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GLOBAL STABILIZATION OF LINEAR SYSTEMS WITH BOUNDS
ON THE FEEDBACK AND ITS SUCCESSIVE DERIVATIVES*

JONATHAN LAPORTE, ANTOINE CHAILLET AND YACINE CHITOUR f

Abstract. We address the global stabilization of linear time-invariant (LTI) systems when the
magnitude of the control input and its successive time derivatives, up to an arbitrary order p € N, are
bounded by prescribed values. We propose a static state feedback that solves this problem for any
admissible LTI systems, namely for stabilizable systems whose internal dynamics has no eigenvalue
with positive real part. This generalizes previous work done for single-input chains of integrators
and rotating dynamics.

Key words. Bounded control, Bounded control rate, Linear systems, Stabilization of systems
by feedback

AMS subject classifications. 93D05, 93D15

1. Introduction. The study of control systems subject to input constraints is
motivated by the fact that signals delivered by physical actuators may be limited in
amplitude, and may not evolve arbitrarily fast. An a priori bound on the amplitude
of the control signal is usually referred to as input saturation whereas a bound on the
variation of control signal is referred to as rate saturation (e.g [15]).

Stabilization of linear time-invariant systems (LTI for short) with input saturation
has been widely studied in the literature. Such a system is given by

(S) & = Az + Bu,

where x € R", u belongs to a bounded subset of R™, A is an n X n matrix and B is an
n x m one. Global stabilization of (S) can be achieved if and only if the LTI system
is asymptotically null controllable with bounded controls, i.e., it can be stabilized
in the absence of input constraint and the eigenvalues of A have non positive real
parts. Saturating a linear feedback law may fail at globally stabilizing (5) as it was
observed first in [4] and then in [18] for the special case of integrator chains (i.e.,
when A is the n-th Jordan block and B = (0---0 1)T). As shown for instance in [12],
optimal control can be used to define a globally stabilizing feedback for (S) but, when
the dimension is greater than 3, deriving a closed form for this stabilizer becomes
extremely difficult. The first globally stabilizing feedback with rather simple closed
form (nested saturations) was provided in [20] for chains of integrators and then in
[19] for the general case. In [9], a global feedback stabilizer for (S) was built by relying
on control Lyapunov functions arising from a mere existence result. Other globally
stabilizing feedback laws for (S) have been proposed with an additional property of
robustness with respect to perturbations. In [14], using low-and-high gain techniques,
a robust stabilizer was proposed to ensure semiglobal stability, meaning that the
control gains can be tuned in such a way that the basin of attraction contains any
prescribed compact subset of R™. This restriction has been removed in [13], where
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2 JONATHAN LAPORTE, ANTOINE CHAILLET AND YACINE CHITOUR

the authors provided a global feedback stabilizer for (S) which is robust with respect
to perturbations, based on an earlier idea due to Megretsky [11]. Nonetheless, the
feedback laws of [13] and [11] require to solve a nonlinear optimization problem at
every point x € R™, which makes its practical implementation questionable. An
easily implementable global feedback stabilizer for (S) which is robust with respect to
perturbations was proposed in [2], but it only covers the multiple integrator case and
it is discontinuous since it is based on sliding mode techniques. Robust stabilization of
(S) was also addressed in [1] by relying on the control Lyapunov function techniques
developed in [9]. Finally it is important to notice that, while global stabilizers own
the advantage to be valid for all initial conditions, they are typically low performance
and less suited for practical implementation because they do not allow the input to
exceed the saturation limits, which often results in input signals that stay well below
the maximum value.

In contrast to stabilization of LTI systems subject to input saturation, there are
much less results available in the literature regarding global stabilization under rate
saturation, i.e., when the first time derivative of the control signal is also a priori
bounded. When only rate saturation is considered (with no constraint on the input
magnitude), the objective can easily be reduced to the standard case of magnitude
saturation by considering the augmented system where the control is an extra variable
and its derivative becomes the new control. The control objective is more challenging
when both magnitude and rate constraints are considered. In [3], the authors rely
on a backstepping procedure to build a bounded globally stabilizing feedback with a
bounded rate, but the methodology does not allow to a priori impose a prescribed
rate. In [16], a dynamic feedback law inspired from [11] is constructed and can even be
generalized to take into account constraints on higher time derivatives of the control
signal. However, as mentioned previously, the numerical efficiency of such feedbacks is
definitely questionable. A rather involved global feedback stabilizer for (S) achieving
amplitude and rate saturations was also obtained in [17] for affine systems with a stable
free dynamics. This corresponds in our setting to requiring that the matrix A is stable,
ie., AT+ A <0 (up to similarity) and therefore fails at covering chains of integrators.
Finally, let us mention the references [8], [10] for semiglobal stabilization results and
[5] for local stabilization results using LMIs and anti-windup design. One should also
mention [21] where a nonlinear small gain theorem is given for the behaviour analysis
of control systems with saturation.

The results presented here encompass input and rate saturations as special cases.
More precisely, given any integer p, we construct a globally stabilizing feedback for
(S) such that the control signal and its p first time derivatives are bounded by arbi-
trary prescribed positive values, along all trajectories of the closed-loop system. This
problem has already been solved by the authors in [7] for the multiple integrator and
skew-symmetric cases. The solution given in that paper for the multiple integrator
case consisted in considering appropriate nested saturation feedbacks. We also indi-
cated in [7] that these feedbacks fail at ensuring global stability in the skew-symmetric
case and we then provided an ad hoc feedback law for this specific case. Here, we solve
the general case with a unified strategy.

The paper should be seen as a first theoretical step towards the global stabiliza-
tion of an LTI system when the input signal is delivered by a dynamical actuator
that limits the control action in terms of magnitude and p first time derivatives. Fur-
ther developments are needed to explicitly take into account the dynamics of such an
actuator. Possible extensions of this work may also address the question of global sta-
bilization by smooth feedback laws (i.e., C° with respect to time) when all successive
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GLOBAL STABILIZATION OF LINEAR SYSTEMS 3

derivatives need to be bounded by prescribed values.

The paper is organized as follows. In Section 2, we precisely state the problem we
want to tackle, the needed definitions as well as the main results we obtain, namely
Theorem 1 for the single input case and Theorem 2 for the multiple input case. Section
3 contains the proof of the main results. In Section 3.1.1 we show that the proof of
Theorem 1 is a consequence of two propositions. In the first one (Proposition 1), we
show that the feedback proposed in Theorem 1 is indeed a globally stabilizing feedback
for (S). We actually prove a stronger result dealing with robustness properties of this
feedback, as it is required in [20] and [19]. The second proposition (Proposition 2)
specifically deals with bounding the p first derivatives of the control signal by relying
on delicate estimates. Section 3.2.1 contains the proof of Theorem 2 which is a
consequence of Proposition 1 and Proposition 3, the latter providing estimates on the
successive time derivatives of the control signal. In Section 4, we provide a numerical
validation of our main result based on a four-dimensional system made of a cascade of
two rotating dynamics. We close the paper by an Appendix, where we gather several
technical results used throughout the paper.

Notations. We use R and N to denote the sets of real numbers and the set of
non negative integers respectively. Given a set I C R and a constant a € R, we let
I, :={z €l :z>a}. Givenm,k € N, we define [m, k] :={l € N : [ € [m,k]}. For
a given set M, the boundary of M is denoted by OM. The factorial of k is denoted
by k! and the binomial coefficient is denoted (:fl) = #lm),

Given £ € N and n,p € N>;, we say that a function f : R" — RP is of class
C*(R™,RP) if its differentials up to order k exist and are continuous, and we use f(*)
to denote the k-th order differential of f. By convention, f(©) := f.

Given n,m € N>, R™"™ denotes the set of n x m matrices with real coefficients.
The transpose of a matrix A is denoted by A”. The identity matrix of dimension n is
denoted by I,,. We say that an eigenvalue of A is critical if it has zero real part and
we set p(A) := s(A) + z(A) where s(A) is the number of conjugate pairs of nonzero
purely imaginary eigenvalues of A (counting multiplicity), and z(A) is the multiplicity
of the zero eigenvalue of A. We define Ag := (_01 é), and by := (?)

