞) : Rn×m2). The results obtained so far, together

with (12a)–(12b), imply the existence of a unique solution X̃ ∈
C1([0,∞) : Rn) and unique strong solution ũ[t] in the space

H1/2. Similar existence results hold with the states X̂ and û[t], due
to (7a). �

Appendix B. Properties of the matrix functionM(x)

Thematrix functionM(x) satisfies the following properties (see
Lemma 1 in Ahmed-Ali, Giri, Krstic, & Lamnabhi-Lagarrigue, 2015):

(1) d2M

dx2
(x) = M(x)A, withM(0) = I, dM

dx
(0) = 0.

(2)M(x) =
∞

i=0
x2i

(2i)!
Ai.

(3) AM(x) = M(x)A andM−1(x)A = AM−1(x).

The first equality in (3) is obtained by pre- and post-
multiplication of both sides of the development of Part 2 by A. The
second equality is obtained by pre- and post-multiplication of both
sides of the first equality byM−1(x). �

Appendix C. Proof of boundedness of λi(t) (i = 1, 2) and

λi(x, t) (i = 3, 4)

As the vector signals φ1(t) are bounded and A − KCM−1(D) is
Hurwitz it follows from (4g)–(4f) that, λ1(t) and λ2(t) are bounded
provided λ3(0, t) and λ4(0, t) are so. Then, one just needs to show
that the latter are bounded. The proof will only be performed
for λ3(0, t) (the proof for λ4(0, t) matches similar arguments).

Consider the following Lyapunov functional candidate:

W1(λ3) =
1

2

 D

0

λ3(x, t)λ
T
3(x, t)dx

+
1

2

 D

0

λ3,x(x, t)λ
T
3,x(x, t)dx. (C.1)

Differentiating (C.1) gives, using (4i)–(4k) and integrating by parts:

Ẇ1(λ3) =

 D

0

λ3(x, t)λ
T
3,t(x, t)dx

+

 D

0

λ3,x(x, t)λ
T
3,xt(x, t)dx

=

 D

0

λ3(x, t)λ
T
3,xx(x, t)dx

−

 D

0

λ3(x, t)[CM(x)M
−1(D)φ1(t)]

Tdx

−

 D

0

λ3,x(x, t)λ
T
3,tx(x, t)dx

=

 D

0

λ3(x, t)λ
T
3,xx(x, t)dx

−

 D

0

λ3(x, t)[CM(x)M
−1(D)φ1(t)]

Tdx

−

 D

0

λ3,xx(x, t)λ
T
3,t(x, t)dx (C.2)

where the last term is obtained using an integration by parts and
the boundary conditions (4k). Again using integration by parts and
(4k), equality (C.2) further develops as follows:

Ẇ1(λ3) = −

 D

0



λ3,x(x, t)




2
dx

−

 D

0

λ3(x, t)[CM(x)M
−1(D)φ1(t)]

Tdx

−

 D

0

λ3,xx(x, t)(λ
T
3,xx(x, t)

− [CM(x)M−1(D)φ1(t)]
T )dx

≤ −

 D

0



λ3,x(x, t)




2
dx +

ξ

2

 D

0

∥λ3(x, t)∥
2 dx

+
1

2ξ

 D

0



CM(x)M−1(D)φ1(t)




2
dx

−

 D

0



λ3,xx(x, t)




2
dx +

ς

2

 D

0



λ3,xx(x, t)




2
dx

+
1

2ς

 D

0



CM(x)M−1(D)φ1(t)




2
dx (C.3)

using Young’s inequality twice, where ξ > 0 and ς > 0 are
arbitrary scalars. ApplyingWirtinger’s inequality (1a) to the second
term on the right side of (C.3) yields:

Ẇ1(λ3) ≤ −



1 −
2Dξ

π2

 D

0



λ3,x(x, t)




2
dx

−


1 −
ς

2



 D

0



λ3,xx(x, t)




2
dx

+



1

2ξ
+

1

2ς

 D

0



CM(x)M−1(D)φ1(t)




2
dx. (C.4)
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Let the still free scalars be selected as follows:

1 −
2Dξ

π2
< 0; 1 −

ς

2
< 0. (C.5)

Then, by applyingWirtinger’s inequality (1a) to the two first terms
on the right side of (C.4), it follows that:

Ẇ1(λ3) ≤ −



1 −
2Dξ

π2



π2

4D

 D

0

∥λ3(x, t)∥
2 dx

−


1 −
ς

2

 π2

4D

 D

0



λ3,x(x, t)




2
dx

+



1

2ξ
+

1

2ς

 D

0



CM(x)M−1(D)φ1(t)




2
dx

≤ −
π2

2D
min



1 −
2Dξ

π2
, 1 −

ς

2



W1(λ3)

+



1

2ξ
+

1

2ς

 D

0



CM(x)M−1(D)φ1(t)




2
dx (C.6)

where the last inequality is obtained using (C.1). Note that φ1(t)
is also bounded by assumption and M(x) is bounded due to (4m).
Then, it follows from (C.6) thatW1(λ3) is bounded and, from (C.1),

so is
 D

0



λ3,x(x, t)




2
dx. Applying Wirtinger’s inequality (1b), it

follows that ∥λ3(x, t)∥ is bounded. The proof is complete. �
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