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We address the global stabilization of linear time-invariant (LTI) systems when the magnitude of the control input and its successive time derivatives, up to an arbitrary order p ∈ N, are bounded by prescribed values. We propose a static state feedback that solves this problem for any admissible LTI systems, namely for stabilizable systems whose internal dynamics has no eigenvalue with positive real part. This generalizes previous work done for single-input chains of integrators and rotating dynamics.

1. Introduction. The study of control systems subject to input constraints is motivated by the fact that signals delivered by physical actuators may be limited in amplitude, and may not evolve arbitrarily fast. An a priori bound on the amplitude of the control signal is usually referred to as input saturation whereas a bound on the variation of control signal is referred to as rate saturation (e.g [START_REF] Saberi | Internal and External Stabilization of Linear Systems with Constraints, Systems & Control: Foundations & Applications[END_REF]).

Stabilization of linear time-invariant systems (LTI for short) with input saturation has been widely studied in the literature. Such a system is given by (S) ẋ = Ax + Bu, where x ∈ R n , u belongs to a bounded subset of R m , A is an n × n matrix and B is an n × m one. Global stabilization of (S) can be achieved if and only if the LTI system is asymptotically null controllable with bounded controls, i.e., it can be stabilized in the absence of input constraint and the eigenvalues of A have non positive real parts. Saturating a linear feedback law may fail at globally stabilizing (S) as it was observed first in [START_REF] Fuller | In-the-large stability of relay and saturating control systems with linear controllers[END_REF] and then in [START_REF] Sussmann | On the stabilizability of multiple integrators by means of bounded feedback controls[END_REF] for the special case of integrator chains (i.e., when A is the n-th Jordan block and B = (0 • • • 0 1) T ). As shown for instance in [START_REF] Ryan | Optimal relay and saturating control system synthesis[END_REF], optimal control can be used to define a globally stabilizing feedback for (S) but, when the dimension is greater than 3, deriving a closed form for this stabilizer becomes extremely difficult. The first globally stabilizing feedback with rather simple closed form (nested saturations) was provided in [START_REF] Teel | Global stabilization and restricted tracking for multiple integrators with bounded controls[END_REF] for chains of integrators and then in [START_REF] Sussmann | A general result on the stabilization of linear systems using bounded controls[END_REF] for the general case. In [START_REF] Lin | Control-Lyapunov universal formulas for restricted inputs[END_REF], a global feedback stabilizer for (S) was built by relying on control Lyapunov functions arising from a mere existence result. Other globally stabilizing feedback laws for (S) have been proposed with an additional property of robustness with respect to perturbations. In [START_REF] Saberi | Control of linear systems with saturating actuators[END_REF], using low-and-high gain techniques, a robust stabilizer was proposed to ensure semiglobal stability, meaning that the control gains can be tuned in such a way that the basin of attraction contains any prescribed compact subset of R n . This restriction has been removed in [START_REF] Saberi | On simultaneous global external and global internal stabilization of critically unstable linear systems with saturating actuators[END_REF], where the authors provided a global feedback stabilizer for (S) which is robust with respect to perturbations, based on an earlier idea due to Megretsky [START_REF] Megretski | BIBO output feedback stabilization with saturated control[END_REF]. Nonetheless, the feedback laws of [START_REF] Saberi | On simultaneous global external and global internal stabilization of critically unstable linear systems with saturating actuators[END_REF] and [START_REF] Megretski | BIBO output feedback stabilization with saturated control[END_REF] require to solve a nonlinear optimization problem at every point x ∈ R n , which makes its practical implementation questionable. An easily implementable global feedback stabilizer for (S) which is robust with respect to perturbations was proposed in [START_REF] Chitour | Lp-Stabilization of Integrator Chains Subject to Input Saturation Using Lyapunov-Based Homogeneous Design[END_REF], but it only covers the multiple integrator case and it is discontinuous since it is based on sliding mode techniques. Robust stabilization of (S) was also addressed in [START_REF] Azouit | Strong iISS for a class of systems under saturated feedback[END_REF] by relying on the control Lyapunov function techniques developed in [START_REF] Lin | Control-Lyapunov universal formulas for restricted inputs[END_REF]. Finally it is important to notice that, while global stabilizers own the advantage to be valid for all initial conditions, they are typically low performance and less suited for practical implementation because they do not allow the input to exceed the saturation limits, which often results in input signals that stay well below the maximum value.

In contrast to stabilization of LTI systems subject to input saturation, there are much less results available in the literature regarding global stabilization under rate saturation, i.e., when the first time derivative of the control signal is also a priori bounded. When only rate saturation is considered (with no constraint on the input magnitude), the objective can easily be reduced to the standard case of magnitude saturation by considering the augmented system where the control is an extra variable and its derivative becomes the new control. The control objective is more challenging when both magnitude and rate constraints are considered. In [START_REF] Freeman | Integrator backstepping for bounded controls and control rates[END_REF], the authors rely on a backstepping procedure to build a bounded globally stabilizing feedback with a bounded rate, but the methodology does not allow to a priori impose a prescribed rate. In [START_REF] Shewchun | High performance control with position and rate limited actuators[END_REF], a dynamic feedback law inspired from [START_REF] Megretski | BIBO output feedback stabilization with saturated control[END_REF] is constructed and can even be generalized to take into account constraints on higher time derivatives of the control signal. However, as mentioned previously, the numerical efficiency of such feedbacks is definitely questionable. A rather involved global feedback stabilizer for (S) achieving amplitude and rate saturations was also obtained in [START_REF] Solís-Daun | Global stabilization of nonlinear systems with inputs subject to magnitude and rate bounds: A parametric optimization approach[END_REF] for affine systems with a stable free dynamics. This corresponds in our setting to requiring that the matrix A is stable, i.e., A T + A ≤ 0 (up to similarity) and therefore fails at covering chains of integrators.

Finally, let us mention the references [START_REF] Lauvdal | Stabilization of integrator chains in the presence of magnitude and rate saturations: a gain scheduling approach[END_REF], [START_REF] Lin | Semi-global stabilization of linear systems with position and rate-limited actuators[END_REF] for semiglobal stabilization results and [START_REF] Gomes Da Silva | Local stabilization of linear systems under amplitude and rate saturating actuators[END_REF] for local stabilization results using LMIs and anti-windup design. One should also mention [START_REF] Teel | A nonlinear small gain theorem for the analysis of control systems with saturation[END_REF] where a nonlinear small gain theorem is given for the behaviour analysis of control systems with saturation.

The results presented here encompass input and rate saturations as special cases.

More precisely, given any integer p, we construct a globally stabilizing feedback for (S) such that the control signal and its p first time derivatives are bounded by arbitrary prescribed positive values, along all trajectories of the closed-loop system. This problem has already been solved by the authors in [START_REF] Laporte | Global stabilization of classes of linear control systems with bounds on the feedback and its successive derivatives[END_REF] for the multiple integrator and skew-symmetric cases. The solution given in that paper for the multiple integrator case consisted in considering appropriate nested saturation feedbacks. We also indicated in [START_REF] Laporte | Global stabilization of classes of linear control systems with bounds on the feedback and its successive derivatives[END_REF] that these feedbacks fail at ensuring global stability in the skew-symmetric case and we then provided an ad hoc feedback law for this specific case. Here, we solve the general case with a unified strategy.

The paper should be seen as a first theoretical step towards the global stabilization of an LTI system when the input signal is delivered by a dynamical actuator that limits the control action in terms of magnitude and p first time derivatives. Further developments are needed to explicitly take into account the dynamics of such an actuator. Possible extensions of this work may also address the question of global stabilization by smooth feedback laws (i.e., C ∞ with respect to time) when all successive This manuscript is for review purposes only.

derivatives need to be bounded by prescribed values.

The paper is organized as follows. In Section 2, we precisely state the problem we want to tackle, the needed definitions as well as the main results we obtain, namely Theorem 1 for the single input case and Theorem 2 for the multiple input case. Section 3 contains the proof of the main results. In Section 3.1.1 we show that the proof of Theorem 1 is a consequence of two propositions. In the first one (Proposition 1), we show that the feedback proposed in Theorem 1 is indeed a globally stabilizing feedback for (S). We actually prove a stronger result dealing with robustness properties of this feedback, as it is required in [START_REF] Teel | Global stabilization and restricted tracking for multiple integrators with bounded controls[END_REF] and [START_REF] Sussmann | A general result on the stabilization of linear systems using bounded controls[END_REF]. The second proposition (Proposition 2) specifically deals with bounding the p first derivatives of the control signal by relying on delicate estimates. Section 3.2.1 contains the proof of Theorem 2 which is a consequence of Proposition 1 and Proposition 3, the latter providing estimates on the successive time derivatives of the control signal. In Section 4, we provide a numerical validation of our main result based on a four-dimensional system made of a cascade of two rotating dynamics. We close the paper by an Appendix, where we gather several technical results used throughout the paper.

Notations. We use R and N to denote the sets of real numbers and the set of non negative integers respectively. Given a set I ⊂ R and a constant a ∈ R, we let

I ≥a := {x ∈ I : x ≥ a}. Given m, k ∈ N, we define m, k := {l ∈ N : l ∈ [m, k]}. For a given set M , the boundary of M is denoted by ∂M . The factorial of k is denoted by k! and the binomial coefficient is denoted k m := k! m!(k-m)! .
Given k ∈ N and n, p ∈ N ≥1 , we say that a function f : R n → R p is of class

C k (R n , R p
) if its differentials up to order k exist and are continuous, and we use f (k) to denote the k-th order differential of f . By convention, f (0) := f .

Given n, m ∈ N ≥1 , R n,m denotes the set of n × m matrices with real coefficients.

The transpose of a matrix A is denoted by A T . The identity matrix of dimension n is denoted by I n . We say that an eigenvalue of A is critical if it has zero real part and we set µ(A) := s(A) + z(A) where s(A) is the number of conjugate pairs of nonzero purely imaginary eigenvalues of A (counting multiplicity), and z(A) is the multiplicity of the zero eigenvalue of A. We define A 0 := 0 1 -1 0 , and b 0 := 0 1 .