We use ||z|| to denote the Euclidean norm of an arbitrary vector z € R™. Given
0 > 0and f: R>o — R”, we say that f is eventually bounded by §, and we write
1F I <ew 9, if there exists T' > 0 such that || f(t)|| <6 for all t > T.

2. Problem statement and main results. Given n € N>; and m € N3y,
consider the LTI system defined by

(1) i = Az + Bu,

where z € R", v € R™, A € R®" and B € R™™. Assume that the pair (A, B)
is stabilizable and that all the eigenvalues of A have non positive real parts. Recall
that these assumptions on (A, B) are necessary and sufficient for the existence of a
bounded continuous state feedback u = k(x) which globally asymptotically stabilizes
the origin of (1), see [19].

Given an integer p and a (p + 1)-tuple of positive real numbers (R;)o<j<p, we
want to derive a static state feedback law whose magnitude and p-first time derivatives
along all trajectories of the closed-loop system are bounded by R;, j € [0, p].

DEFINITION 1 (feedback law p-bounded by (R;)o<j<p). Given n € N>, m € N>y
and p € N, let (R;)o<j<p be a (p+ 1)-tuple of positive real numbers. We say that
v:R™ = R™ is a feedback law p-bounded by (R;)o<;<p for system (1) if it is of class
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4 JONATHAN LAPORTE, ANTOINE CHAILLET AND YACINE CHITOUR

CP(R™,R™) and, for every trajectory of the closed-loop system © = Ax + Bv(x), the
control signal U : R>og — R™, t + U(t) := v(x(t)) satisfies sup;>g ||U(j)(t)|| < R;
for all j € [0,p] and allt > 0. The function v : R™ — R™ is said to be a feedback
law p-bounded for system (1), if there exists a (p + 1)-tuple of positive real numbers
(Rj)o<j<p such that v(-) is a feedback law p-bounded by (R;)o<;<p for system (1).

We stress that the above definition includes only static state feedback laws, mean-
ing control laws that depend solely on the current state value. Based on this definition,
we can write our stabilization problem of Bounded Higher Derivatives as follows.

PrOBLEM (BHD). Given p € N and a (p + 1)-tuple of positive real numbers
(Rj)o<j<p, design a state feedback law v : R™ — R™ such that the origin of the
closed-loop system & = Ax + Bv(x) is globally asymptotically stable (GAS for short)
and the feedback v is a feedback law p-bounded by (R;)o<j<p for system (1).

Our construction to solve Problem (BHD) will often use the property of Small
Input Small State with linear gain (SISSy for short) developed in [19]. We recall
below its definition

DEFINITION 2 (SISSy, [19]). Given positive A, N, the control system & = f(x,u),
with © € R™ and u € R™, is said to be SISS (A, N) if, for every § € (0, A] and every
bounded measurable signal e : R>o — R™ eventually bounded by §, then any solution
of & = f(x,e) is eventually bounded by N§. A control system & = f(x,u) is said to
be SISSy, if it is SISSL(A, N) for some A, N > 0. An input-free system & = f(x) is
called SISSL, if the control system @ = f(x) 4+ u is SISSy,.

REMARK 1. Note that if © = f(x) is SISSL, then all its solutions converge to the
origin. To see this, pick a sequence (0 )ren of positive numbers tending to zero so that
00 < A and apply the SISSy, property to every dy with the zero input. Note, however,
that the SISSL property does not necessarily ensure GAS in the absence of input, as
it does mot imply stability of the origin.

When a state feedback law ensures both global asymptotic stability and SISSy,
we refer to is an SISSy-stabilizing feedback.

DEFINITION 3 (SIS} -stabilizing feedback). Given a control system & = f(x,u)
with x € R™ and u € R™, we say that a state feedback law v : R™ — R™ is stabilizing if
the origin of the closed-loop system & = f(x,v(x)) is globally asymptotically stable. If,
in addition, this closed-loop system is SISSy, then we say that v is S1.SSy-stabilizing.

As mentioned before the state feedback law given in [7], which solves Problem
(BHD) for the special case of multiple integrators, simply made use of nested sat-
urations with carefully chosen saturation functions. We recall next why this state
feedback construction cannot work in general. For that purpose it is enough to con-
sider the 2D simple oscillator case which is the control system given by & = wAqz+bou,
with # = (z1,22)7, u € R and w > 0. This system is one of the two basic systems to
be stabilized by means of a bounded feedback, as explained in [19]. According to [7],
one must then consider a stabilizing feedback law v = —o(k”z), where k = (k1, ko)™
is a fixed vector in R? and ¢ : R — R is a saturation function, i.e., a bounded, continu-
ously differentiable function satisfying so(s) > 0 for s # 0 and o™ (0) > 0. Note that
k is chosen so that the linearized system at (0, 0) is Hurwitz. In particular this implies
that kg # 0. Pick now the following sequence of initial conditions (I, —k1l/k2);>1. A
straightforward computation yields that the first time derivative of the control along
each trajectory satisfies (0) = —o™ (0)wl(k?/kq + k2), which grows unbounded as
tends to infinity. Therefore the feedback law proposed in [7] can not be a 1-bounded
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GLOBAL STABILIZATION OF LINEAR SYSTEMS 5

feedback for this system.
In order to solve Problem (BHD) for the 2D oscillator, we showed in [7] that a

feedback law of the type uj o := % with k& € R? and a > 1/2 does the job
and it also solves Problem (BHD) in case the matrix A in (1) is stable. However,
we are not able to show whether uy, ,, stabilizes or not the system in the case where
s Ao bEbg

' 0 Ao
saturated linear feedback stabilizes or not the above-mentioned 4D case, which is an
open problem. It is therefore not immediate how to address the general case. This
is why our main result is a non trivial extension of the solution of Problem (BHD)

provided for the two-dimensional oscillator.

. It turns out that the previous issue is as difficult as asking if a

2.1. Single input case. For the case of single input systems, the solution of
Problem (PHB) is given by the following statement.

THEOREM 1 (Single input). Given n € Nsg, consider a single input system
& = Az +bu where x € R", A € R™" and b € R™'. Assume that A has no eigenvalue
with positive real part and that the pair (A, b) is stabilizable. Then, given any p € N
and any (p + 1)-tuple (R;)o<;<p of positive real numbers, there exist vectors k; € R"
and matrices T; € R™™, i € [1, u(A)], such that the feedback law v : R™ — R defined
as

T
ki x

? O L e

i=1

is o feedback law p-bounded by (R;)o<;j<p and SISSy-stabilizing for system & = Az +
bu.

In view of Definition 3, the feedback law (2) globally asymptotically stabilizes
the origin of (1), and thus solves Problem (BHD). We stress that, even though the
exact computation of the control gains k; is quite involved (see proof in Section 3),
the structure of the proposed feedback law (2) is rather simple. It should also be
noted that, unlike the results developed in [7], this state feedback law applies to any
admissible single-input systems (including rotating dynamics and integrator chains)
in a unified manner.

2.2. Multiple input case. To give the main result for LTT system with multiple
inputs we need this following definition.

DEFINITION 1 (Reduced controllability form). Given n € N and ¢ € N, a LTI
system is said to be in reduced controllability form if it reads

’jJO = Aool‘o + Alel + A02$2 + ...+ Aquq+ b01u1 + onUg + ...+ boquq,

£IE1 = A11(E1 +A12£L’2 +...+A1q$q+ b11U1 +b22U2 + ...+b1quq,
(3) To = Aooxo + ...+ qu?[:q-i- bostg + ...+ bgquq,
Ty = Agqrqt byqliq;

where, for some (q + 1)-tuple (n;)o<i<q+1 @ N x (Nso)? with >7 ,n; = n, Ago €
R™0-™0 45 Hurwitz, for every i € [1,q] all the eigenvalues of Ay € R™™ are critical,
bi; € R™Y and the pairs (Ay, bi;) are controllable.

