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Robustness of delayed multistable systems

Denis Efimov, Johannes Schiffer and Romeo Ortega

Abstract In this chapter sufficient conditions for input-to-state stability (ISS) of de-
layed systems are presented using Lyapunov-Razumikhin functions. It is shown that
ISS multistable systems are robust with respect to delays in the feedback path. First,
the approach is illustrated by establishing the ISS property for the model of a non-
linear pendulum, then delay-dependent robustness conditions are derived. Second,
it is shown that, under certain assumptions, the problem of phase-locking analy-
sis in droop-controlled inverter-based microgrids with delays can be reduced to the
stability investigation of a nonlinear pendulum, and corresponding delay-dependent
conditions for asymptotic phase-locking are derived for an exemplary microgrid
consisting of two droop-controlled inverters.

1 Introduction

The increasing penetration of renewable distributed generation (DG) units at the low
and medium voltage levels has a strong impact on the power system structure [14,
45, 13]. This fact requires new control and operation strategies to ensure a reliable
and efficient electrical power supply [14, 17]. An emerging concept to address these
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challenges is the microgrid [23, 20, 14]. A microgrid is a locally controllable subset
of a larger electrical network. It is composed of several DG units, storage devices
and loads.

Typically, most DG units in an AC microgrid are connected to the network via
AC inverters [17]. Under ideal conditions, an inverter-based DG unit can be mod-
eled as an ideal controllable voltage source [24, 33]. Furthermore, a popular control
scheme to operate inverter-based DG units with the purpose to achieve frequency
synchronization and power sharing in the network is droop control [6, 19]. Con-
ditions for stability in droop-controlled microgrids with inverters modeled as ideal
controllable voltage sources have been derived, e.g., in [37, 35, 27].

However, in a practical setup, the droop control scheme is applied to an inverter
by means of digital discrete time control. Besides clock drifts, see, e.g. [36], digital
control usually introduces time delays [22, 25, 29]. According to [29], the main
reasons for this are 1) sampling of control variables, 2) calculation time of the digital
controller and 3) generation of the pulse-width modulation. We refer the reader to,
e.g. [29] for further details. Hence, it is important to consider time delays in the
stability analysis of microgrids.

In general, inverter-based microgrids operated with droop control have several
equilibria [37, 35]. Thus they are multistable systems. Stability analysis [4, 12, 44,
26, 28, 31, 32, 34, 38] and robust stability analysis [1, 3, 5, 7, 42] for this class
of systems is rather complicated. Recently, the ISS theory [40] has been extended
to multistable systems in [2, 3] (see also [21] for discussion on ISS property with
respect to an unbounded set).

Motivated by the abovementioned phenomenon, the papers [11, 10] have ex-
tended the ISS framework for multistable systems [2, 3] to multistable systems with
delay. In particular, sufficient conditions for ISS of multistable systems in the pres-
ence of delays are given in terms of a Lyapunov-Razumikhin function. It is also
shown that ISS multistable systems are robust with respect to feedback delays (a
simple but important illustration is via the example of a nonlinear pendulum). We
would like to point out that related works on ISS of time-delay systems by employ-
ing Lyapunov functions [8, 16, 30] are limited to systems with a single equilibrium
point or a compact attracting set. Based on the results in [11, 10] (their detailed pre-
sentation is given below), in this chapter, a condition for asymptotic phase-locking
in a microgrid composed of two droop-controlled inverters with delay is developed.
The analysis is conducted for a simplified inverter model derived under the assump-
tions of constant voltage amplitudes and ideal clocks, as well as negligible dynamics
of the internal inverter LC filter and controllers. In that scenario, the delay merely
affects the phase angle of the inverter output voltage. The stability results are illus-
trated by simulations.
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2 Preliminaries

For an n-dimensional C 2 connected and orientable Riemannian manifold M without
a boundary, let the map f (x,d) : M×Rm → TxM be of class C 1, and consider a
nonlinear system of the following form:

ẋ(t) = f (x(t),d(t)), (1)

where the state x ∈M and d(t) ∈Rm (the input d(·) is a locally essentially bounded
and measurable signal) for t ≥ 0. We denote by X(t,x0;d) the uniquely defined
solution of (1) at time t fulfilling X(0,x0;d) = x0. Together with (1) we will analyze
its unperturbed version:

ẋ(t) = f (x(t),0). (2)

A set S ⊂ M is invariant for the unperturbed system (2) if X(t,x;0) ∈ S for all t ∈
R and for all x ∈ S. Define the distance from a point x ∈ M to the set S ⊂ M as
|x|S = mina∈S δ (x,a), where the symbol δ (x1,x2) denotes the Riemannian distance
between x1 and x2 in M, |x|= |x|{0} for x ∈M (in this case 0 represents a designated
element of M) or a usual Euclidean norm of a vector x∈Rn. For a signal d :R→Rm

the essential supremum norm is defined as ‖d‖∞ = esssupt≥0 |d(t)|.

2.1 Decomposable sets

Let Λ ⊂M be a compact invariant set for (2).

Definition 1. [28] A decomposition of Λ is a finite and disjoint family of compact
invariant sets Λ1, . . . ,Λk such that

Λ =
k⋃

i=1

Λi.

For an invariant set Λ , its attracting and repulsing subsets are defined as follows:

A(Λ) = {x ∈M : |X(t,x,0)|Λ → 0 as t→+∞},
R(Λ) = {x ∈M : |X(t,x,0)|Λ → 0 as t→−∞}.

Define a relation on W ⊂M and D ⊂M by W ≺D if A(W )∩R(D) 6=�.

Definition 2. [28] Let Λ1, . . . ,Λk be a decomposition of Λ , then
1. An r-cycle (r ≥ 2) is an ordered r-tuple of distinct indices i1, . . . , ir such that

Λi1 ≺ . . .≺Λir ≺Λi1 .
2. A 1-cycle is an index i such that [R(Λi)∩A(Λi)]−Λi 6=�.
3. A filtration ordering is a numbering of the Λi so that Λi ≺Λ j⇒ i≤ j.
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As we can conclude from Definition 2, existence of an r-cycle with r ≥ 2 is equiv-
alent to existence of a heteroclinic cycle for (2) [18]. Furthermore, existence of a
1-cycle implies existence of a homoclinic cycle for (2) [18].

Definition 3. The set W is called decomposable if it admits a finite decomposition
without cycles, W =

⋃k
i=1 Wi, for some non-empty disjoint compact sets Wi, which

form a filtration ordering of W , as detailed in definitions 1 and 2.

2.2 Robustness notions

The following robustness notions for systems represented by (1) have been intro-
duced in [2, 3] (see also [9] for a survey on the ISS framework).

Definition 4. We say that the system (1) has the practical asymptotic gain (pAG)
property if there exist η ∈K∞ and a non-negative real q such that for all x ∈M and
all measurable essentially bounded inputs d(·) the solutions are defined for all t ≥ 0
and the following holds:

limsup
t→+∞

|X(t,x;d)|W ≤ η(‖d‖∞)+q.

If q = 0, then we say that the asymptotic gain (AG) property holds.

Definition 5. We say that the system (1) has the limit property (LIM) with respect
to W if there exists µ ∈K∞ such that for all x ∈M and all measurable essentially
bounded inputs d(·) the solutions are defined for all t ≥ 0 and the following holds:

inf
t≥0
|X(t,x;d)|W ≤ µ(‖d‖∞).

Definition 6. We say that the system (1) has the practical global stability (pGS)
property with respect to W if there exist β ∈K∞ and q≥ 0 such that for all x ∈M
and measurable essentially bounded inputs d(·) the following holds for all t ≥ 0:

|X(t,x;d)|W ≤ q+β (max{|x|W ,‖d‖∞}).

It has been shown in [2, 3] that to characterize pAG property in terms of Lyapunov
functions the following notion is appropriate.

Definition 7. We say that a C 1 function V : M → R is a practical ISS-Lyapunov
function for (1) if there exists K∞ functions α1, [α2],α3 and γ , and scalar q≥ 0 [and
c≥ 0] such that

α1(|x|W )≤V (x)≤ [α2(|x|W + c)],

the function V is constant on each Wi and the following dissipation holds:

DV (x) f (x,d)≤−α3(|x|W )+ γ(|d|)+q.