We use x to denote the Euclidean norm of an arbitrary vector x ∈ R n . Given δ > 0 and f : R ≥0 → R n , we say that f is eventually bounded by δ, and we write f (•) ≤ ev δ, if there exists T > 0 such that f (t) ≤ δ for all t ≥ T .

2. Problem statement and main results. Given n ∈ N ≥1 and m ∈ N ≥1 , consider the LTI system defined by

(1) ẋ = Ax + Bu, where x ∈ R n , u ∈ R m , A ∈ R n,n , and B ∈ R n,m . Assume that the pair (A, B)
is stabilizable and that all the eigenvalues of A have non positive real parts. Recall that these assumptions on (A, B) are necessary and sufficient for the existence of a bounded continuous state feedback u = k(x) which globally asymptotically stabilizes the origin of (1), see [START_REF] Sussmann | A general result on the stabilization of linear systems using bounded controls[END_REF].

Given an integer p and a (p + 1)-tuple of positive real numbers (R j ) 0≤j≤p , we want to derive a static state feedback law whose magnitude and p-first time derivatives along all trajectories of the closed-loop system are bounded by R j , j ∈ 0, p .

Definition 1 (feedback law p-bounded by (R j ) 0≤j≤p ). Given n ∈ N ≥1 , m ∈ N ≥1
and p ∈ N, let (R j ) 0≤j≤p be a (p + 1)-tuple of positive real numbers. We say that ν : R n → R m is a feedback law p-bounded by (R j ) 0≤j≤p for system (1) if it is of class This manuscript is for review purposes only.

C p (R n , R m ) and, for every trajectory of the closed-loop system ẋ = Ax + Bν(x), the control signal U : R ≥0 → R m , t → U (t) := ν(x(t)) satisfies sup t≥0 U (j) (t) ≤ R j for all j ∈ 0, p and all t ≥ 0. The function ν : R n → R m is said to be a feedback law p-bounded for system (1), if there exists a (p + 1)-tuple of positive real numbers (R j ) 0≤j≤p such that ν(•) is a feedback law p-bounded by (R j ) 0≤j≤p for system [START_REF] Azouit | Strong iISS for a class of systems under saturated feedback[END_REF].

We stress that the above definition includes only static state feedback laws, meaning control laws that depend solely on the current state value. Based on this definition, we can write our stabilization problem of Bounded Higher Derivatives as follows.

Problem (BHD). Given p ∈ N and a (p + 1)-tuple of positive real numbers (R j ) 0≤j≤p , design a state feedback law ν : R n → R m such that the origin of the closed-loop system ẋ = Ax + Bν(x) is globally asymptotically stable (GAS for short)

and the feedback ν is a feedback law p-bounded by (R j ) 0≤j≤p for system [START_REF] Azouit | Strong iISS for a class of systems under saturated feedback[END_REF].

Our construction to solve Problem (BHD) will often use the property of Small Input Small State with linear gain (SISS L for short) developed in [START_REF] Sussmann | A general result on the stabilization of linear systems using bounded controls[END_REF]. We recall below its definition Definition 2 (SISS L , [START_REF] Sussmann | A general result on the stabilization of linear systems using bounded controls[END_REF] ). Given positive ∆, N , the control system ẋ = f (x, u), with x ∈ R n and u ∈ R m , is said to be SISS L (∆, N ) if, for every δ ∈ (0, ∆] and every bounded measurable signal e : R ≥0 → R m eventually bounded by δ, then any solution of ẋ = f (x, e) is eventually bounded by N δ.

A control system ẋ = f (x, u) is said to be SISS L if it is SISS L (∆, N ) for some ∆, N > 0. An input-free system ẋ = f (x) is called SISS L , if the control system ẋ = f (x) + u is SISS L . Remark 1. Note that if ẋ = f (x)
is SISS L , then all its solutions converge to the origin. To see this, pick a sequence (δ k ) k∈N of positive numbers tending to zero so that δ 0 ≤ ∆ and apply the SISS L property to every δ k with the zero input. Note, however, that the SISS L property does not necessarily ensure GAS in the absence of input, as it does not imply stability of the origin.

When a state feedback law ensures both global asymptotic stability and SISS L , we refer to is an SISS L -stabilizing feedback.

Definition 3 (SISS L -stabilizing feedback ). Given a control system ẋ = f (x, u) with x ∈ R n and u ∈ R m , we say that a state feedback law ν : R n → R m is stabilizing if the origin of the closed-loop system ẋ = f (x, ν(x)) is globally asymptotically stable. If, in addition, this closed-loop system is SISS L , then we say that ν is SISS L -stabilizing.

As mentioned before the state feedback law given in [START_REF] Laporte | Global stabilization of classes of linear control systems with bounds on the feedback and its successive derivatives[END_REF], which solves Problem (BHD) for the special case of multiple integrators, simply made use of nested saturations with carefully chosen saturation functions. We recall next why this state feedback construction cannot work in general. For that purpose it is enough to consider the 2D simple oscillator case which is the control system given by ẋ = ωA 0 x+b 0 u, with x = (x 1 , x 2 ) T , u ∈ R and ω > 0. This system is one of the two basic systems to be stabilized by means of a bounded feedback, as explained in [START_REF] Sussmann | A general result on the stabilization of linear systems using bounded controls[END_REF]. According to [START_REF] Laporte | Global stabilization of classes of linear control systems with bounds on the feedback and its successive derivatives[END_REF],

one must then consider a stabilizing feedback law u = -σ(k T x), where k = (k 1 , k 2 ) T is a fixed vector in R 2 and σ : R → R is a saturation function, i.e., a bounded, continuously differentiable function satisfying sσ(s) > 0 for s = 0 and σ (1) (0) > 0. Note that k is chosen so that the linearized system at (0, 0) is Hurwitz. In particular this implies that k 2 = 0. Pick now the following sequence of initial conditions (l, -k 1 l/k 2 ) l≥1 . A straightforward computation yields that the first time derivative of the control along each trajectory satisfies u(0) = -σ (1) (0)ωl(k 2 1 /k 2 + k 2 ), which grows unbounded as l tends to infinity. Therefore the feedback law proposed in [START_REF] Laporte | Global stabilization of classes of linear control systems with bounds on the feedback and its successive derivatives[END_REF] can not be a 1-bounded

This manuscript is for review purposes only. feedback for this system.

In order to solve Problem (BHD) for the 2D oscillator, we showed in [START_REF] Laporte | Global stabilization of classes of linear control systems with bounds on the feedback and its successive derivatives[END_REF] that a feedback law of the type u k,α := k T x (1+ x 2 ) α with k ∈ R 2 and α ≥ 1/2 does the job and it also solves Problem (BHD) in case the matrix A in (1) is stable. However, we are not able to show whether u k,α stabilizes or not the system in the case where provided for the two-dimensional oscillator.

A := A 0 b T 0 b 0 0 A 0 . It
2.1. Single input case. For the case of single input systems, the solution of Problem (PHB) is given by the following statement.

Theorem 1 (Single input). Given n ∈ N >0 , consider a single input system

ẋ = Ax + bu where x ∈ R n , A ∈ R n,n and b ∈ R n,1 .
Assume that A has no eigenvalue with positive real part and that the pair (A, b) is stabilizable. Then, given any p ∈ N and any (p + 1)-tuple (R j ) 0≤j≤p of positive real numbers, there exist vectors

k i ∈ R n and matrices T i ∈ R n,n , i ∈ 1, µ(A) , such that the feedback law ν : R n → R defined as (2) ν(x) = - µ(A) i=1 k T i x (1 + T i x 2 ) 1/2 ,
is a feedback law p-bounded by (R j ) 0≤j≤p and SISS L -stabilizing for system ẋ = Ax + bu.

In view of Definition 3, the feedback law (2) globally asymptotically stabilizes the origin of (1), and thus solves Problem (BHD). We stress that, even though the exact computation of the control gains k i is quite involved (see proof in Section 3), the structure of the proposed feedback law (2) is rather simple. It should also be noted that, unlike the results developed in [START_REF] Laporte | Global stabilization of classes of linear control systems with bounds on the feedback and its successive derivatives[END_REF], this state feedback law applies to any admissible single-input systems (including rotating dynamics and integrator chains) in a unified manner.

Multiple input case.

To give the main result for LTI system with multiple inputs we need this following definition.

Definition 1 (Reduced controllability form). Given n ∈ N and q ∈ N, a LTI system is said to be in reduced controllability form if it reads

(3) ẋ0 = A 00 x 0 + A 01 x 1 + A 02 x 2 + . . . + A 0q x q + b 01 u 1 + b 02 u 2 + . . . + b 0q u q , ẋ1 = A 11 x 1 + A 12 x 2 + . . . + A 1q x q + b 11 u 1 + b 22 u 2 + . . . + b 1q u q , ẋ2 = A 22 x 2 + . . . + A 2q x q + b 22 u 2 + . . . + b 2q u q , . . . ẋq = A qq x q + b qq u q ,
where, for some (q + 1)-tuple

(n i ) 0≤i≤q+1 in N × (N >0 ) q with q i=0 n i = n, A 00 ∈ R n0,n0 is Hurwitz, for every i ∈ 1, q all the eigenvalues of A ii ∈ R ni,ni are critical, b ii ∈ R ni,1 and the pairs (A ii , b ii ) are controllable.
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From Lemma 5.1 in [START_REF] Sussmann | A general result on the stabilization of linear systems using bounded controls[END_REF], we can consider that system (1) is already given in the reduced controllability form without loss of generality. We can now establish the solution of Problem (BHD) for the multiple input case.