This manuscript is for review purposes only.
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6 JONATHAN LAPORTE, ANTOINE CHAILLET AND YACINE CHITOUR

From Lemma 5.1 in [19], we can consider that system (1) is already given in the
reduced controllability form without loss of generality. We can now establish the
solution of Problem (BHD) for the multiple input case.

THEOREM 2 (Multiple input). Letp € N and consider any (p+1)-tuple (R;)o<;<pl}
of positive real numbers. Given n € N and q € N, consider system (3). Then, there
exist K1, ..., kKq such that:

i) for every i € [1,q], k; : R™ — R is a feedback law p-bounded and SI1SSy-
stabilizing for ©; = Ajx; + bjjug;
ii) the state feedback law p = [p1,. .., pgl" given by

/ﬂ(xi)
(4) Mi(xia"'axq) = p) 2 )
(L i ll™ 4 - -+ llzgl)PH

(5) Nq(l'q) = ’iq(l"q),

Vie [[Lq_ 1H7

is a feedback law p-bounded by (R;)o<j<p and SISSy-stabilizing for system

This statement provides a unified control law solving Problem (BHD) for all
admissible LTT systems. It allows in particular multi-input systems, which was not
covered in [7].

3. Proof of the main results.

3.1. Proof of Theorem 1. In this section, we prove Theorem 1. For that
purpose, we first reduce the argument to establishing of Propositions 1 and 2 given
below. The first one states that the feedback given in Theorem 1 is SISS;, stabilizing
for (S) in the case of single input. The second proposition provides an estimate of
the successive time derivatives of the control signal.

3.1.1. Reduction of the proof of Theorem 1 to the proofs of Proposi-
tions 1 and 2. Let n € N>y, p € N and (R;)o<j<p be a (p + 1)-tuple of positive
real numbers. Define R := minjc[o,) ;. Consider a single input linear system
& = Az 4 bu where x € R™, A and b are n X n and n x 1 matrices respectively. We
assume that the pair (A, b) is stabilizable and that all the eigenvalues of A have non
positive real parts. As observed in [19], it is sufficient to consider the case where the
pair (A,b) is controllable and all eigenvalues of A are critical. Indeed, since (A,b)
is stabilizable there exists a linear change of coordinates transforming A and b into

0 A,
pair (Aa, bs) is controllable. Then, it is immediate to see that we only have to treat
the case where A has only critical eigenvalues. From now on, we therefore assume that
A has only eigenvalues with zero real parts, and that the pair (A, b) is controllable.
Our construction uses the following linear change of coordinates given by [19,
Lemma 5.2]. This decomposition puts the original system in a triangular form made
of one-dimensional integrators and two-dimensional oscillators.

(Al 0) and (Zl), where A; is Hurwitz, the eigenvalues of A, are critical and the
2

LEMMA 1 (Lemma 5.21in [19]). Let & = Az+bu, x € R", u € R, be a controllable
single input linear system. Assume that all the eigenvalues of A are critical. Let
+iws, ..., Fiwsa) be the nonzero eigenvalues of A. Let (ag, ..., a,a)) be a family of

This manuscript is for review purposes only.
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GLOBAL STABILIZATION OF LINEAR SYSTEMS 7

positive numbers. Define

Oixr=1, for k=i+1,
k—2
(6) O = [[ Van1, for i+2<k<p(A)+1.
h=i

Then there exists a linear change of coordinates that puts & = Ax + bu in the form

s(A)
gi = wiAoyi +bo Y 0ixbgyk
k=it+1
w(A)
+ bo Z Giykyk + ei,u(A)-&-lbOU» t=1,..., S(A),
k=s(A)+1
n(A)
(7) Ui = Z i kyr + 91',;L(A)-&-1U7 i=s(A)+1,...,u(4) -1,
k=i+1

?J/L(A) =u, /Lf M(A) > S(A)7
where y; € R? fori=1,...,5(A) ,y; €ER fori=s(A)+1,...,u(A)—1, and y,a) € R
if w(A) > s(A).

With no loss of generality, we prove Theorem 1 for system (7). We rely on a
candidate feedback v : R® — R under the form

s(A) Qi pin v u(A)
_ T, [ _
(8) r(y) = z_; n(A) o\ 1/2 _7214: . p(4) 9 1/2’
S al?) T =0 (1Y )

Qi (A Yi

m=i m=i
with
n(A)
9) Qi) = H a,
=i
where a1, ...,a,c4) are positive constants that will be picked in such a way that the

feedback law (8) is a feedback law p-bounded by (R;)o<j<p, and SISSp-stabilizing
for system (7). To that aim, we rely on the next two propositions, respectively proven
in Sections 3.1.2 and 3.1.3.

PROPOSITION 1. Let & = Ax + bu, x € R™, u € R, be a controllable single input
linear system. Assume that all the eigenvalues of A are critical. Let w1, ..., Fiw,( )
be the nonzero eigenvalues of A. Then, there exist u(A)—1 functions @; : Rsg — Rso,
i € [1,u(A) — 1] such that for any constants ai,...,a,a) satisfying

auA) € (0, 1], a; € (0, Ei(aiﬂ)], Vi € HL/J,(A) — 1H,

the feedback law (8) is SISy -stabilizing for system (7).

PROPOSITION 2. Let & = Az + bu, © € R, u € R, be a controllable single input
linear system. Assume that all the eigenvalues of A are critical. Let £iwy, . .., Fiwga)
be the nonzero eigenvalues of A. Let a;, i € [1, u(A)], be positive constants in (0, 1].

Then, there exist a positive constant c, 4y, and continuous functions c; : R’;(()A)_i —

This manuscript is for review purposes only.
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Rso, i € [1, u(A) — 1], such that for any trajectory of the closed-loop system (7) with
the feedback law (8), the control signal U : R>o — R defined by U(t) := v(y(t)) for all
t > 0 satisfies, for all k € [0, p],
p(A)—1
’U(k)(t)‘ < apcua) + Z aici(au(A), ceyQig1),  YE>0.

i=1

Based on these two propositions, pick a,4) € (0, 1] in such a way that

a < ;'
HA =+ Deya

Choose recursively a; € (0,1], ¢ = u(A) — 1,...,1, such that

R
(p + 1)ci(a#(A), ey ai_H)’

a; <@i(aiy1), a; <

where the functions ¢; appearing above are defined in Proposition 2. By Proposition 1,
the feedback law (8) is SI.5S-stabilizing for system (7). Moreover, as a consequence
of Proposition 2, for any trajectory of the closed-loop system (7) with the feedback law
(8), the control signal U : R>g — R defined by U(t) := v(y(t)) for all ¢ > 0 satisfies
sup,so [UR)(t)| < R for all k € [0,p]. Thus, the feedback law (8) is a feedback law
p-bounded by (R;)o<j<p for system (7). Since there is a linear change of coordinate
(y = Tz) that puts (7) into the original form & = Ax + bu, the feedback law defined
given in (2) can be picked as

v(z) :=k(Tx)

and it is a feedback law p-bounded by (R;)o<j<p, and SISSLy-stabilizing for (1). To
sum up, the proof of Theorem 1 boils down to establishing Propositions 1 and 2.

3.1.2. Proof of Proposition 1. Proposition 1 is proved by induction on p(A).
More precisely, we show that the following property holds true for every positive
integer p.

(P,): Let s,z € N be such that s + 2z = p and wy,...,ws be positive constants.
Then there exist u — 1 functions @; : Rsg — R, ¢ € [1,x — 1] such that for
any constants aq,...,a, satisfying

a, € (O, 1], a; € (O, Ei(aﬂrl)], Vi € [[1,/1 — lﬂ,

the feedback law (8) is SI1SSy-stabilizing for system (7), with u(A) = pu,
s(A) = s, and z(A) = z. Moreover the linearization of this closed-loop
system around the origin is asymptotically stable (AS).
In order to start the argument, we give intermediate results whose proofs are given
in Appendix and which will be used for the initialization step of the induction and
the inductive step. The first statement establishes SIS5S, for the one-dimensional
integrator.

LEMMA 2. Let e > 1. For every B > 0, the scalar system given by

(10) i=—p

oz
A+ 22)1/?