If the latter inequality holds for q= 0, then V is said to be an ISS-Lyapunov function.
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Notice that α2 and c are in square brackets as their existence follows (without any
additional assumptions) by standard continuity arguments.

The main result of [2, 3] connecting these robust stability properties is stated
below. It extends the results of [39, 41] obtained for connected sets.

Theorem 1. Consider a nonlinear system as in (1) and let a compact invariant set
containing all α- and ω-limit sets of (2) W be decomposable (in the sense of Defi-
nition 3). Then the following facts are equivalent.

1. The system admits an ISS Lyapunov function;
2. The system enjoys the AG property;
3. The system admits a practical ISS Lyapunov function;
4. The system enjoys the pAG property;
5. The system enjoys the LIM property and the pGS.

Definition 8. [3] Suppose that a nonlinear system as in (1) satisfies the assumptions
and the list of equivalent properties of Theorem 1. Then this system is called ISS
with respect to the set W .

3 Multistable systems with delays

Let τ > 0, for a function d : [−τ,+∞)→ Rm and t ≥ 0 denote a function dt(·) :
[−τ,0]→ Rm defined by dt(θ) = d(t + θ) for θ ∈ [−τ,0]. Denote by D a set of
bounded and piecewise continuous functions dt(·) : [−τ,0]→Rm. Consider a func-
tional differential equation on an n-dimensional C 2 connected and orientable Rie-
mannian manifold M without a boundary:

ẋ(t) = F(xt ,dt), x0 ∈ Cτ , (3)

where the map F : Cτ×D→ TxM is of class C 1 (we will denote a set of continuous
functions ξ : [−τ,0]→M by Cτ ), x(t) ∈M is the state, xt ∈ Cτ and dt ∈ D for all
t ≥ 0. We denote by X(t,x0;d) the uniquely defined solution of (3) at time t fulfilling
X(θ ,x0;d) = x0(θ) for all θ ∈ [−τ,0]; Xx0,d

t (θ) = X(t + θ ,x0;d) for θ ∈ [−τ,0].
Define as in [43]

|xt |= max
θ∈[−τ,0]

|x(t +θ)|, ||x||t0 = sup
t≥t0
|xt |= sup

t≥t0−τ

|x(t)|.

Again, together with (3), we will analyze its unperturbed version:

ẋ(t) = F(xt ,0). (4)

A set S ⊂Cτ is invariant for the unperturbed system (4) if Xx0,0
t ∈S for all t ∈R+

and for all x0 ∈S . Define the distance from a function ξ ∈ Cτ to a set S ⊂ Cτ as
||ξ ||S = infα∈S |ξ −α|.
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Let W ⊂M be a set, denote by
︷︸︸︷
W a subset of W = {ξ ∈ Cτ : ξ (t) ∈W ∀t ∈

[−τ,0]} such that if ζ ∈
︷︸︸︷
W then ζ =Xξ ,0

τ for ξ ∈W . For stability analysis of time-
delay systems it is necessary to define a distance to invariant sets in two spaces: in
Rn with respect to the set W and in Cτ with respect to corresponding invariant set︷︸︸︷
W (functions from Cτ taking values in W and solutions of (3)). The following

stability notions for (3) are considered in this work [10] (for a recent survey on
stability tools for time-delay systems see [16]).

Definition 9. The system (3) has the pAG property with respect to the set W if there
exist η ∈K∞ and a non-negative real q such that for all x0 ∈ Cτ and all bounded
piecewise continuous inputs d(·) the solutions are defined for all t ≥ 0 and the fol-
lowing holds:

limsup
t→+∞

|X(t,x0;d)|W ≤ η(‖dt‖0)+q.

If q = 0, then we say that the AG property holds.

This property can be equivalently stated as

limsup
t→+∞

||Xx0,d
t ||︷︸︸︷

W
≤ η(‖dt‖0)+q

and it implies that (a subset of)
︷︸︸︷
W is invariant for (4) if q = 0.