Theorem 2 (Multiple input). Let p ∈ N and consider any (p+1)-tuple (R j ) 0≤j≤p

of positive real numbers. Given n ∈ N and q ∈ N, consider system (3). Then, there exist κ 1 , . . . , κ q such that: i) for every i ∈ 1, q , κ i : R ni → R is a feedback law p-bounded and SISS L -

stabilizing for ẋi = A ii x i + b ii u i ;
ii) the state feedback law µ = [µ 1 , . . . , µ q ] T given by

µ i (x i , . . . , x q ) := κ i (x i ) (1 + x i+1 2 + . . . + x q 2 ) p+1 , ∀i ∈ 1, q -1 , (4) 
µ q (x q ) := κ q (x q ), ( 5) is a feedback law p-bounded by (R j ) 0≤j≤p and SISS L -stabilizing for system [START_REF] Freeman | Integrator backstepping for bounded controls and control rates[END_REF].

This statement provides a unified control law solving Problem (BHD) for all admissible LTI systems. It allows in particular multi-input systems, which was not covered in [START_REF] Laporte | Global stabilization of classes of linear control systems with bounds on the feedback and its successive derivatives[END_REF].

Proof of the main results.

3.1. Proof of Theorem 1. In this section, we prove Theorem 1. For that purpose, we first reduce the argument to establishing of Propositions 1 and 2 given below. The first one states that the feedback given in Theorem 1 is SISS L stabilizing for (S) in the case of single input. The second proposition provides an estimate of the successive time derivatives of the control signal.

3.1.1. Reduction of the proof of Theorem 1 to the proofs of Propositions 1 and 2. Let n ∈ N ≥1 , p ∈ N and (R j ) 0≤j≤p be a (p + 1)-tuple of positive real numbers. Define R := min j∈ 0,p R j . Consider a single input linear system ẋ = Ax + bu where x ∈ R n , A and b are n × n and n × 1 matrices respectively. We assume that the pair (A, b) is stabilizable and that all the eigenvalues of A have non positive real parts. As observed in [START_REF] Sussmann | A general result on the stabilization of linear systems using bounded controls[END_REF], it is sufficient to consider the case where the pair (A, b) is controllable and all eigenvalues of A are critical. Indeed, since (A, b) is stabilizable there exists a linear change of coordinates transforming A and b into

A 1 0 0 A 2 and b 1 b 2
, where A 1 is Hurwitz, the eigenvalues of A 2 are critical and the pair (A 2 , b 2 ) is controllable. Then, it is immediate to see that we only have to treat the case where A has only critical eigenvalues. From now on, we therefore assume that A has only eigenvalues with zero real parts, and that the pair (A, b) is controllable.

Our construction uses the following linear change of coordinates given by [START_REF] Sussmann | A general result on the stabilization of linear systems using bounded controls[END_REF]Lemma 5.2]. This decomposition puts the original system in a triangular form made of one-dimensional integrators and two-dimensional oscillators.

Lemma 1 (Lemma 5.2 in [START_REF] Sussmann | A general result on the stabilization of linear systems using bounded controls[END_REF]). Let ẋ = Ax+bu, x ∈ R n , u ∈ R, be a controllable single input linear system. Assume that all the eigenvalues of A are critical. Let ±iω 1 , . . . , ±iω s(A) be the nonzero eigenvalues of A. Let (a 2 , . . . , a µ(A) ) be a family of This manuscript is for review purposes only. positive numbers. Define

θ i,k = 1, for k = i + 1, θ i,k = k-2 h=i 1/a h+1 , for i + 2 ≤ k ≤ µ(A) + 1. (6)
Then there exists a linear change of coordinates that puts ẋ = Ax + bu in the form

ẏi = ω i A 0 y i + b 0 s(A) k=i+1 θ i,k b T 0 y k + b 0 µ(A) k=s(A)+1 θ i,k y k + θ i,µ(A)+1 b 0 u, i = 1, . . . , s(A), ẏi = µ(A) k=i+1 θ i,k y k + θ i,µ(A)+1 u, i = s(A) + 1, . . . , µ(A) -1, (7) ẏµ(A) = u, if µ(A) > s(A),
where

y i ∈ R 2 for i = 1, . . . , s(A) , y i ∈ R for i = s(A)+1, . . . , µ(A)-1, and y µ(A) ∈ R if µ(A) > s(A).
With no loss of generality, we prove Theorem 1 for system [START_REF] Laporte | Global stabilization of classes of linear control systems with bounds on the feedback and its successive derivatives[END_REF]. We rely on a candidate feedback ν : R n → R under the form [START_REF] Lauvdal | Stabilization of integrator chains in the presence of magnitude and rate saturations: a gain scheduling approach[END_REF] κ(y) = -

s(A) i=1 Q i,µ(A) b T 0 y i 1 + µ(A) m=i y m 2 1/2 - µ(A) i=s(A)+1 Q i,µ(A) y i 1 + µ(A) m=i y m 2 1/2 , with (9) 
Q i,µ(A) := µ(A) l=i a l ,
where a 1 , . . . , a µ(A) are positive constants that will be picked in such a way that the feedback law ( 8) is a feedback law p-bounded by (R j ) 0≤j≤p , and SISS L -stabilizing for system [START_REF] Laporte | Global stabilization of classes of linear control systems with bounds on the feedback and its successive derivatives[END_REF]. To that aim, we rely on the next two propositions, respectively proven in Sections 3.1.2 and 3.1.3. be the nonzero eigenvalues of A. Then, there exist µ(A)-1 functions

Proposition 1. Let ẋ = Ax + bu, x ∈ R n , u ∈ R,
a i : R >0 → R >0 , i ∈ 1, µ(A) -1 such that for any constants a 1 , . . . , a µ(A) satisfying a µ(A) ∈ (0, 1], a i ∈ (0 , a i (a i+1 )], ∀i ∈ 1, µ(A) -1 ,
the feedback law ( 8) is SISS L -stabilizing for system [START_REF] Laporte | Global stabilization of classes of linear control systems with bounds on the feedback and its successive derivatives[END_REF]. be the nonzero eigenvalues of A. Let a i , i ∈ 1, µ(A) , be positive constants in (0, 1].

Proposition 2. Let ẋ = Ax + bu, x ∈ R n , u ∈ R,
Then, there exist a positive constant c µ(A) , and continuous functions c i : R

µ(A)-i >0 →
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R >0 , i ∈ 1, µ(A) -1 , such that for any trajectory of the closed-loop system [START_REF] Laporte | Global stabilization of classes of linear control systems with bounds on the feedback and its successive derivatives[END_REF] with the feedback law (8), the control signal U : R ≥0 → R defined by U (t) := ν(y(t)) for all t ≥ 0 satisfies, for all k ∈ 0, p ,

U (k) (t) ≤ a µ c µ(A) + µ(A)-1 i=1 a i c i (a µ(A) , . . . , a i+1 ), ∀t ≥ 0.
Based on these two propositions, pick a µ(A) ∈ (0, 1] in such a way that

a µ(A) ≤ R (p + 1)c µ(A)
.

Choose recursively

a i ∈ (0, 1], i = µ(A) -1, . . . , 1, such that a i ≤ a i (a i+1 ), a i ≤ R (p + 1)c i (a µ(A) , . . . , a i+1 ) ,
where the functions c i appearing above are defined in Proposition 2. By Proposition 1, the feedback law ( 8) is SISS L -stabilizing for system [START_REF] Laporte | Global stabilization of classes of linear control systems with bounds on the feedback and its successive derivatives[END_REF]. Moreover, as a consequence of Proposition 2, for any trajectory of the closed-loop system [START_REF] Laporte | Global stabilization of classes of linear control systems with bounds on the feedback and its successive derivatives[END_REF] with the feedback law (8), the control signal U : R ≥0 → R defined by U (t) := ν(y(t)) for all t ≥ 0 satisfies sup t≥0 U (k) (t) ≤ R for all k ∈ 0, p . Thus, the feedback law ( 8) is a feedback law p-bounded by (R j ) 0≤j≤p for system [START_REF] Laporte | Global stabilization of classes of linear control systems with bounds on the feedback and its successive derivatives[END_REF]. Since there is a linear change of coordinate (y = T x) that puts [START_REF] Laporte | Global stabilization of classes of linear control systems with bounds on the feedback and its successive derivatives[END_REF] into the original form ẋ = Ax + bu, the feedback law defined given in (2) can be picked as

ν(x) := κ(T x)
and it is a feedback law p-bounded by (R j ) 0≤j≤p , and SISSL L -stabilizing for (1). To sum up, the proof of Theorem 1 boils down to establishing Propositions 1 and 2.

Proof of Proposition 1. Proposition 1 is proved by induction on µ(A).

More precisely, we show that the following property holds true for every positive integer µ.

(P µ ) : Let s, z ∈ N be such that s + z = µ and ω 1 , . . . , ω s be positive constants.

Then there exist µ -1 functions a i : R >0 → R >0 , i ∈ 1, µ -1 such that for any constants a 1 , . . . , a µ satisfying

a µ ∈ (0, 1], a i ∈ (0 , a i (a i+1 )], ∀i ∈ 1, µ -1 ,
the feedback law ( 8) is SISS L -stabilizing for system [START_REF] Laporte | Global stabilization of classes of linear control systems with bounds on the feedback and its successive derivatives[END_REF], with µ(A) = µ, s(A) = s, and z(A) = z. Moreover the linearization of this closed-loop system around the origin is asymptotically stable (AS).

In order to start the argument, we give intermediate results whose proofs are given in Appendix and which will be used for the initialization step of the induction and the inductive step. The first statement establishes SISS L for the one-dimensional integrator.

Lemma 2. Let > 1. For every β > 0, the scalar system given by

(10) ẋ = -β x (1 + x 2 ) 1/2 is SISS L ( β 2 , 2 β
), its origin is GAS and its linearisation around zero is AS.
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The next lemma guarantees that the two-dimensional oscillator is SISS L .

Lemma 3. For every ω > 0, there exist Γ, N > 0 such that for any β ∈ (0, 1] the two-dimensional system given by

(11) ẋ = ωA 0 x -βb 0 b T 0 x (1 + x 2 ) 1/2
is SISS L (βΓ, N β ), its origin is GAS and its linearisation around zero is AS.

We now start the inductive proof of (P µ ). For µ = 1, we have to consider two cases.