18 SISSL(g, %), its origin is GAS and its linearisation around zero is AS.

This manuscript is for review purposes only.
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The next lemma guarantees that the two-dimensional oscillator is STSSy.

LEMMA 3. For every w > 0, there exist ', N > 0 such that for any € (0,1] the
two-dimensional system given by

btz

11 & =wAoxr — fby—————F5——

is SISSL (BT, %), its origin is GAS and its linearisation around zero is AS.

We now start the inductive proof of (P,). For p = 1, we have to consider two cases.
Either z = 1 and s = 0 corresponding to the simple integrator

. . Y
(12) Y1 = u, with u = H(yl) = —alw,

or s =1 and z = 0 corresponding to the simple oscillator

bgyl

(13) 7 = wiAoyr + bou, with w=k(y1) = —a1—————,
(1 + [y |*)2/2

for some wy > 0. In both cases, (P1) can be readily deduced by invoking Lemma 2
and 3 respectively. Given pu € Ny, assume that (P,) holds. In order to establish
(Py41), it is sufficient to consider the following two cases:

case i) z = p+ 1, i.e, all the eigenvalues of A are zero (multiple integrator);
case ii) s > 1, i.e some eigenvalues of A have non zero imaginary part (multiple

integrator with rotating modes).
In both cases we reduce our problem to the choice of only one constant a; using the
inductive hypothesis.
Cuse 1). Let (ai1,...,a,41) be a set of positive numbers to be chosen later. Con-

sider the multiple integrator given by

ptl
Ui = Z Hi,kyk+9i,u+2u, 1=1,..., 4,
k=i+1
yu-‘rl =u,

where y; € R for i = 1,...,u+ 1. Let § = [ya2,...,yu+1]7. We then can rewrite this
system as

pt1
g1 =Y 0ikyk + 0iyrou,
k=2
4= Ay + bu,

for some matrices A and b of appropriate dimensions. From the inductive hypothesis,
there exist p — 1 functions @; : Rsg — Ry for i € [2,pu] such that for any set
of positive constants as,...,a,1 satisfying as,. .., a,41 satisfying a,41 € (0,1] and
0 < a; <@i(ai+1) , for each i € [2, u]), the feedback law & : R* — R defined by

ptl
Qi,u-i—l Yi

; ntl 2
=2 (14 3 llymll7)H2

m=t
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is SISSy-stabilizing for § = Aj + bu. Choose (ag,...,a, 1) satisfying the above
conditions. The feedback law (8) is then given by

Y1

+1 9 ’
L+ 32 llymlHH?
m=1

K(y) = —R(7) — a1Q2, 11

Since 61, ,4+2Qk, u+1 = 01 for all k € [2, p+1](see (6) and (9)), the closed-loop system
can be rewritten as

U1 = *alwiw +aip1(y) + 91(9),
(14) j = Aj — bi(§) — bay f1(y),
with
(1 + [y [|*)*/?
(15) ply) = —L (1 ),
/ T1
Il 0 S
1 )
(16) g1(7) =D b ryr(1 - s . )
k=2 (1+ Z_:k||ym|| )12
(17) hiy) = Q2,u+1 Y1

pt1 5 ’
1+ 3 llyml™)2
m=1

We now move to the other case where the dynamics involves multiple integrators with
rotating modes.

Case ). Let (a1,...,au+1) be a set of positive constants to be chosen later. Let
5 € N>1, and z € N be such that ¢ = s+ 2. Let wy,...,w, be a set of non zero real
numbers. Consider the following linear control system

s p+1
9i = wiAoyi + bo Z 0:.1b4 yr + bo Z Oi kY + 0i pi2bou, i=1,...,s,
k=i+1 k=s+1
1
k=i+1
y/ﬁ-l =u,

where y; € R2 for i = 1,...,s ,and y; € Rfori = s+ 1,...,u+ 1. Let § =

[Y2, -, yut+1)T. We then can rewrite this system as follows
s p+1
g1 =widoyr +bo D Oikbgyk +bo Y Oikyk + 0 purabou,
k=it+1 k=s+1
f/ = Ag] + bu.

From the inductive hypothesis, there exist p—1 functions @; : R~g — R fori € [2, 4]
such that for any set of positive constant ag, ..., a,+1 satisfying a,41 € (0,1] and
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0 < a; <a;(a11) , for each i € [2, u], the feedback law % : R* — R defined by

s p+1
s Qi1 b3 Yi

19 A=y —Lenlin 5 Guan
=2 (14+ 3 lymlD)Y2 = (14 3 [lyml )2

m=1 m=t

QWH Yi

is SISSy -stabilizing for § = Aj + bu. Choose as, ..., au+1 satisfying the above con-
ditions. The feedback law (8) is then given by

bgyl

ptl 5 ’
(1+ 21 llyml")*/2

k(y) = —R(Y) — a1Q2 11

By noticing that 61 ,49Qk u+1 = 61 for all & € [2,u 4+ 1] (see (6) and (9)), the
closed-loop system can be rewritten as

. b7 i
T = w1 Aoy — albom + aybopy (ZU) + bOgl(y)a
1
(19) i = Ag — bi(i) — bar 1 (),
with
by (1+ [l ]*)*/?
(20) ply) = —2P (1~ 2 ),
(1+ [lya]*)2/2 it 2\1/2
1+ 'S gml
_ > 1
g1(5) =Y 01 kb5 (1 — Y 5 )
k=2 (1+ Zk [y 7)1/
pt1 1
(21) + Y Oeye(l— ) ; );
k=i A+ 2 Il
T
(22) fily) = — Lt loln

ptl 9 ’
1+ 21 [[yml|7)1/2

In both cases, it remains to show that there exists a function @; such that if
ay € (0,a@;] then the closed-loop systems (14) and (19) are SI.SSy, and globally asymp-
totically stable with respect to the origin, and their respective linearization at zero is
asymptotically stable as well. According to Remark 1, one only needs to prove that
the closed-loop systems are SISSy and their linearization at zero is asymptotically
stable.

We start by showing the latter fact. For any a; > 0, the linearization at zero of
the y;-subsystem in (14) (respectively (19)) is asymptotically stable since it is given by
91 = —ayy; (respectively 91 = (w1 Ag—aibobd )y1). Moreover, the linearization at zero
of the j-subsystem in (14) (respectively (19)) is given by § = (A — b&M(0))§ — a1bys
(respectively § = (A — b&™M(0))§ — a1bbly1). Due to the inductive hypothesis, the
origin of §j = A — b1 (0))7 is asymptotically stable. Thus, local asymptotic stability
of (14) and (19) follows easily.
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It remains to prove that systems (14) and (19) are SISSr. In both cases, using
that 1 —1/(1+ s)%/2 < s for all s > 0, it holds from (16) and (21) that

put1 pu+l ptl
~ 2 ~113
o) @< S 6 el (z ol ) <P S b
k=2 k=2

m=k

and from (15) and (20) that

(24) o ()] < 1911*

Recall that, due to the inductive hypothesis, §=Aj— 5/2;(3}) is SISSy, (A, N) for
some A > 0 and N > 0. We next prove the SISSy property for Case i), i.e., for
system (19). Let

(25) Cy = N(Q2, 41 HBH +1),
pt1

(26) Cyi=CP+C7 Y 0i.
k=2

From Lemma 3 (with w = wy), there exist I';, N7 > 0 such that for any a; € (0,1]

T
the system 291 = w1A0y1 — a1b0(1_~_‘|b;1% is SISSL(Flal, Nl/al). Define

AV T c,
Ol ’ 26’27 4@2,#+1NHZ~)HN1C2

(27) a@; :=min< 1,

and choose a1 € (0,a]. Let

(28) A= min{al;l,al}.

Given § < A, let €1 : R>g — R? and ez : R>g — R*T272 be two bounded measur-
able functions, eventually bounded by 4. Consider any trajectory (yi(-),%(:)) of the
following system

) bdn ~
U1 = wiAoyr — arbp——5——= + a1bop1(y) + bog1(9) + e1,
(1 + ||y |[*)2/2
(29) § = Ay — bi(7) — ba1 f1(y) + ez,

In view of (19), (20), (21), (22) and (18) the above system is clearly forward complete.
We next show that there exists a constant N > 0 such that ||y1(-)| <e» NI and
|7()]] <ew NJ. From (22) and recalling that ||bo|| = 1, a straightforward computation
yields

Halgfl(y)H < a1Q2,u+1 HBH .