Definition 10. The system (3) has the pGS property with respect to the set W if
there exist β ∈K∞ and q ≥ 0 such that for all x0 ∈ Cτ and all bounded piecewise
continuous inputs d(·) the following holds for all t ≥ 0:

|X(t,x0;d)|W ≤ q+β (max{||x0||︷︸︸︷
W

,‖dt‖0}).

To characterize pAG and pGS properties for a time-delay system (3) the Lyapunov-
Razumikhin approach is used in this work [30, 8]. Given a continuous function
x : [−τ,+∞)→M with a C 1 function U : M→ R denote U(t) =U(x(t)), if x(t) =
X(t,x0;d) is a solution to (3) for some piecewise continuous d : [−τ,+∞)→ Rm

and initial condition x0 ∈ Cτ , then the upper right-hand side derivative of U along
this solution is

D+U(t) = limsup
h→0+

U(t +h)−U(t)
h

.

Definition 11. A C 1 function U : M→ R is a practical ISS-Lyapunov-Razumikhin
(ISS-LR) function for (3) if there exist K∞ functions α1, [α2],α4,γ and γU , γU (s)< s
for all s > 0, and scalar q≥ 0 [and c≥ 0] such that

α1(|x|W )≤U(x)≤ [α2(|x|W + c)],

U(t)≥max{γU (|Ut |),γ(|dt |),q} ⇒ D+U(t)≤−α4[U(t)].

If the latter inequality holds for q = 0, then U is said to be an ISS-LR function.
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Definition 12. The system in (3) is said to be ISS with respect to the set W if it
admits pAG and pGS properties with respect to the set W .

Note that definitions 8 and 12 introduce the same property, but for different classes
of systems, (1) and (3), respectively.

Theorem 2. [10] Consider the system (3). Suppose there exists an ISS-LR function
U : M→ R as in Definition 11. Then the system (3) admits the pAG property from
Definition 9 with η(s) = α

−1
1 ◦ γ(s) and the pGS property from Definition 10.

4 ISS of multistable systems with delayed perturbations

In this section we consider the robustness of the system (1) with respect to a dis-
turbance d, which is dependent on a delayed state. The analysis is conducted under
the assumption that the system (1) is ISS with respect to a set W . The proposed
approach is illustrated via example of a nonlinear pendulum with delay.

4.1 Robustness analysis

If (1) is ISS with respect to the set W , then by Theorem 1 there exists an ISS Lya-
punov function V as in Definition 7. From the inequalities α3[0.5α

−1
2 ◦V (x)] ≤

α3(0.5[|x|W + c])≤ α3(|x|W )+α3(c) we obtain

DV (x) f (x,d)≤−α4[V (x)]+ γ(|d|)+ q̃,

where α4(s) = α3[0.5α
−1
2 (s)] and q̃ = q+α3(c).

Assume that the input d has two terms d1 and d2, and d2 is a function of xt ∈ Cτ

for some τ > 0, i.e.:
d = d1 +d2, d2 = g(xt), (5)

where g is a continuous function, |g(xt)| ≤ υ(|Vt |) + υ0 for υ ∈ K∞ and υ0 ≥ 0
(here Vt denotes a function Vt(·) : [−τ,0]→ R+ defined by Vt(θ) = V (t + θ) for
θ ∈ [−τ,0]). Denote further for simplicity of notation d = d1, then (1) is transformed
to (3) with

F(xt ,dt) = f (x(t),d +g(xt)),

D+V (t)≤−α4(V (t))+ γ(2υ(|Vt |)+2υ0)+ γ(2|dt |)+ q̃.

This estimate can be rewritten as follows:

V (t)≥max{γ̂V (|Vt |), γ̂(|dt |), q̂} ⇒ D+V (t)≤−0.5α4(V (t)),

γ̂V (s) = α
−1
4 [6γ(4υ(s))], γ̂(s) = α

−1
4 [6γ(2s)], q̂ = α

−1
4 [6q̃+6γ(4υ0)].
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It is straightforward to see that if γ̂V (s)< s for all s> 0, then V is an ISS-LR function
for (1) with (5), and by Theorem 2 this system possesses pAG and pGS properties.