Either z = 1 and s = 0 corresponding to the simple integrator

ẏ1 = u, with u = κ(y 1 ) = -a 1 y 1 (1 + y 2 1 ) 1/2 , (12) 
or s = 1 and z = 0 corresponding to the simple oscillator

ẏ1 = ω 1 A 0 y 1 + b 0 u, with u = κ(y 1 ) = -a 1 b T 0 y 1 (1 + y 1 2 ) 1/2 , ( 13 
)
for some ω 1 > 0. In both cases, (P 1 ) can be readily deduced by invoking Lemma 2 and 3 respectively. Given µ ∈ N >0 , assume that (P µ ) holds. In order to establish (P µ+1 ), it is sufficient to consider the following two cases: case i) z = µ + 1, i.e, all the eigenvalues of A are zero (multiple integrator); case ii) s ≥ 1 , i.e some eigenvalues of A have non zero imaginary part (multiple integrator with rotating modes).

In both cases we reduce our problem to the choice of only one constant a 1 using the inductive hypothesis.

Case i).

Let (a 1 , . . . , a µ+1 ) be a set of positive numbers to be chosen later. Consider the multiple integrator given by ẏi =

µ+1 k=i+1 θ i,k y k + θ i,µ+2 u, i = 1, . . . , µ, ẏµ+1 = u,
where y i ∈ R for i = 1, . . . , µ + 1. Let ỹ = [y 2 , . . . , y µ+1 ] T . We then can rewrite this system as

ẏ1 = µ+1 k=2 θ i,k y k + θ i,µ+2 u, ẏ = Ãỹ + bu,
for some matrices à and b of appropriate dimensions. From the inductive hypothesis, there exist µ -1 functions a i : R >0 → R >0 for i ∈ 2, µ such that for any set of positive constants a 2 , . . . , a µ+1 satisfying a 2 , . . . , a µ+1 satisfying a µ+1 ∈ (0, 1] and 0 < a i ≤ a i (a i+1 ) , for each i ∈ 2, µ , the feedback law κ : R µ → R defined by

κ(ỹ) = - µ+1 i=2 Q i,µ+1 y i (1 + µ+1 m=i y m 2 ) 1/2
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is SISS L -stabilizing for ẏ = Ãỹ + bu. Choose (a 2 , . . . , a µ+1 ) satisfying the above conditions. The feedback law ( 8) is then given by 6) and ( 9)), the closed-loop system can be rewritten as ẏ1 = -a 1 y 1

κ(y) = -κ(ỹ) -a 1 Q 2,µ+1 y 1 (1 + µ+1 m=1 y m 2 ) 1/2 . Since θ 1,µ+2 Q k,µ+1 = θ 1,k for all k ∈ 2, µ+1 (see (
(1 + y 1 2 ) 1/2 + a 1 ρ 1 (y) + g 1 (ỹ), ẏ = Ãỹ -bκ(ỹ) -ba 1 f 1 (y), (14) 
with

ρ 1 (y) = y 1 (1 + y 1 2 ) 1/2 1 - (1 + y 1 2 ) 1/2 (1 + µ+1 m=1 y m 2 ) 1/2 , ( 15 
)
g 1 (ỹ) = µ+1 k=2 θ 1,k y k 1 - 1 (1 + µ+1 m=k y m 2 ) 1/2 , ( 16 
)
f 1 (y) = Q 2,µ+1 y 1 (1 + µ+1 m=1 y m 2 ) 1/2 . ( 17 
)
We now move to the other case where the dynamics involves multiple integrators with rotating modes.

Case ii). Let (a 1 , . . . , a µ+1 ) be a set of positive constants to be chosen later. Let s ∈ N ≥1 , and z ∈ N be such that µ = s + z. Let ω 1 , . . . , ω s be a set of non zero real numbers. Consider the following linear control system

ẏi = ω i A 0 y i + b 0 s k=i+1 θ i,k b T 0 y k + b 0 µ+1 k=s+1 θ i,k y k + θ i,µ+2 b 0 u, i = 1, . . . , s, ẏi = µ+1 k=i+1 θ i,k y k + θ i,µ+2 u, i = s + 1, . . . , µ, ẏµ+1 = u,
where y i ∈ R 2 for i = 1, . . . , s , and

y i ∈ R for i = s + 1, . . . , µ + 1. Let ỹ =
[y 2 , . . . , y µ+1 ] T . We then can rewrite this system as follows

ẏ1 = ω 1 A 0 y 1 + b 0 s k=i+1 θ i,k b T 0 y k + b 0 µ+1 k=s+1 θ i,k y k + θ i,µ+2 b 0 u, ẏ = Ãỹ + bu.
From the inductive hypothesis, there exist µ-1 functions a i : R >0 → R >0 for i ∈ 2, µ such that for any set of positive constant a 2 , . . . , a µ+1 satisfying a µ+1 ∈ (0, 1] and
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0 < a i ≤ a i (a i+1 ) , for each i ∈ 2, µ , the feedback law κ : R µ → R defined by

(18) κ(ỹ) = - s i=2 Q i,µ+1 b T 0 y i (1 + µ+1 m=i y m 2 ) 1/2 - µ+1 i=s+1 Q i,µ+1 y i (1 + µ+1 m=i y m 2 ) 1/2
is SISS L -stabilizing for ẏ = Ãỹ + bu. Choose a 2 , . . . , a µ+1 satisfying the above conditions. The feedback law ( 8) is then given by

κ(y) = -κ(ỹ) -a 1 Q 2,µ+1 b T 0 y 1 (1 + µ+1 m=1 y m 2 ) 1/2
.

By noticing that θ 1,µ+2 Q k,µ+1 = θ 1,k for all k ∈ 2, µ + 1 (see ( 6) and ( 9)), the closed-loop system can be rewritten as

ẏ1 = ω 1 A 0 y 1 -a 1 b 0 b T 0 y 1 (1 + y 1 2 ) 1/2 + a 1 b 0 ρ 1 (y) + b 0 g 1 (ỹ), ẏ = Ãỹ -bκ(ỹ) -ba 1 f 1 (y), (19) 
with

ρ 1 (y) = b T 0 y 1 (1 + y 1 2 ) 1/2 1 - (1 + y 1 2 ) 1/2 (1 + µ+1 m=1 y m 2 ) 1/2 , ( 20 
)
g 1 (ỹ) = s k=2 θ 1,k b T 0 y k (1 - 1 (1 + µ+1 m=k y m 2 ) 1/2 ) + µ+1 k=s+1 θ 1,k y k (1 - 1 (1 + µ+1 m=k y m 2 ) 1/2
), ( 21)

f 1 (y) = Q 2,µ+1 b T 0 y 1 (1 + µ+1 m=1 y m 2 ) 1/2 . ( 22 
)
In both cases, it remains to show that there exists a function a 1 such that if a 1 ∈ (0, a 1 ] then the closed-loop systems ( 14) and ( 19) are SISS L and globally asymptotically stable with respect to the origin, and their respective linearization at zero is asymptotically stable as well. According to Remark 1, one only needs to prove that the closed-loop systems are SISS L and their linearization at zero is asymptotically stable.

We start by showing the latter fact. For any a 1 > 0, the linearization at zero of the y 1 -subsystem in [START_REF] Saberi | Control of linear systems with saturating actuators[END_REF] (respectively [START_REF] Sussmann | A general result on the stabilization of linear systems using bounded controls[END_REF]) is asymptotically stable since it is given by ẏ1 = -a 1 y 1 (respectively ẏ1 = (ω 1 A 0 -a 1 b 0 b T 0 )y 1 ). Moreover, the linearization at zero of the ỹ-subsystem in [START_REF] Saberi | Control of linear systems with saturating actuators[END_REF] (respectively [START_REF] Sussmann | A general result on the stabilization of linear systems using bounded controls[END_REF]) is given by ẏ = ( Ãbκ (1) (0))ỹ -a 1 by 1

(respectively ẏ = ( Ãbκ (1) (0))ỹ -a 1 bb T 0 y 1 ). Due to the inductive hypothesis, the origin of ẏ = Ãbκ (1) (0))ỹ is asymptotically stable. Thus, local asymptotic stability of ( 14) and [START_REF] Sussmann | A general result on the stabilization of linear systems using bounded controls[END_REF] follows easily.
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It remains to prove that systems ( 14) and ( 19) are SISS L . In both cases, using that 1 -1/(1 + s) 1/2 ≤ s for all s ≥ 0, it holds from ( 16) and ( 21) that

(23) g 1 (ỹ) ≤ µ+1 k=2 θ 1,k y k µ+1 m=k y m 2 ≤ ỹ 3 µ+1 k=2 θ 1,k ,
and from ( 15) and ( 20) that

(24) |ρ 1 (y)| ≤ ỹ 2 .
Recall that, due to the inductive hypothesis, ẏ = Ãỹbk (ỹ) is SISS L ( ∆, Ñ ) for some ∆ > 0 and Ñ > 0. We next prove the SISS L property for Case ii), i.e., for system [START_REF] Sussmann | A general result on the stabilization of linear systems using bounded controls[END_REF]. Let

C 1 := Ñ (Q 2,µ+1 b + 1), (25) 
C 2 := C 2 1 + C 3 1 µ+1 k=2 θ i,k . (26) 
From Lemma 3 (with ω = ω 1 ), there exist Γ 1 , N 1 > 0 such that for any a 1 ∈ (0, 1]

the system ẏ1 = ω 1 A 0 y 1 -a 1 b 0 b T 0 y1 (1+ y1 2 ) 1/2 is SISS L (Γ 1 a 1 , N 1 /a 1 ). Define (27) a 1 := min      1 , ∆ Ñ C 1 , Γ 1 2C 2 , C 1 4Q 2,µ+1 Ñ b N 1 C 2     
, and choose a 1 ∈ (0,

a 1 ]. Let (28) ∆ := min a 1 Γ 1 2 , a 1 .
Given δ ≤ ∆, let e 1 : R ≥0 → R 2 and e 2 : R ≥0 → R 2s+z-2 be two bounded measurable functions, eventually bounded by δ. Consider any trajectory (y 1 (•), ỹ(•)) of the

following system ẏ1 = ω 1 A 0 y 1 -a 1 b 0 b T 0 y 1 (1 + y 1 2 ) 1/2 + a 1 b 0 ρ 1 (y) + b 0 g 1 (ỹ) + e 1 , ẏ = Ãỹ -bκ(ỹ) -ba 1 f 1 (y) + e 2 , (29) 
In view of ( 19), ( 20), ( 21), ( 22) and (18) the above system is clearly forward complete.