Since [|ea(+)]| <ew 0, it follows that

a1 + 20)| Sew 1@zt || +
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Moreover from (27), (28) and it follows that
b () + €20 Sev 1@ o] + 1) < mCr/N < A,

where C} is defined in (25). Using the SISSL(A,N) property of System § = Ajj —
bi(7), it follows that the solution of (29) satisfies

19O <ew a2 Chr.
Consequently, using (24) and (23), it follows that
(30) larbops (y()) + bogr (F())| <ev aiCe.

Using (27), we have a3Cs < %21, Moreover (28) ensures that [le1 ()| <o “4*. So it
follows that

la1bop1(y(+)) + bogr ((-)) + e1()[| <ew arls.
The SISSL(T'1a1, N1/a1) property of 91 = w1 Aoy — albom‘fﬁ% ensures that

N-
(31) Hyl()” <ev ?j(a?cz + (5) < N:iI'4.

Now let 6 > 0 be defined as

(32) 6 :=limsup ||7(t)]| -

t—+o0

Then ||§(+)|| <ew 26. There are two cases to consider, either 20 < a;Cy or a1C; < 26.
In the case when 20 < a1C4, we have

llarbops (y(-)) + bogr (5(-)) + ex ()| <ev 20a7C2/Ch.

So invoking again the SISSy(p;'1a1, N/ay) property of 91 = w1 Aoy1 —a1bobd y1/(1+
ly1]1%)1/2, one gets that the solution of (29) satisfies

Ny

(2961%6'2
ay

Cy

In the case when a;C < 20, the estimate (33) follows readily from (31). Exploiting
again the S15Sy (A, N) property of System y = Ag — bR(§), it follows that

20&%02

1

15 <eo 5 (5] @200 (2 1 0) )

92@27“_;,_1]([ ”EH Nla%CQ

C +5N(“B“Q2,u+1N1+1).

It then follows from (27) that

5O <eo & + (B @2y +1).
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Taking the limsup of the above estimate, we get from (32) that

§ < 25N(H6H Q201 N1+ 1).
Consequently, we obtain that

1O Zeo 28(||p| Q20180+ 1),
Ny 21Cs
a1

19210 <ew 2 +1)N(Ny + 1)8,
which finishes to establish (P,41) for the case 7). Proceeding as in case 1), it can be
shown that system (14) is SISSz. This end the inductive proof of (P,).

3.1.3. Proof of Proposition 2. Fix ;1 € N>;. Let s and z be two integers such
that s + 2 = i, wy,...,ws be positive constant numbers, and a,,...,a, be positive
numbers less than or equal to 1. Consider the system (7) with the feedback law (8),
where p(A) = p, s(A) = s and z(A) = z. We establish Proposition 2 by induction
on the number of time derivatives, i.e., p. More precisely we prove the following
statement: for each p € N, _

(Hp) : there exist a positive constant ¢, and continuous functions ¢; : RE " — Ry,
1 € [1,u — 1], such that for every trajectory y(-) of the closed-loop system
(7) with the feedback law (8), the control signal U : R>y — R defined by
U(t) := k(y(t)) for all ¢ > 0 satisfies, for all k € [0, p],

pn—1
’U(k)(t)‘ S aNCH+Za‘iCi(a’ua"'aai+1)7 VtZ 0.

=1

For p = 0, this statement (Hy) holds trivially. Indeed, it is easy to see that for
any trajectory of the closed-loop system (7) with the feedback law (8) we have

p—1

U®)| < au+ Z a;Qit1,u, VE>0.
i1

Now, assume that (Hp) holds true for some p € N. We next prove that (Hpy1)
also holds true. To that aim, let y(-) be any trajectory of the closed-loop system
(7) with the feedback law (8), and the control signal U(t) := k(y(t)), V¢t > 0. By
the induction hypothesis, there exist a positive constant T, and continuous functions

T, REGY — Ry, @ € [1, u — 1], such that for every k € [0,p] it holds that
p—1

(34) ‘U%)(t)‘ <au T+ Y aTilau, ... aip1), V>0
i=1

It is sufficient to show that there exist a positive constant T  and continuous functions
T, :REG" — Ry, i € [1, u — 1], such that

p—1
(35) ‘U(P+1)(t)‘ <a, Y+ > aTilan, .. aip1), V>0,
=1
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GLOBAL STABILIZATION OF LINEAR SYSTEMS 15

Indeed, the desired results will be obtained by setting ¢,, := max{Y,, T}, and ¢;(-) :=
max{Y;(-), T;(-)} for i € [1,x — 1]. In order to establish (35), we start by defining
the following auxiliary functions:

(36) g(s):=s"12 ¥s>0

and, for all ¢ > 0,

”w
(37) F) =1+ lw@I®, i<l pl
=i
Then, we can rewrite U(-) as
n
(38) Ut)=-Y_Ui(t), Vt>0,
i=1

where, for every i € [1, ],

(39) U(t) := Qi by i (t)g(fi(1)), V=0,

where by ; = by for all i € [1,s] and by; = 1 otherwise, and Q; , is defined in (9).
The (p + 1)-th time derivative of the control signal U(-) is given, for all ¢ > 0, by
UPH() = -3 U (1), Therefore to prove (H,41), it is sufficient to show that,
for each ¢ € [1, ], there exists continuous functions ¢;; : R‘;Bl = Rso , 1 € [1,1],
such that, for all ¢t > 0,

(40) ‘Ui(erl)(t)‘ S Z alci,l(au, ey al+1),
=1

¢, s actually a constant independent of a,,, we write it as ¢; ;,(a,, a,+1) for the sake
of notation homogeneity.

For i € [1, u], we apply Leibniz’s rule to (39) with respect to bf ,;(t) and g(fi(t))
and obtain that the (p 4+ 1)-th time derivative of U;(-) is given, for all t > 0, by

1 o+l 1-1
U™ (1) = 0;Qit1., <Z ( L )baiyiw D (#)go fi](ll)(t)> .

11=0

To obtain (40), it is sufficient to prove that for each ¢ € [1, 4], and I; € [0,p + 1]

there exist continuous functions 3;;, : Rigl — Ry for I € [1,1] such that, for all
t>0,

i—1
(fed T Olg o £10 O] < ity @ ai) + Y aibinn, (@ - an).
=1

In order to get (41) we next provide, for each i € [1, u], estimates of ||y§l1)(t)\|,

|fi(ll)(t)| and [go f;])(t) for I; € [1,p+1]. One can observe that, for each i € [1, u],
9; depends on the constants a;11,...,a,, the states y;,...,y, and v = £(y). By an
induction argument using differentiation of system (7), one can obtain the following
statement: for any k € [1,p + 1], @ € [1, u], there exist continuous functions

Ui R = Rog, L€[i+Lu], @rig:RES = Rso, 1€[0,p],
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529 such that, for all positive times, it holds that

1% k—1
530 Hyl(k)(t)H < Z \I/kml(aﬂ, ey ai+1) Hyl(t)ll + Z (I)k,i,l(a;u . ,ai+1) ’U(l)(t)‘ s
=1 =0

531 where, by convention, ¥y, ; , are constant functions independent of a,, for k € [1, p+1]
532 and i € [1,u]. Using (34) in the above estimate, one gets that, for any k € [1,p + 1]
533 and i € [1, I 1], there exist functions 7y, : RE;" — Ry, for I € [i + 1, 1], and
534 <I>l ki o REG" — Ry such that, for all ¢ > 0,

m
t)” < Z\I’k,i,z(am v @i1) [y ()] + Prjilaw, - - . aip1) + Zal'ﬁl,k,i(aua ce,Qig1)-
— =1

536 Setting, for 7 € [1, u,

537 U, (au, .- ait1) == max{Wx, (a,,...,ai41) : k€ [L,p+1], L€ [i+1,u]},
538 Di(ay, .. aiy1) = max{®y i(ay,...,air1) : k€ [L,p+1]},
539 Oilay, ... aig1) == max{¥ g i(ay,...,a41) : k€ [Lp+1]}, €[1,4],
540 one can obtain that, for all k € [1,p+ 1], all ¢ € [1, u], and all ¢ > 0,
(42)
541 ‘y (t)” < \Ili(a“,...,ai_,_l)z||yl(t)|| Jr(I)i(a,“...,ai_H)JrZal@l,i(aM,...,al_,_l).