4.2 Illustration for a nonlinear pendulum

Now, the procedure for a robust ISS analysis of a multistable system with delays
outlined in Section 4.1 is illustrated via the example of a nonlinear pendulum. First,
we prove the assumption made in Section 4.1 that the pendulum is ISS with respect
to a set W . Second, a condition for ISS of a pendulum with delay is derived. During
our analysis, we also establish almost global attractivity of an equilibrium of a non-
linear pendulum with constant nonzero input. To the best of our knowledge, such
result is not available in the literature thus far.

4.2.1 Delay-free case

Consider a nonlinear pendulum:

ẋ1 = x2,
ẋ2 = −Ω 2 sin(x1)−κx2 +d,

(6)

where the state x = [x1,x2] takes values on the cylinder M := S×R, d(t) ∈ R is an
exogenous disturbance, and Ω , κ are constant positive parameters. The total energy
of (6) is H(x) = 0.5x2

2 +Ω 2(1− cos(x1)) and Ḣ = x2d−κx2
2. The unperturbed sys-

tem (6) has two equilibria [0,0] and [π,0] (the former is attractive and the latter one
is a saddle-point). Thus, W = {[0,0]∪ [π,0]} is a compact set containing all α- and
ω-limit sets of (6) for d = 0. In addition, it is straightforward to check that W is
decomposable in the sense of Definition 3.

Lemma 1. [10] The system (6) is ISS with respect to the set W .

By using this result it is possible to prove that for a constant input d (with d < Ω 2)
the pendulum still has two steady-state points with similar stability properties.

Lemma 2. [10] Let d < min{Ω 2,

√
ρλmin(Y )

2
π

ζ
,0.5
√

εΩ
π

ζ
,ξ} be a constant input in

(6), where

ρ = min
[

κ− ε

1+ ε
,

1√
2π

εΩ 2

(Ω 2 +(κ +1)ε)

]
,

ζ =

√√
2π[εΩ−2 +

1
κ− ε

], ξ =
2
√

Ω 2 +κε

ζ

(
Ω 2 +(κ +1)ε

εΩ 2 +
1√
2πρ

)
and 0< ε <min{1,κ} is a parameter. Then the system has two equilibria, [arcsin(dΩ−2),0]
and [π− arcsin(dΩ−2),0]. The former one is almost globally attractive.
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4.2.2 A delayed case study

Now consider a time-delay modification of (6):

ẋ1(t) = x2(t),
ẋ2(t) = −Ω 2 sin[x1(t− τ)]−κx2(t)+d(t),

(7)

where τ > 0 is a fixed delay. The unperturbed system (7) with d(t) = 0 has the same
equilibria as (6), i.e. [0,0] and [π,0]. The system (7) can be represented as follows:

ẋ1(t) = x2(t),
ẋ2(t) = −Ω 2 sin[x1(t)]−κx2(t)+d(t)+Ω 2{sin[x1(t)]− sin[x1(t− τ)]}.

By the mean value theorem

|sin[x1(t)]− sin[x1(t− τ)]|= |cos[x1(φ)]x2(φ)τ| ≤ |x2(φ)|τ

for some φ ∈ [t−τ, t]. Thus, the system (7) can be analyzed as a perturbed nonlinear
pendulum with part of the input d dependent on the delay. Using V we obtain for
µ = εΩ−2 + 1

κ−ε
:

D+V (t) ≤ −0.5[κ− ε]x2
2−0.5εΩ

2 sin2(x1)+µΩ
4x2

2(φ)τ
2 +µd2.

It is straightforward to check that

V (x)≤ 0.5[1+ ε]x2
2 +0.5ε sin2(x1)+2[Ω 2 +κε],

x2
2 ≤

2
1− ε

V (x)+
ε

1− ε

for 0 < ε < min{1,κ}, then for ρ = min{κ−ε

1+ε
,Ω 2}

D+V (t) ≤ −ρ{V (t)−2[Ω 2 +κε]}+µΩ
4x2

2(φ)τ
2 +µd2

≤ −ρ{V (t)−2[Ω 2 +κε]}+ µΩ 4

1− ε
τ

2[2V (φ)+ ε]+µd2.