We next show that there exists a constant N > 0 such that y 1 (•) ≤ ev N δ and ỹ(•) ≤ ev N δ. From (22) and recalling that b 0 = 1, a straightforward computation yields

a 1 bf 1 (y) ≤ a 1 Q 2,µ+1 b . Since e 2 (•) ≤ ev δ, it follows that a 1 bf 1 (y(•) + e 2 (•) ≤ ev a 1 Q 2,µ+1 b + δ.
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Moreover from ( 27), (28) and it follows that

a 1 bf 1 (y(•) + e 2 (•)) ≤ ev a 1 (Q 2,µ+1 b + 1) ≤ a 1 C 1 / Ñ ≤ ∆,
where C 1 is defined in (25). Using the SISS L ( ∆, Ñ ) property of System ẏ = Ãỹbκ(ỹ), it follows that the solution of (29) satisfies ỹ(•) ≤ ev a 1 C 1 .

Consequently, using (24) and ( 23), it follows that (30)

a 1 b 0 ρ 1 (y(•)) + b 0 g 1 (ỹ(•)) ≤ ev a 3 1 C 2 .
Using (27), we have a 

a 1 b 0 ρ 1 (y(•)) + b 0 g 1 (ỹ(•)) + e 1 (•) ≤ ev a 1 Γ 1 . The SISS L (Γ 1 a 1 , N 1 /a 1 ) property of ẏ1 = ω 1 A 0 y 1 -a 1 b 0 b T 0 y1 (1+ y1 2 ) 1/2 ensures that (31) y 1 (•) ≤ ev N 1 a 1 (a 3 1 C 2 + δ) ≤ N 1 Γ 1 .
Now let θ > 0 be defined as (32) θ := lim sup t→+∞ ỹ(t) .

Then ỹ(•) ≤ ev 2θ. There are two cases to consider, either 2θ ≤ a 1 C 1 or a 1 C 1 < 2θ.

In the case when 2θ ≤ a 1 C 1 , we have

a 1 b 0 ρ 1 (y(•)) + b 0 g 1 (ỹ(•)) + e 1 (•) ≤ ev 2θa 2 1 C 2 /C 1 .

So invoking again the SISS

L (ρ 1 Γ 1 a 1 , N/a 1 ) property of ẏ1 = ω 1 A 0 y 1 -a 1 b 0 b T 0 y 1 /(1+ y 1 
2 ) 1/2 , one gets that the solution of (29) satisfies

(33) y 1 (•) ≤ ev N 1 a 1 ( 2θa 2 1 C 2 C 1 + δ).
In the case when a 1 C < 2θ, the estimate (33) follows readily from (31). Exploiting again the SISS L ( ∆, Ñ ) property of System ẏ = Ãỹbκ(ỹ), it follows that

ỹ(•) ≤ ev Ñ b Q 2,µ+1 N 1 ( 2θa 2 1 C 2 C 1 + δ) + δ = θ 2Q 2,µ+1 Ñ b N 1 a 2 1 C 2 C 1 + δ Ñ ( b Q 2,µ+1 N 1 + 1). It then follows from (27) that ỹ(•) ≤ ev θ 2 + δ Ñ ( b Q 2,µ+1 N 1 + 1).
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Taking the limsup of the above estimate, we get from (32) that

θ ≤ 2δ Ñ ( b Q 2,µ+1 N 1 + 1).
Consequently, we obtain that

ỹ(•) ≤ ev 2 Ñ ( b Q 2,µ+1 N 1 + 1)δ, y 1 (•) ≤ ev 2 N 1 a 1 ( 2a 2 1 C 2 C 1 + 1) Ñ (N 1 + 1)δ,
which finishes to establish (P µ+1 ) for the case ii). Proceeding as in case ii), it can be shown that system ( 14) is SISS L . This end the inductive proof of (P µ ).

3.1.3. Proof of Proposition 2. Fix µ ∈ N ≥1 . Let s and z be two integers such that s + z = µ, ω 1 , . . . , ω s be positive constant numbers, and a 1 , . . . , a µ be positive numbers less than or equal to 1. Consider the system (7) with the feedback law [START_REF] Lauvdal | Stabilization of integrator chains in the presence of magnitude and rate saturations: a gain scheduling approach[END_REF], where µ(A) = µ, s(A) = s and z(A) = z. We establish Proposition 2 by induction on the number of time derivatives, i.e., p. More precisely we prove the following statement: for each p ∈ N, (H p ) : there exist a positive constant c µ and continuous functions c i : R µ-i >0 → R >0 , i ∈ 1, µ -1 , such that for every trajectory y(•) of the closed-loop system [START_REF] Laporte | Global stabilization of classes of linear control systems with bounds on the feedback and its successive derivatives[END_REF] with the feedback law ( 8), the control signal U : R ≥0 → R defined by U (t) := κ(y(t)) for all t ≥ 0 satisfies, for all k ∈ 0, p ,

U (k) (t) ≤ a µ c µ + µ-1 i=1
a i c i (a µ , . . . , a i+1 ), ∀t ≥ 0.

For p = 0, this statement (H 0 ) holds trivially. Indeed, it is easy to see that for any trajectory of the closed-loop system [START_REF] Laporte | Global stabilization of classes of linear control systems with bounds on the feedback and its successive derivatives[END_REF] with the feedback law [START_REF] Lauvdal | Stabilization of integrator chains in the presence of magnitude and rate saturations: a gain scheduling approach[END_REF] we have

|U (t)| ≤ a µ + µ-1 i=1 a i Q i+1,µ , ∀t ≥ 0.
Now, assume that (H p ) holds true for some p ∈ N. We next prove that (H p+1 ) also holds true. To that aim, let y(•) be any trajectory of the closed-loop system [START_REF] Laporte | Global stabilization of classes of linear control systems with bounds on the feedback and its successive derivatives[END_REF] with the feedback law [START_REF] Lauvdal | Stabilization of integrator chains in the presence of magnitude and rate saturations: a gain scheduling approach[END_REF], and the control signal U (t) := κ(y(t)), ∀t ≥ 0. By the induction hypothesis, there exist a positive constant Υ µ and continuous functions

Υ i : R µ-i >0 → R >0 , i ∈ 1, µ -1 , such that for every k ∈ 0, p it holds that (34) U (k) (t) ≤ a µ Υ µ + µ-1 i=1 a i Υ i (a µ , . . . , a i+1 ), ∀t ≥ 0.
It is sufficient to show that there exist a positive constant Υµ and continuous functions

Υi : R µ-i >0 → R >0 , i ∈ 1, µ -1 , such that (35) U (p+1) (t) ≤ a µ Υµ + µ-1 i=1 a i Υi (a µ , . . . , a i+1 ), ∀t ≥ 0.
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Indeed, the desired results will be obtained by setting c µ := max{Υ µ , Υµ }, and c i (•) := max{Υ i (•), Υi (•)} for i ∈ 1, µ -1 . In order to establish (35), we start by defining the following auxiliary functions:

g(s) := s -1/2 , ∀s > 0 (36)
and, for all t ≥ 0,

f i (t) := 1 + µ l=i y l (t) 2 , i ∈ 1, µ . (37)
Then, we can rewrite U (•) as ( 38)

U (t) = - µ i=1 U i (t), ∀t ≥ 0,
where, for every i ∈ 1, µ ,

U i (t) := Q i,µ b T 0,i y i (t)g(f i (t)), ∀t ≥ 0, ( 39 
)
where b 0,i = b 0 for all i ∈ 1, s and b 0,i = 1 otherwise, and Q i,µ is defined in [START_REF] Lin | Control-Lyapunov universal formulas for restricted inputs[END_REF].

The (p + 1)-th time derivative of the control signal U (•) is given, for all t ≥ 0, by

U (p+1) (t) = - µ i=1 U (p+1) i (t)
. Therefore to prove (H p+1 ), it is sufficient to show that, for each i ∈ 1, µ , there exists continuous functions c i,l : R µ-l >0 → R >0 , l ∈ 1, i , such that, for all t ≥ 0, (40)

U (p+1) i (t) ≤ i l=1
a l c i,l (a µ , . . . , a l+1 ), c i,µ is actually a constant independent of a µ , we write it as c i,µ (a µ , a µ+1 ) for the sake of notation homogeneity.