=1 =1

542 It follows that (41) for I; = 0 holds true. For any ¢ € [1,u] and k € [1,p + 1], the
543  k-th time derivative of f;(-), defined in (37), is given, for all ¢ > 0, by

. GRS (1) ()T o (—10)
sad 0= (1) Lol ori o

l1:0 l2 1

ot
B~
ot

Thus, one can get that

o
, k k ! (et
o |19 \<zz||yzz e H+ (h)ZHy“) ]| e
lo=1
(k) a (z) (kl) 2
<$ (mor b o)+ ()5 (ol o)
lo—i =1 la=1

2
m
548  From (42), and using the fact that ( S|, |) <m Z #Z, one can obtain that for
i1=1 i1=1

519 each ly € [1,u] and I3 € [1,p + 1] it holds that, for all ¢ > 0,

ot
=
~

1=

@) | 7 3 2. F
550 Hyl; (t)H S(/.t + 2) (\Ijlz (CLM, R al2+1)2 Z ||yl (t)” + (plz) (aua ) al2+1)2
=y
l2
551 (43) + Z(aﬂjl’b ((J,H, ey al+1))2> .
=1
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Since the right-hand side of (43) is independent of I;, and a; < 1 for all I € [1, u], one
can gets that there exist continuous functions

W, REGD S R, LE 1, p],
TR S Rag, Le 1, p],
Tt REGE = Rsag, e [Lp], L€ [1,04],

such that, for any k € [1,p] and all t > 0, it holds

. " . i
fi(k)(t)‘ S Ui (aps s i) D O +Pr (@, @) + Y ai(ap, - aip).
=1 =

A trivial estimate for any k € [1,p + 1], any 7 € [1, u], and all ¢ > 0 is given by

(44) fl(k) (t)‘ < @i(aw C ,ai+1)fi(t) + 51'((1“, ey ai+1) + Z alﬁl’b (aﬂ, Cey al+1).

=1

By the Faa di Bruno’s formula (given in Lemma 5 in Appendix), for each i € [1, u],
and {y € [1,p+ 1], the [;-th time derivative of g o f;(-) is given, for all ¢ > 0, by

li—1l2+1

[go fi (11) Z g lz) Z H f(l

lo=1 5€Pl1 ly

where Py, ;, denotes the set of (I3 —la+1)—tuples § := (01,02, ...,0;,—1,+1) of positive
integers satisfying 61+do+. . .40y, —1,41 = l2 and 1 +202+. . .+ (L —la+1)d1, —141 = 11
Observe that the k-th derivative of the function g defined in (36) reads

(45) g ¥ (s) = dps/27* ¥s >0,

k=1

with d, = (—=1)* ] (1/2+1). Using (45), and taking the absolute value, one can get,
=0

for all £ > 0,

l1—1ls+1

[go ll) ‘ Zd12 Z_ l2+1/2 Z H

la=1 0€P 1,

Using (44), one can obtain that, for any Iy € [1,p + 1], any ls € [1,1;] and for all
t>0,

1 —Il2+1 ~ -
Z H f(l S(‘I’i(au,--~7ai+1)fi(t)+‘I>i(am-~-7ai+1)

567’11 lo

3 l2
+ Z algvlg,i(auv'”,ai—l-l)) Z Cs.

l3:1 6€Pl1,12
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[
-~
at

It follows that, for all [y € [1,p+ 1], t > 0,

b s 7; ©
€Piy 1,
576 |[go fi](ll)(t)) <N d, ot
2 W T
Ui(ay, ..., ai1) fi(t) + ®i(ay, ..., ai1) + > alﬁlg,i(amnwaiﬂ) l2
T I3=1
fi(t) ) ’
Z cs
667’
=1 fi(
l2
579 Ti(a#, ey ai+1) + 61'(&#, e ,ai+1) + Z al?ﬁlm(a#, ceey ai+1)> s
l3:1
580 Thus, it can be seen that, for every i € [1,u] and l1 € [1,p + 1], there exist

581 continuous functions Ty, : R>0 —Rygand Ty, R>0 — Rsg, ! € [1,i+ 1], such
582 that, for all £ > 0,

1 i
583 (46) [g o f ](ll)( )‘ S W (Fi,ll(alu . ,ai_,_l) + ;aiFi,lhl(aM, e ,ai+1)> .

584  Then, from (46) and (42) it follows that (41) holds true for any I; € [1,p + 1]. This
585 ends the inductive proof of (H,).

586 3.2. Proof of Theorem 2.

587 3.2.1. Reduction of the proof of Theorem 2 to the proof of Propositions
588 1 and 3. We prove Theorem 2 by induction on the number of inputs q. We show
589 that the inductive step reduces to Proposition 1 and Proposition 3 which is proven in
590  Section 3.2.2.

591 For ¢ = 1, the conclusion follows from Theorem 1. For a given ¢ € N>; assume
592 that Theorem 2 holds. We show that Theorem 2 then holds for LTI systems given
593 in the reduced controllability form with ¢ + 1 inputs. Let p € N and (R;)o<j<p be
594 a (p + 1)-tuple of positive real numbers. Define R := minjc[o ) R;. Given n € Nxo
595 consider a LTI system given in the reduced controllability form with ¢ := ¢+ 1 inputs
596 by

i?o = AOO'TO + A01931 + AQQIQ + ...+ Aoqzq—F b01u1 + b02u2 + ...+ boqu,j,

Ty = Az + Ao+ ...+ A1q$q+ biiug + bogus + ...+ blq”u@,
597 Ty = Agoo + ... + Aggrg+ baguy + ... + bagug,
g = Aggqt bagug,

598  where z; € R™ and u; € R for each i € [0, ¢+1], Ao is Hurwitz, for every i € [1, ¢+1]
599 all the eigenvalues of A;; are critical, and the pairs (A4;;, b;;) are controllable.

600 Since Ago is Hurwitz, if we find a feedback law p-bounded by (R;)o<j<p, and
601 SISSp-stabilizing for (z1,...,x4)—subsystem then, clearly, this feedback does the job
602 for the complete system. From now on, we only consider the (x1, ..., z5)—subsystem
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and we rewrite it compactly as

(47&) &1 = A2y + bryuy + AZ + Bﬂ,
(47b) = Az + Bu,
where 2 := [z2,..., 25T, u = [ua,...,ug]T.

We next provide a key technical lemma.

LEMMA 4. Let & = Ax + bu, x € R, u € R, be a controllable single input linear
system. Assume that all the eigenvalues of A are critical. Let Fiwy, ..., Fiws4) be
the nonzero eigenvalues of A, (az,...,auca)) be a sequence of positive numbers and
T € R™™ be such that the linear change of coordinate y = T'x transforms & = Ax + bu
into system (7) compactly written as y = Jy + bu. Rewrite T as

T = [Tla s 7TS(A)7 TS(A)+17 s 7T;L(A)]Ta

where T; € R?™ if i € [1,s(A)] otherwise T; € RY™. Then T has the following
property
(Z) : Tyay is independent of (az,...,a,ca)), and each T; depend only on (aii1,
N 7aH(A)).
Moreover, given v,k € N, let M € R™" be independent of the constants a;, then the
matrices TM and J*T satisfy property (I).

The proof of Lemma 4 follows from a careful examination of the proofs of Lemmas
3.1 and 5.1 in [19].