Therefore,

V (t)≥ 6
ρ

max{2 µΩ 4

1− ε
τ

2|Vt |,2ρ[Ω 2 +κε]+
µΩ 4

1− ε
τ

2
ε,µd2} ⇒ D+V (t)≤−0.5ρV (t)

and V is an ISS-LR function for (7) provided that

12
ρ

µΩ 4

1− ε
τ

2 < 1. (8)
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The inequality (8) is a delay-dependent stability condition for (7), which is always
satisfied for a sufficiently small delay τ . The set of asymptotic attraction for (7) can
be evaluated from (4.2.2).

Remark 1. If we assume that max{0, κ−Ω 2

1+Ω 2 }< ε <min{1,κ}, then min{κ−ε

1+ε
,Ω 2}=

κ−ε

1+ε
and the condition (8) can be rewritten as follows:

τ
2 <

12
Ω 2

1− ε

1+ ε

(κ− ε)2

ε(κ− ε)+Ω 2 .

Since the functions 1−ε

1+ε
and (κ−ε)2

ε(κ−ε)+Ω 2 are decreasing for ε ∈ (max{0, κ−Ω 2

1+Ω 2 },min{1,κ}),

selecting ε = max{0, κ−Ω 2

1+Ω 2 }+ ε for a sufficiently small ε > 0 (if κ > Ω 2 then the

optimal choice is ε = κ−Ω 2

1+Ω 2 ) optimizes the value of the admissible delay τ to

τ
∗ =

κ− ε

Ω

√
1− ε

1+ ε

12
ε(κ− ε)+Ω 2 ,

i.e. for any τ < τ∗ the system (7) admits V as an ISS-LR function.

5 Application to a microgrid composed of two droop-controlled
inverters with delay

In this section the theoretical results of Section 3 are applied to our main moti-
vating application: a droop-controlled microgrid with delays. In particular, we are
interested in conditions for ISS of such systems. In order to tackle this problem,
we proceed along the lines detailed in Section 4. The analysis is conducted under
a reasonable assumption of constant voltage amplitudes. Then, a lossless droop-
controlled microgrid formed by two inverters with delay can be modeled as [35]:

θ̇(t) = ω1(t)−ω2(t), (9)
τP1ω̇1(t) = −ω1(t)− kP1a12 sin[θ(t− τd1)]+ c1 +δ1(t),

τP2ω̇2(t) = −ω2(t)+ kP2a12 sin[θ(t− τd2)]+ c2 +δ2(t),

where θ(t) ∈ [0,2π) is the phase difference between the inverters, ω1(t),ω2(t) ∈ R
are the time-varying frequencies of the inverters; τd1 > 0 and τd2 > 0 are delays
caused by the digital controls required to implement the droop controls; τP1 > 0,

τP2 > 0, kP1 > 0, kP2 > 0, a12 > 0, c1 and c2 = − kP2
kP1

c1 are constant parameters;

the disturbances δ1(t) and δ2(t) represent additional model uncertainties. We say
that a solution of (9) is phase-locked if θ(t) = θ0 is constant ∀t ∈ R+ for some
θ0 ∈ [0,2π) [15]. If this property holds asymptotically, i.e., for t → +∞, we speak
about an asymptotic phase-locking.
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Assumption. τd1 = τd2 = τ > 0.

Under this assumption, define the new coordinates:

x1 = θ , x2 = ω1−ω2, x3 =
kP2τP1

kP1τP2

ω1 +ω2.

Then the system (9) can be rewritten as follows:

ẋ1(t) = x2(t), (10)
ẋ2(t) = −b1x2(t)+b2x3(t)−a2 sin[x1(t− τ)]+d1(t), (11)
ẋ3(t) = −b3x3(t)+b4x2(t)+d2(t), (12)

where

b1 = τ
−1
P1

+(τ−1
P2
− τ
−1
P1

)

(
1+

kP2τP1

kP1τP2

)−1 kP2τP1

kP1τP2

, b2 = (τ−1
P2
− τ
−1
P1

)

(
1+

kP2τP1

kP1τP2

)−1

,

b3 = τ
−1
P1

+(τ−1
P2
− τ
−1
P1

)

(
1+

kP2τP1

kP1τP2

)−1

, b4 = (τ−1
P2
− τ
−1
P1

)

(
1+

kP2τP1

kP1 τP2

)−1 kP2τP1

kP1τP2

,

a =
√
(kP1τ

−1
P1

+ kP2τ
−1
P2

)a12,

d1(t) = (τ−1
P1

+ τ
−1
P2

kP2

kP1

)c1 + τ
−1
P1

δ1(t)− τ
−1
P2

δ2(t), d2(t) =
kP2

kP1τP2

δ1(t)+ τ
−1
P2

δ2(t).