For i ∈ 1, µ , we apply Leibniz's rule to (39) with respect to b T 0,i y i (t) and g(f i (t))

and obtain that the (p + 1)-th time derivative of U i (•) is given, for all t ≥ 0, by

U (p+1) i (t) = a i Q i+1,µ p+1 l1=0 p + 1 l 1 b T 0,i y (p+1-l1) i (t)[g • f i ] (l1) (t) .
To obtain (40), it is sufficient to prove that for each i ∈ 1, µ , and l 1 ∈ 0, p + 1 there exist continuous functions β i,l,l1 : R µ-l >0 → R >0 for l ∈ 1, i such that, for all

t ≥ 0, b T 0,i y (p+1-l1) i (t)[g • f i ] (l1) (t) ≤ β i,i,l1 (a µ , . . . , a i+1 ) + i-1 l=1 a l β i,l,l1 (a µ , . . . , a l+1 ). ( 41 
)
In order to get (41) we next provide, for each i ∈ 1, µ , estimates of y

(l1) i (t) , |f (l1) i (t)| and [g • f i ] (l1) (t) for l 1 ∈ 1, p + 1 .
One can observe that, for each i ∈ 1, µ , ẏi depends on the constants a i+1 , . . . , a µ , the states y i , . . . , y µ and u = κ(y). By an induction argument using differentiation of system [START_REF] Laporte | Global stabilization of classes of linear control systems with bounds on the feedback and its successive derivatives[END_REF], one can obtain the following statement: for any k ∈ 1, p + 1 , i ∈ 1, µ , there exist continuous functions

Ψ k,i,l : R µ-i >0 → R >0 , l ∈ i + 1, µ , Φ k,i,l : R µ-i >0 → R >0 , l ∈ 0, p ,
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such that, for all positive times, it holds that

y (k) i (t) ≤ µ l=i Ψ k,i,l (a µ , . . . , a i+1 ) y l (t) + k-1 l=0 Φ k,i,l (a µ , . . . , a i+1 ) U (l) (t) ,
where, by convention, Ψ k,i,µ are constant functions independent of a µ for k ∈ 1, p+1 and i ∈ 1, µ . Using (34) in the above estimate, one gets that, for any k ∈ 1, p + 1 and i ∈ 1, µ -1 , there exist functions ṽl,k,i : R µ-i >0 → R >0 , for l ∈ i + 1, µ , and Φl,k,i : R µ-i >0 → R >0 such that, for all t ≥ 0,

y (k) i (t) ≤ µ l=i Ψ k,i,l (a µ , . . . , a i+1 ) y l (t) + Φk,i (a µ , . . . , a i+1 ) + i l=1
a l ṽl,k,i (a µ , . . . , a l+1 ).

Setting, for i ∈ 1, µ , Ψ i (a µ , . . . , a i+1 ) := max{Ψ k,i,l (a µ , . . . , a i+1 ) :

k ∈ 1, p + 1 , l ∈ i + 1, µ }, Φ i (a µ , . . . , a i+1 ) := max{ Φk,i (a µ , . . . , a i+1 ) : k ∈ 1, p + 1 },
ṽl,i (a µ , . . . , a l+1 ) := max{ṽ l,k,i (a µ , . . . , a l+1 ) :

k ∈ 1, p + 1 }, l ∈ 1, i ,
one can obtain that, for all k ∈ 1, p + 1 , all i ∈ 1, µ , and all t ≥ 0, (42)

y (k) i (t) ≤ Ψ i (a µ , . . . , a i+1 ) µ l=i y l (t) + Φ i (a µ , . . . , a i+1 ) + i l=1
a l ṽl,i (a µ , . . . , a l+1 ).

It follows that (41) for l 1 = 0 holds true. For any i ∈ 1, µ and k ∈ 1, p + 1 , the k-th time derivative of f i (•), defined in (37), is given, for all t ≥ 0, by

f (k) i (t) = k l1=0 k l 1 µ l2=i (y (l1) l2 (t)) T y (k-l1) l2 (t).
Thus, one can get that

f (k) i (t) ≤ 2 µ l2=i y l2 (t) y (k) l2 (t) + k-1 l1=1 k l 1 µ l2=i y (l1) l2 (t) y (k-l1) l2 (t) , ≤ µ l2=i y l2 (t) 2 + y (k) l2 (t) 2 + k-1 l1=1 k l 1 µ l2=i y (l1) l2 (t) 2 + y (k-l1) l2 (t) 2 . 
From (42), and using the fact that

m i1=1 |x i1 | 2 ≤ m m i1=1
x 2 i1 , one can obtain that for each l 2 ∈ 1, µ and l 1 ∈ 1, p + 1 it holds that, for all t ≥ 0,

y (l1) l2 (t) 2 ≤(µ + 2) Ψ l2 (a µ , . . . , a l2+1 ) 2 µ l=l2 y l (t) 2 + Φ l2 (a µ , . . . , a l2+1 ) 2 + l2 l=1 (a l ṽl,l2 (a µ , . . . , a l+1 )) 2 . ( 43 
)
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Since the right-hand side of (43) is independent of l 1 , and a l ≤ 1 for all l ∈ 1, µ , one can gets that there exist continuous functions

Ψl : R µ-l >0 → R >0 , l ∈ 1, µ , Φl : R µ-l >0 → R >0 , l ∈ 1, µ , ṽl,l1 : R µ-l >0 → R >0 , l 1 ∈ 1, µ , l ∈ 1, l 1 ,
such that, for any k ∈ 1, p and all t ≥ 0, it holds

f (k) i (t) ≤ Ψl2 (a µ , . . . , a i+1 ) µ l=i y l (t) 2 + Φl2 (a µ , . . . , a i+1 ) + i l=1
a l ṽl,i (a µ , . . . , a l+1 ).

A trivial estimate for any k ∈ 1, p + 1 , any i ∈ 1, µ , and all t ≥ 0 is given by

(44) f (k) i (t) ≤ Ψi (a µ , . . . , a i+1 )f i (t) + Φi (a µ , . . . , a i+1 ) + i l=1
a l ṽl,l2 (a µ , . . . , a l+1 ).

By the Faà di Bruno's formula (given in Lemma 5 in Appendix), for each i ∈ 1, µ , and

l 1 ∈ 1, p + 1 , the l 1 -th time derivative of g • f i (•) is given, for all t ≥ 0, by [g • f i ] (l1) (t) = l1 l2=1 g (l2) (f i (t)) δ∈P l 1 ,l 2 c δ l1-l2+1 l=1 (f (l) i (t)) δ l , 
where P l1,l2 denotes the set of (l 1 -l 2 + 1)-tuples δ := (δ 1 , δ 2 , . . . , δ l1-l2+1 ) of positive integers satisfying δ 1 +δ 2 +. . .+δ l1-l2+1 = l 2 and δ 1 +2δ 2 +. . .+(l 1 -l 2 +1)δ l1-l2+1 = l 1 .

Observe that the k-th derivative of the function g defined in (36) reads (45)

g (k) (s) = d k s -1/2-k , ∀s > 0, with d k = (-1) k k-1 l=0
(1/2 + l). Using (45), and taking the absolute value, one can get, for all t ≥ 0,

[g • f i ] (l1) (t) ≤ l1 l2=1 d l2 1 (f i (t)) l2+1/2 δ∈P l 1 ,l 2 c δ l1-l2+1 l=1 f (l) i (t) δ l .
Using (44), one can obtain that, for any l 1 ∈ 1, p + 1 , any l 2 ∈ 1, l 1 and for all t ≥ 0,

δ∈P l 1 ,l 2 c δ l1-l2+1 l=1 f (l) i (t) δ l ≤ Ψi (a µ , . . . , a i+1 )f i (t) + Φi (a µ , . . . , a i+1 ) + i l3=1 a l3 ṽl3,i (a µ , . . . , a i+1 ) l2 δ∈P l 1 ,l 2 c δ .
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It follows that, for all l

1 ∈ 1, p + 1 , t ≥ 0, [g • f i ] (l1) (t) ≤ l1 l2=1 d l2 δ∈P l 1 ,l 2 c δ (f i (t)) 1/2
Ψi (a µ , . . . , a i+1 )f i (t) + Φi (a µ , . . . , a i+1 ) + i l3=1 a l3 ṽl3,i (a µ , . . . , a i+1 )

f i (t) l2 , ≤ l1 l2=1 d l2 δ∈P l 1 ,l 2 c δ (f i (t)) 1/2
Ψi (a µ , . . . , a i+1 ) + Φi (a µ , . . . , a i+1 ) + i l3=1 a l3 ṽl3,i (a µ , . . . , a i+1 ) l2 , Thus, it can be seen that, for every i ∈ 1, µ and l 1 ∈ 1, p + 1 , there exist

continuous functions Γ i,l1 : R µ-i >0 → R >0 and Γ i,l1,l : R µ-l >0 → R >0 , l ∈ 1, i + 1 , such that, for all t ≥ 0, ( 46 
) [g • f i ] (l1) (t) ≤ 1 f i (t) 1/2 Γ i,l1 (a µ , . . . , a i+1 ) + i l=1 a i Γ i,l1,l (a µ , . . . , a i+1 ) .
Then, from ( 46) and (42) it follows that (41) holds true for any l 1 ∈ 1, p + 1 . This ends the inductive proof of (H p ).

3.2.

Proof of Theorem 2.

3.2.1. Reduction of the proof of Theorem 2 to the proof of Propositions 1 and 3. We prove Theorem 2 by induction on the number of inputs q. We show that the inductive step reduces to Proposition 1 and Proposition 3 which is proven in Section 3.2.2.

For q = 1, the conclusion follows from Theorem 1. For a given q ∈ N ≥1 assume that Theorem 2 holds. We show that Theorem 2 then holds for LTI systems given in the reduced controllability form with q + 1 inputs. Let p ∈ N and (R j ) 0≤j≤p be a (p + 1)-tuple of positive real numbers. Define R := min j∈ 0,p R j . Given n ∈ N ≥2 consider a LTI system given in the reduced controllability form with q := q + 1 inputs by ẋ0 = A 00 x 0 + A 01 x 1 + A 02 x 2 + . . .

+ A 0q x q + b 01 u 1 + b 02 u 2 + . . . + b 0q u q , ẋ1 = A 11 x 1 + A 12 x 2 + . . . + A 1q x q + b 11 u 1 + b 22 u 2 + . . . + b 1q u q , ẋ2 = A 22 x 2 + . . . + A 2q x q + b 22 u 2 + . . . + b 2q u q , . . .

ẋq =

A q q x q + b q q u q , where x i ∈ R ni and u i ∈ R for each i ∈ 0, q+1 , A 00 is Hurwitz, for every i ∈ 1, q+1 all the eigenvalues of A ii are critical, and the pairs (A ii , b ii ) are controllable.

Since A 00 is Hurwitz, if we find a feedback law p-bounded by (R j ) 0≤j≤p , and SISS L -stabilizing for (x 1 , . . . , x q )-subsystem then, clearly, this feedback does the job for the complete system. From now on, we only consider the (x 1 , . . . , x q )-subsystem
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and we rewrite it compactly as

ẋ1 = A 11 x 1 + b 11 u 1 + Ãz + Bu, (47a) ż = Az + Bu, (47b) 
where z := [x 2 , . . . , x q ] T , u := [u 2 , . . . , u q ] T .