. Let (az,...,a,(a,,)) be a sequence of positive numbers (to be chosen later). Let
T be the linear change of coordinate that transforms & = Aji2 + byyu; into the form
of system (7) compactly written as y = Jy + bu. We now make the following changes
of coordinates y = Tx, and system (47) is then given by

(48a) y=Jy+bu, +TAz + TBu,
(48b) % = Az + Bu.

Let k be a feedback law p-bounded by (R;/2)o<;j<p, and SISS (N2, Ag)-stabilizing
for subsystem (48b), for some N, Ay > 0 (thanks to the inductive hypothesis, we
know that this feedback law exists). Let a; > 0, to be chosen later. We seek the
following state feedback law:

49a uy(y, 2) = %,
(49 I R
(49b) u(z) == k(z),

where p(y) is defined in (8). We now show that there exist positive constants
(a1,az,...,a,(4,,)) such that the feedback law (49) is a feedback law p-bounded and
SISSy-stabilizing for system (48). This choice is based on Proposition 1 and the
following statement which is proven in Section 3.2.2.

PROPOSITION 3 (p-bounded feedback). Let a;, for i € [1,u(A11)], be positive
constants in (0,1]. Consider system (48) with the feedback law (49). Assume that &
is a feedback law p-bounded by (R;/2)o<j<p, and SISSL (N2, Ag)-stabilizing for sub-
system (48b). Then, there exist a positive constant c,a,,), and continuous functions
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i Ri(OA“)_i — Roo, i € [1,u(A11) — 1], such that for any trajectory of the closed-
loop system (48) with the feedback law (49), the control signal Uy : R>g — R defined
by Ui (t) == u1(y(t), 2(t)) for all t > 0 satisfies, for all k € [0, p],

p(A11)—1

k
‘Ul( )(t)’ < QpCru(Aqy) + Z aici(aH(An),...,aHl), vt > 0.
=1

Pick a,a,,) € (0,1] in such a way that

(A, S - = .
(A1) 2(p—|— I)CH(All)

Choose recursively a; € (0,1], i = u(A11) — 1,...,1, such that

R
(p+ 1)ci(a#(A), .. .,ai+1)’

a; <a;i(aiy1), a; < 5

where the functions ¢; appearing above are defined in Proposition 3 and the functions
a; are defined in Proposition 1. By Proposition 1, the feedback law pu(y) is S1.5Sp-
stabilizing for system & = Ja 4 bu. We now prove that the closed-loop system (48)
with the feedback (49) is SISSL (now, all the coefficients have been chosen). To that
aim, first notice that there exist a1, az > 0 such that, for all ||z|| < 1,

HTAZ + TBH(Z)H <o,

1
b 1l-— as |||l -
u(y)< (lez)p)H < az

1 Aq
A:=min<1, Ay, —, ——F—— 5.
{ 2 N2 (()42+(11)N2+1}
Given 6 < A, let e1,es be two bounded measurable functions of the appropriate di-
mension, eventually bounded by §. Consider any trajectory (y(-), z(+)) of the following
system

Let

1

——— )+ TAz+TBk(z + ey,
<1+\|zu2>p) #) + e

(50) g =Jy+bu(y) —buly)(1 -
(51) 2 = Az + Br(2) + ea,

From the ST15S1 (A, Na) property of z-subsystem it follows that ||z(+)|| <ep N2d < 1.
Thus, using the above estimate, it is immediate to see that

bu(y () (1 — ! p) +TAz(-) + TBr(2(-)) + e1()|| <ew 6((ar1 + a2)No + 1)

(L+120)1%)

< Aj

Therefore, invoking the STSSr (A1, N1) property of & = Jx + bu(y), it follows that
Iy <ew 5((041 + ag)Ny + 1)N1. So, the closed-loop system (48) with the feedback
(49) is SISSL. Moreover, as a consequence of Proposition 3 and of the inductive
hypothesis, for any trajectory of the closed-loop system (7) with the feedback law

This manuscript is for review purposes only.



662
663
664
665
666
667
668
669
670

678

679
680

681

682

683

684

685

686

687

688

689

690

691

GLOBAL STABILIZATION OF LINEAR SYSTEMS 21

(49), the control signal U : Rsq — R™, defined by U(-) := [Ui(-),U2(-)]T with
Ui(t) :== u1(y(t), 2(t)) and Us(t) := k(z(¢)) for all ¢t > 0, satisfies

sup [ UM 1)]| < R

>0
for all & € [0,p]. Thus, the feedback law (49) is a feedback law p-bounded by
(Rj)o<j<p for system (48).

3.2.2. Proof of Proposition 3. For the sake of notation compactness let y =
1(Aq1). To prove Proposition 3, we establish by induction on k that the following
property holds, for all k € [0, p]: _

(H}) : There exist a positive constant ¢, and continuous functions ¢; : RE ;" — Ry,
i € [1,p — 1], such that for any trajectory of the closed-loop system (48)
with the feedback law (49), the control signal U; : R>¢g — R defined by
Ui (t) :== ui(y(t), 2(t)) for all t > 0 satisfies, for all j € [0, k],

p—1
0] <t 20

i=1

For k = 0, the statement (H() holds trivially. Now, assume that (H}) holds true
for some k € [0,p — 1]. We next prove that (Hyy;) also holds true. Let (y(-),2(-))
be any trajectory of the closed-loop system (48) with the feedback law (49), and the
control signal U;(t) := u1(y(t), 2(¢))) and Us(t) := k(=(t)), ¥t > 0. As in the proof
of Proposition 2, it is suPﬁcient to prove that there exist a positive constant T w and
continuous functions T; R”O — Rsg, ¢ € [1, 0 — 1], such that

(52) ‘Ul(’”l)( ‘ <a,Y,+ Zal (aps .- ai41), Vt>0.

Let G(s) := s~ @D for all s > 0. Define h(t) := 1+ ||2(t)||?, for all ¢ > 0. With the
same notation given in the proof of Proposition 2, one can write Uy (+) as

(53) Up(t) = — f: Uni(t), Vt>0,
=1

where, for every ¢ € [1, ],

(54) Uni(t) = Qibo iyi(t)[g © fil(8) [G 0 hI(t), V¥t >0.

As in the proof of Proposition 2, we next show that for each i € [1, u], there exist
continuous functions ¢;; : Rigl — Rso, I € [1,4], such that, for all ¢ > 0,

(55) ‘U(k+1) ‘ Z aic;, au, RN al+1),

¢ is actually a constant independent of a,,, we write it as ¢; ,(a,, a,41) for the sake
of notation homogeneity. For i € [1, u], we apply Leibniz’s rule to (54) and obtain
that the (k + 1)-th time derivative of Uy;(+) is given, for all ¢ > 0, by

kE+1 1y
U () = aiQisry (Z > (kl“)( )[qohww(t) [g0 fi] (1) by (1 )>.

11=0105=0

Then, to get (55), it is sufficient to show that :
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a) there exists C' > 0 such that, for any [ € [0,k + 1] and for all ¢ > 0,

130 hD@)| < Clgohl(@).

692 b) for each ¢ € [1, u], there exist U;, ©;, ®; : R’;Bi — Ry, and v; ; : Rigj —
693 Rq for j € [1,4] such that, for any le [0,k + 1] and for all ¢ > 0,

694 ‘

- H
o
y OO Tstan, - a0) D Im®Il + Oslan, - assa) 2]
=1

695 + Ei(a#, ceyQig) F i aOri(ay, ... ai41).
=1
696 c) for each i € [1, ], there exist I:,»,Gi : Rigi — Ryp, and T 5 : R’;Bj — Ryg
697 for j € [1,4] such that, for any ! € [0,k + 1] and for all ¢ > 0,
698 ‘[9 ° fi](i)(t)) <lgo fil(t) (Fi<am ces Qi) F 21: arOyi(au, - -, a141)
I=1
699 +0i(au, ... ais1) ||z(t)||2[).

We now establish a). By an inductive argument using differentiation of the z-
subsystem (48b) coupled with the fact that the feedback law & is p-bounded, one
easily shows that there exist Cp, C; > 0 such that for any [ € [1,%k + 1] and for any
t>0,

20 < o+l

Using the Leibniz rule, it can be establish that there exist C’O, Cy > 0 such that, for
any [l € [1,k+ 1],

WD@)| < Co+ =),

0 for all ¢ > 0. Thanks to Fad Di Bruno Formula (Lemma 5) applied to [g o h], item a)
1 follows.