In [10] it has been also assumed that τP1 = τP2 = τP > 0. The stability analysis above
is based on the assumption that b1 > 0 and b3 > 0, which we imposed without loss
of generality. If τP2 > τP1 and the coefficients b1 < 0 or b3 < 0 for the given values
of kP1 and kP2 , then the above equations can be rewritten to have the term τ

−1
P1
−τ
−1
P2

instead of τ
−1
P2
− τ
−1
P1

by flipping the indices. Thus, the system (9) is decomposed
into two interrelated subsystems: (10), (11) and (12). The variable x3 converges
asymptotically to zero if b4x2 +d2 = 0 (then asymptotically the frequencies ω1 and
ω2 are locked), moreover this subsystem is ISS with respect to the input b4x2 +d2,
with the ISS asymptotic gain |b4x2+d2|→ |x3| being equal to b−1

3 (this simple result
can be obtained using an ISS Lyapunov function V3(x3) = 0.5x2

3).
The dynamics (10), (11) have the form of (7) for d = d1 + b2x3 and, as it has

been established above, have pAG and pGS properties from definitions 9 and 10
respectively if condition (8) is satisfied, which for (10), (11) takes the form:

τ
2 <

12
a2

1− ε

1+ ε

(b1− ε)2

ε(b1− ε)+a2 (13)

for 0 < ε < min{1,b1}, and the asymptotic gain d2→V is εa−2 + 1
b1−ε

. Therefore,
under the small-gain condition



12 Denis Efimov, Johannes Schiffer and Romeo Ortega

Fig. 1 Simulation results for the system (9). The solid lines show the state trajectories for the case
d1(t) = d2(t) = 0. The dashed lines correspond to the case d1(t) = 0.8sin(3t), d2(t) = 0.9sin(5t).

b2
3b2

4b2
2(εa−2 +

1
b1− ε

)< 1 (14)

and for a sufficiently small delay τ verifying (13) the system (10), (11), (12) is ISS
with respect to inputs d1 and d2. In that case the inverters will demonstrate a phase-
locking behavior. According to [29], a good estimate of the overall delay introduced
by the digital control is τ = 1.75TS

1, where TS = 1/ fS and fS ∈R>0 is the switching
frequency of the inverter. Since usually fS ∈ [5,20] kHz [17], τ is reasonably small
in most practical applications. Hence, the condition (13) may be satisfied for most
practical choices of parameters in (9).

The analysis is illustrated in a simulation example with the following set of pa-
rameters for the system (9): τP1 = 2, τP2 = 1, kP1 = 10, kP2 = 20, a12 = 0.1, c1 = 0.2
and τ = 0.05. Conditions (13) and (14) are satisfied for ε = 0.5min{1,b1}. The sim-
ulation results are shown in Fig. 1. The solid lines represent the state (θ ,ω1,ω2)

T

trajectories for the case d1(t) = d2(t) = 0, and the dashed lines correspond to
d1(t) = 0.8sin(3t), d2(t) = 0.9sin(5t). The phase-locking phenomenon is observed
in these simulation results.

6 Conclusions

Sufficient conditions for ISS of multistable systems with delay have been presented.
The conditions are formulated using Lyapunov-Razumikhin functions. The potential
of the approach has been illustrated by demonstrating several robustness properties
for a nonlinear pendulum with delay. Furthermore, it has been shown that asymp-
totic phase-locking in a lossless droop-controlled microgrid formed by two inverters
with delays can be analyzed based on a perturbed pendulum model. By exploiting

1 The overall delay reduces to τ = 1.5TS if no moving average function for the measurement is
used [29].
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this fact, a delay-dependent condition for ISS of such a microgrid has been pre-
sented.
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