We next provide a key technical lemma. Lemma 4. Let ẋ = Ax + bu, x ∈ R n , u ∈ R, be a controllable single input linear system. Assume that all the eigenvalues of A are critical. Let ±iω 1 , . . . , ±iω s(A) be the nonzero eigenvalues of A, (a 2 , . . . , a µ(A) ) be a sequence of positive numbers and T ∈ R n,n be such that the linear change of coordinate y = T x transforms ẋ = Ax + bu into system [START_REF] Laporte | Global stabilization of classes of linear control systems with bounds on the feedback and its successive derivatives[END_REF] compactly written as ẏ = Jy + bu. Rewrite T as

T = [T 1 , . . . , T s(A) , T s(A)+1 , . . . , T µ(A) ] T ,
where

T i ∈ R 2,n if i ∈ 1, s(A) otherwise T i ∈ R 1,n .
Then T has the following property (I) : T µ(A) is independent of (a 2 , . . . , a µ(A) ), and each T i depend only on (a i+1 , . . . , a µ(A) ).

Moreover, given r, k ∈ N, let M ∈ R n,r be independent of the constants a i , then the matrices T M and J k T satisfy property (I).

The proof of Lemma 4 follows from a careful examination of the proofs of Lemmas 3.1 and 5.1 in [START_REF] Sussmann | A general result on the stabilization of linear systems using bounded controls[END_REF].

. Let (a 2 , . . . , a µ(A11) ) be a sequence of positive numbers (to be chosen later). Let T be the linear change of coordinate that transforms ẋ = A 11 x + b 11 u 1 into the form of system [START_REF] Laporte | Global stabilization of classes of linear control systems with bounds on the feedback and its successive derivatives[END_REF] compactly written as ẏ = Jy + bu. We now make the following changes of coordinates y = T x, and system (47) is then given by ẏ = Jy + bu 1 + T Ãz + T Bu, (48a)

ż = Az + Bu. (48b)
Let κ be a feedback law p-bounded by (R j /2) 0≤j≤p , and SISS L (N 2 , ∆ 2 )-stabilizing for subsystem (48b), for some N 2 , ∆ 2 > 0 (thanks to the inductive hypothesis, we know that this feedback law exists). Let a 1 > 0, to be chosen later. We seek the following state feedback law:

u 1 (y, z) := µ(y) (1 + z 2 ) p , (49a) u(z) := κ(z), (49b) 
where µ(y) is defined in [START_REF] Lauvdal | Stabilization of integrator chains in the presence of magnitude and rate saturations: a gain scheduling approach[END_REF]. We now show that there exist positive constants (a 1 , a 2 , . . . , a µ(A11) ) such that the feedback law (49) is a feedback law p-bounded and SISS L -stabilizing for system (48). This choice is based on Proposition 1 and the following statement which is proven in Section 3.2.2. Proposition 3 (p-bounded feedback ). Let a i , for i ∈ 1, µ(A 11 ) , be positive constants in (0, 1]. Consider system (48) with the feedback law (49). Assume that κ is a feedback law p-bounded by (R j /2) 0≤j≤p , and SISS L (N 2 , ∆ 2 )-stabilizing for subsystem (48b). Then, there exist a positive constant c µ(A11) , and continuous functions This manuscript is for review purposes only.

c i : R µ(A11)-i >0 → R >0 , i ∈ 1, µ(A 11 ) -1 ,
such that for any trajectory of the closedloop system (48) with the feedback law (49), the control signal U 1 : R ≥0 → R defined by U 1 (t) := u 1 (y(t), z(t)) for all t ≥ 0 satisfies, for all k ∈ 0, p ,

U (k) 1 (t) ≤ a µ c µ(A11) + µ(A11)-1 i=1 a i c i (a µ(A11) , . . . , a i+1 ), ∀t ≥ 0.
Pick a µ(A11) ∈ (0, 1] in such a way that

a µ(A11) ≤ R 2(p + 1)c µ(A11)
.

Choose recursively a i ∈ (0, 1], i = µ(A 11 ) -1, . . . , 1, such that

a i ≤ a i (a i+1 ), a i ≤ R 2(p + 1)c i (a µ(A) , . . . , a i+1 ) ,
where the functions c i appearing above are defined in Proposition 3 and the functions a i are defined in Proposition 1. By Proposition 1, the feedback law µ(y) is SISS Lstabilizing for system ẋ = Jx + bu. We now prove that the closed-loop system (48)

with the feedback (49) is SISS L (now, all the coefficients have been chosen). To that aim, first notice that there exist α 1 , α 2 > 0 such that, for all z ≤ 1,

T Ãz + T Bκ(z) ≤ α 1 z , bµ(y) 1 - 1 (1 + z 2 ) p ≤ α 2 z . Let ∆ := min 1, ∆ 2 , 1 N 2 , ∆ 1 (α 2 + α 1 )N 2 + 1 .
Given δ ≤ ∆, let e 1 , e 2 be two bounded measurable functions of the appropriate dimension, eventually bounded by δ. Consider any trajectory (y(•), z(•)) of the following system ẏ = Jy + bµ(y) -bµ(y) 1 -1

(1 + z 2 ) p + T Ãz + T Bκ(z) + e 1 , (50) 
ż = Az + Bκ(z) + e 2 , (51) 
From the SISS L (∆ 2 , N 2 ) property of z-subsystem it follows that z(•) ≤ ev N 2 δ ≤ 1.

Thus, using the above estimate, it is immediate to see that bµ(y(•)) 1 -1

(1 + z(•) 2 ) p + T Ãz(•) + T Bκ(z(•)) + e 1 (•) ≤ ev δ (α 1 + α 2 )N 2 + 1 ≤ ∆ 1 .
Therefore, invoking the SISS L (∆ 1 , N 1 ) property of ẋ = Jx + bµ(y), it follows that y(•) ≤ ev δ (α 1 + α 2 )N 2 + 1 N 1 . So, the closed-loop system (48) with the feedback (49) is SISS L . Moreover, as a consequence of Proposition 3 and of the inductive hypothesis, for any trajectory of the closed-loop system [START_REF] Laporte | Global stabilization of classes of linear control systems with bounds on the feedback and its successive derivatives[END_REF] with the feedback law This manuscript is for review purposes only.

(49), the control signal U : R ≥0 → R m , defined by U (•) := [U 1 (•), U 2 (•)] T with U 1 (t) := u 1 (y(t), z(t)) and U 2 (t) := κ(z(t)) for all t ≥ 0, satisfies sup t≥0 U (k) (t) ≤ R k for all k ∈ 0, p . Thus, the feedback law (49) is a feedback law p-bounded by (R j ) 0≤j≤p for system (48).

3.2.2. Proof of Proposition 3. For the sake of notation compactness let µ = µ(A 11 ). To prove Proposition 3, we establish by induction on k that the following property holds, for all k ∈ 0, p : (H k ) : There exist a positive constant c µ , and continuous functions c i : R µ-i >0 → R >0 , i ∈ 1, µ -1 , such that for any trajectory of the closed-loop system (48)

with the feedback law (49), the control signal U 1 : R ≥0 → R defined by U 1 (t) := u 1 (y(t), z(t)) for all t ≥ 0 satisfies, for all j ∈ 0, k ,

U (j) 1 (t) ≤ a µ c µ + µ-1 i=1 a i c i (a µ , . . . , a i+1 ), ∀t ≥ 0.
For k = 0, the statement (H 0 ) holds trivially. Now, assume that (H k ) holds true for some k ∈ 0, p -1 . We next prove that (H k+1 ) also holds true. Let (y(•), z(•))

be any trajectory of the closed-loop system (48) with the feedback law (49), and the control signal U 1 (t) := u 1 (y(t), z(t))) and U 2 (t) := κ(z(t)), ∀t ≥ 0. As in the proof of Proposition 2, it is sufficient to prove that there exist a positive constant Υµ and continuous functions Υi : R µ

-i >0 → R >0 , i ∈ 1, µ -1 , such that (52) U (k+1) 1 (t) ≤ a µ Υµ + µ-1 i=1
a i Υi (a µ , . . . , a i+1 ), ∀t ≥ 0.

Let q(s) := s -(p+1) , for all s > 0. Define h(t) := 1 + z(t) 2 , for all t ≥ 0. With the same notation given in the proof of Proposition 2, one can write U 1 (•) as

(53) U 1 (t) = - µ i=1 U 1i (t), ∀t ≥ 0,
where, for every i ∈ 1, µ ,

U 1i (t) := Q i,µ b T 0,i y i (t)[g • f i ](t) [q • h](t), ∀t ≥ 0. (54)
As in the proof of Proposition 2, we next show that for each i ∈ 1, µ , there exist continuous functions c i,l : R µ-l >0 → R >0 , l ∈ 1, i , such that, for all t ≥ 0, (55)

U (k+1) 1i (t) ≤ i l=1
a l c i,l (a µ , . . . , a l+1 ), c i,µ is actually a constant independent of a µ , we write it as c i,µ (a µ , a µ+1 ) for the sake of notation homogeneity. For i ∈ 1, µ , we apply Leibniz's rule to (54) and obtain that the (k + 1)-th time derivative of U 1i (•) is given, for all t ≥ 0, by

U (k+1) 1i (t) = a i Q i+1,µ k+1 l1=0 l1 l2=0 k + 1 l 1 l 1 l 2 [q • h] (k+1-l1) (t) [g • f i ] (l2) (t) b T 0,i y (l1-l2) i (t) .
Then, to get (55), it is sufficient to show that :
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Numerical validation.

In order to test the validity of our main result, we consider the single-input system discussed after Definition 3, namely ẋ = Ax + bu with

A =     0 -1 0 0 1 0 0 1 0 0 0 -1 0 0 1 0     , b =     0 0 0 1     .
It can easily be checked that A has no eigenvalue with positive real part (it actually has two pairs of purely imaginary eigenvalues: s(A) = µ(A) = 2) and that the pair (A, b) is controllable, thus making the assumptions of Theorem 1 fulfilled. The system is readily in the form [START_REF] Laporte | Global stabilization of classes of linear control systems with bounds on the feedback and its successive derivatives[END_REF] and the proposed control law (8) reads

κ(y) = - Q 1,2 x 2 1 + x 2 1/2 - Q 2,2 x 4 1 + x 2 3 + x 2 4 1/2 ,
where Q 1,2 = a 1 a 2 and Q 2,2 = a 2 for some a 1 , a 2 > 0. In Figure 1, we run 30 simulations, each of them starting from initial conditions randomly picked in the interval [-5; 5], with a 1 = 0.5 and a 2 = 1. A particular solution is reported in bold black. It can be seen that the control signal and its first two derivatives can be constrained to smaller values, while still achieving stabilization. Not surprisingly, the price to pay is a larger overshoot and a slower convergence towards the origin as a 1 decreases.

Appendix.
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(x) = -β x 2 (1 + x 2 ) 1/2 + x T d 1 (t).
Then, a straightforward computation leads to V (x) ≤ V (x) + d 1 (t) 2 and forward completeness follows using classical comparison results. Moreover when d 1 = 0, (57) ensures that the origin of (56) is G.A.S.

We then prove the SISS L (β/2, 2 β ) property of the system (56) with respect to d 1 (•). Given δ ≤ β/2, let d 1 be a bounded measurable function on R ≥0 eventually bounded by δ. Since the system is forward complete, we can consider without loss of generality that d 1 (t) ≤ δ for all t ≥ 0. From (57) and the fact that (1+x 2 ) 1/2 ≤ 1+|x|, one can obtain that

V (x) = -β x 2 (1 + x 2 ) 1/2 + 1 (1 + x 2 ) 1/2 (|d 1 (t)| |x| + |d 1 (t)| x 2 ).
Observing that (58)

|d 1 (t)| x 2 (1 + x 2 ) 1/2 ≤ βx 2 2(1 + x 2 ) 1/2 , it follows that (59) V (x) ≤ -β |x| (1 + x 2 ) 1/2 |x| - 2 β δ .
Consequently, V < 0 whenever |x| > 2δ β . It follows that every trajectory of [START_REF] Lin | Semi-global stabilization of linear systems with position and rate-limited actuators[END_REF] eventually enters and remains in the set S = {x ∈ R : x 2 ≤ 2 ( 2δ β ) 2 } (indeed, V < 0 for all x / ∈ S and x ∈ ∂S). Thus Lemma 2 can be easily established.

This manuscript is for review purposes only. There exists C > 1 such that

α 1 ( x ) ≤ V (x) ≤ α 2 ( x ), ∀x ∈ R 2 .
Moreover, there exists a constant M > 0, independent of β, such that This manuscript is for review purposes only.

Since (63) is forward complete, we can assume without loss of generality that d 1 satisfies d 1 (t) ≤ δ, ∀t ≥ 0, for some δ ≤ βΓ. Consider the Lyapunov function V : R 2 → R defined in (61). By noticing that (63) can be rewritten as

ẋ = A β x + βb 0 b T 0 x 1 - 1 (1 + x 2 ) 1/2 + d 1 ,
one gets that the time derivative of V along trajectories of (63) satisfies

V =x T P β A β x + βb 0 b T 0 x 1 - 1 (1 + x 2 ) 1/2 + d 1 + x T A T β + βb T 0 b T 0 x(1 - 1 (1 + x 2 ) 1/2 ) + d T 1 P β x + (σ β + σ β )(1 + x 2 ) 1/2 -β (b T 0 x) 2 (1 + x 2 ) 1/2 + x T d 1 .
Since P β is a symmetric matrix satisfying the Lyapunov equation ( 60), it follows that

V = -x 2 + 2βx T P β b 0 b T 0 x 1 - 1 (1 + x 2 ) 1/2 + 2x T P β d 1 -β(σ β + σ β )(b T 0 x) 2 + (σ β + σ β )(1 + x 2 ) 1/2 x T d 1 .
By completing the squares it holds that, for all t ≥ 0, Using the fact that (1 + x 2 ) 1/2 ≤ 1 + x for all x ∈ R 2 , and exploiting (64), it follows that V ≤ - for some N > 0, which concludes the proof.
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c δ := k! (δ 1 ! • • • δ k-a+1 !(1!) δ1 • • • ((k -a + 1)!) δ k-a+1 )
.

Fig. 1 .

 1 Fig. 1. Time evolution of the state norm, the control signal, and its first two derivatives for 30 random initial states within [-5; 5].

Fig. 2 .

 2 Fig. 2. Top: Maximum value of the transient state norm and maximum convergence time over 30 random simulations, as a function of the feedback gain a 1 . Bottom: Maximum norm of the control signal and of its first two derivatives over 30 random simulations, as a function of the feedback gain a 1 .

5. 2 ..P β b 0 = 1 4ω 2 + 1 β 2 . 3 ( 1 + x 2 ) 3 / 2 - 1 ,

 22312321 Proof of Lemma 3. Let ω > 0. Given any 0 < β < 1, let A β := ωA 0 -βb 0 b T 0 , which is Hurwitz since A 0 is skew-symmetric and (A 0 , b 0 ) is controllable.Therefore there exists a symmetric positive definite matrix P β satisfying the following Lyapunov equation (60)P β A β + A T β P β = -I 2 .The smallest and largest eigenvalues of P β denoted by σ β and σ β respectively are given byσ β := β P β b 0 2 -β 2ω P β b 0 , σ β := β P β b 0 2 + β 2ω P β b 0 , with Define V : R 2 → R ≥0 as (61) V (x) := x T P β x + (σ β + σ β ) ∀x ∈ R 2 .Given C > 1, let α 1 and α 2 be class K ∞ functions given by α 1 (r) := (σ β + σ β ) C max{r 2 , r 3 }, α 2 (r) := C(σ β + σ β ) max{r 2 , r 3 }.

1 •d 1 can

 11 α 2 (r) ≤ M r, ∀r ≥ 0.Proceeding as in the proof of Lemma 2, forward completeness of (63) ẋ = ωA 0 x -βb 0 easily be derived in response to any locally measurable bounded function d 1 . We next show that the system (63) is SISS L (βΓ, N/β) with respect to d 1 , for some N

2βx T P β b 0 b T 0 x 1 - 1 ( 1 + x 2 ) 2 +

 1122 2x T P d 1 + 2β P b 0 2 (1 + x 2 ) 1/2 x T d 1 .

1 4 x 2 + 2 x δ 2β P β b 0 2 + β 2ω P β b 0 .

 20 Consequently, it holds that V < 0 whenever x > 8δ 2βP β b 0 2 + β 2ω P β b 0 . Let µ > 1 and set r := 8µ(2β P β b 0 2 + β 2ω P β b 0 ). Define S := {x ∈ R 2 : V (x) ≤ α 2 (rδ)}. If x / ∈ Sthen x > rδ. Consequently, any trajectory eventually enters and stay in S. Moreover, we have that α 1 ( x(•) ) ≤ ev V (x(t)) ≤ α 2 (rδ) . From (62), it follows that x(•) ≤ ev rM δ. Moreover, one can see that there exists a constant D > 0 such that for any β ≤ 1 we have r ≤ D β . So we obtain x(•) ≤ ev N δ β ,

5. 3 .,

 3 Faà Di Bruno's Formula.Lemma 5 (Faà Di Bruno's formula,[START_REF] Hazewinkel | Encyclopaedia of Mathematics (1), Encyclopaedia of Mathematics: An Updated and Annotated Translation of the Soviet "Mathematical Encyclopaedia[END_REF], p. 96). For k ∈ N, let φ ∈ C k (R ≥0 , R) and ρ ∈ C k (R, R). Then the k-th order derivative of the composite function ρ • φ is given by[ρ • φ] (k) (t) = k a=1 ρ (a) (φ(t))B k,a φ (1) (t), . . . , φ (k-a+1) (t) ,where B k,a is the Bell polynomial given by B k,a φ(1) (t), . . . , φ (k-a+1) (t) := where P k,a denotes the set of (k -a + 1)-tuples δ := (δ 1 , δ 2 , . . . , δ k-a+1 ) of positive integers satisfyingδ 1 + δ 2 + . . . + δ k-a+1 = a, δ 1 + 2δ 2 + . . . + (k -a + 1)δ k-a+1 = k,
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a) there exists C > 0 such that, for any l ∈ 0, k + 1 and for all t ≥ 0,

b) for each i ∈ 1, µ , there exist Ψ i , Θ i , Φ i : R µ-i >0 → R >0 , and v i,j : R µ-j >0 → R >0 for j ∈ 1, i such that, for any l ∈ 0, k + 1 and for all t ≥ 0,

a l ṽl,i (a µ , . . . , a l+1 ).

c) for each i ∈ 1, µ , there exist Γ i , θ i : R µ-i >0 → R >0 , and Γ i,j : R µ-j >0 → R >0 for j ∈ 1, i such that, for any l ∈ 0, k + 1 and for all t ≥ 0,

.

We now establish a). By an inductive argument using differentiation of the zsubsystem (48b) coupled with the fact that the feedback law κ is p-bounded, one easily shows that there exist C 0 , C 1 > 0 such that for any l ∈ 1, k + 1 and for any t ≥ 0,

Using the Leibniz rule, it can be establish that there exist C0 , C1 > 0 such that, for any l ∈ 1, k + 1 ,

for all t ≥ 0. Thanks to Faá Di Bruno Formula (Lemma 5) applied to [q • h], item a)

follows.

We now deal with item b). From Lemma 4 and an induction argument using differentiation of system (48a), one can obtain the following statement: for any l 1 ∈

Ξ l1,i,l : R µ-i >0 → R >0 , l ∈ 0, p , such that, for all t ≥ 0,

So, using the inductive hypothesis and the fact that κ is a p-bounded feedback law, one can obtain item b).

Proceeding as in Proposition 2, one can get item c). This ends the proof of Proposition 3.
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