2 We now deal with item b). From Lemma 4 and an induction argument using
3 differentiation of system (48a), one can obtain the following statement: for any /; €
[,k +1], i € [1,4], there exist continuous functions ¥y, ;; : RE" — Ry, | €
05 [[Z + 1,MH s 511,“ : Rigz — R>0, [ € [[O,p]], @ll,i,l : Rigz — R>0, l e [[O,p]], and
6 EpincRET = Rsg, 1€ [0,p], such that, for all ¢t > 0,

=R~~~ R B~ R

M=

l _ _
u O] < Y Taal@pr i) Ol + Oy sa @ ass) [ 20)]

1
-

1—1

Ell,i,l(aﬂ, . ,ai+1) ‘Ul(l)(t)‘ —l—ilhi)l(au, - ,ai+1) HUQ(ll)(t)H .
0

~
o7
+

l

709  So, using the inductive hypothesis and the fact that k is a p-bounded feedback law,
710 one can obtain item b).

711 Proceeding as in Proposition 2, one can get item ¢). This ends the proof of
712 Proposition 3.

This manuscript is for review purposes only.



-3
[\V)
[\

=~
V)
)

~N 1 1 =
NN NN
ot

GLOBAL STABILIZATION OF LINEAR SYSTEMS 23

4. Numerical validation.
In order to test the validity of our main result, we consider the single-input system
discussed after Definition 3, namely & = Az + bu with

0 -1 0 O 0
1 0 0 1 0
A= 0o 0 0 -1 |’ b= 0
0 0 1 0 1

It can easily be checked that A has no eigenvalue with positive real part (it actually
has two pairs of purely imaginary eigenvalues: s(A) = u(A) = 2) and that the pair
(A, b) is controllable, thus making the assumptions of Theorem 1 fulfilled. The system
is readily in the form (7) and the proposed control law (8) reads

Q1,2$2 Q2,2$4

wly) == B 2 2
(1+ a2 + a3

(1—|—Hx||2)1/2 )1/2’

where Q12 = aijaz and Q22 = ag for some aj,as > 0. In Figure 1, we run 30
simulations, each of them starting from initial conditions randomly picked in the
interval [—5;5], with a; = 0.5 and a2 = 1. A particular solution is reported in bold
black.

FiG. 1. Time evolution of the state norm, the control signal, and its first two derivatives for
30 random initial states within [—5;5].

These simulations indicate that, despite poor closed-loop performance, stabiliza-
tion is achieved for all considered initial states, while u(t), @(t), and () all remain
within [—2;2].

Varying the parameter a; between 0.25 and 5, and running again 30 simulations
for each of these values, Figure 2 reports the largest transient state norm and con-
vergence time (top), and the values reached by |u(t)|, |@(t)| and |i(t)| respectively
(bottom).

It can be seen that the control signal and its first two derivatives can be con-
strained to smaller values, while still achieving stabilization. Not surprisingly, the
price to pay is a larger overshoot and a slower convergence towards the origin as a;
decreases.

5. Appendix.
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~ Max state norm _|

Fic. 2. Top: Mazimum value of the transient state norm and mazimum convergence time
over 30 random simulations, as a function of the feedback gain ay. Bottom: Mazximum norm of
the control signal and of its first two derivatives over 30 random simulations, as a function of the
feedback gain aq.

5.1. Proof of Lemma 2 . Let ¢ > 1 and f > 0. We first prove forward
completeness of

(56) T = _5W +

in response to any locally bounded function d;(-). For this, let V(z) := 2?/2. Its
derivative along trajectories of (56) satisfies

dy

$2

(1+a2)1/2

Then, a straightforward computation leads to V(z) < V(z) + di(t)? and forward
completeness follows using classical comparison results. Moreover when dy = 0, (57)
ensures that the origin of (56) is G.A.S.

We then prove the STSSL(5/2, %) property of the system (56) with respect to
di(+). Given § < /2, let d; be a bounded measurable function on R>¢ eventually
bounded by §. Since the system is forward complete, we can consider without loss of
generality that d; (t) < 6 for all t > 0. From (57) and the fact that (14-22)Y/2 < 14|z],
one can obtain that

(57) V(z)= - +2Td(t).

22 1

(14 z2)1/2 + (1+ x2)1/2(|d1(t)| || + |dy(t)] 2?).

V(z) = -

Observing that

@l B

58
(58) (L1 22)12 = 2(1 1 22)1/2°

it follows that

~ |z] 2
(59) V(z) < —5m(|x| - 55)
Consequently, V' < 0 whenever |z| > %5_ It follows that every trajectory of (10)

eventually enters and remains in the set S = {zx € R : 2% < 62(%5)2} (indeed, V' < 0
for all x ¢ S and = € 95). Thus Lemma 2 can be easily established.
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5.2. Proof of Lemma 3. Let w > 0. Given any 0 < § < 1, let Ag :=
wAg— Bbobl , which is Hurwitz since Ay is skew-symmetric and (Ay, bg) is controllable.
Therefore there exists a symmetric positive definite matrix Py satisfying the following
Lyapunov equation

(60) PgAg+ AL Pg = —Iy.

8 1
72_’_7 —_

Pﬁ=<2‘”1ﬁ 21“})
2w ]

The smallest and largest eigenvalues of Ps denoted by g4 and o respectively are
given by

A simple computation gives

2 B
ag =B Psboll —EHPB%H’

_ s B
o =B Pgbol” + o | Psboll »

1 1
| Psboll = \ 12 + Iz

with

Define V: R? — Rxq as

og+0o
(61) V(z) := 2T Pz + y ((1 +[lz]|?)3? - 1) . VzeR2
Given C' > 1, let a1 and a be class K, functions given by
og+0
ay(r) == 7( ’ 07’8) max{r?,r3},

ay(r) := C(T5 + a5) max{r®, r’}.

There exists C' > 1 such that

ar(|lz]]) < V(z) < ax(llzll), vz e R
Moreover, there exists a constant M > 0, independent of 3, such that
(62) artoas(r) < Mr, Vr>0.
Proceeding as in the proof of Lemma 2, forward completeness of

T
by x

63 T =wApr — Bbg————m———
(©3) T FLE

dq

can easily be derived in response to any locally measurable bounded function d;. We
next show that the system (63) is SISSL (I, N/B) with respect to dy, for some N > 0
and with

1

(64) T .= m.
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Since (63) is forward complete, we can assume without loss of generality that dy
satisfies ||d1(t)]| < d, ¥t > 0, for some § < SI'. Consider the Lyapunov function
V :R? — R defined in (61). By noticing that (63) can be rewritten as

1
&= Agx+ Bboblz |1 — ——————— | +d,

one gets that the time derivative of V' along trajectories of (63) satisfies
1% ZLETPB A/@.T + ﬁbobgﬁt?(l — ;> + dy
(1+ [l]*)/2

1
T AT T,T T
+ <as Aj + Bby by x(1 — 7(1 n \|$||2)1/2) +d1> Pgx

LGyt t elPye (—p—BD g,
s (1+ []*)/2 '

Since Pg is a symmetric matrix satisfying the Lyapunov equation (60), it follows that

V= |2+ 25xTP5b0b0Tw(1 - ) + 207 Pody — B(55 + a) (b )2

(1 + [|l=[|*)2/2
+ (@5 +a5) (1 + [[]*)/?2T dy.

By completing the squares it holds that, for all ¢ > 0,

2
]|

-2

1
282" Paboby (1~ ) +26% || Pabo* (0] )°.

(L + [|z]*)1/2

Therefore, one can get that
. 1
V-5 |z||* + 22T Pdy + 28| Pbo||* (1 + ||z]|*)/?2" d;.

Using the fact that (1 + [|z[*)/2 < 1+ ||z|| for all z € R2, and exploiting (64), it
follows that

. 1
V<~ el + 20016 (28 1Pl + 5 Pl )

Consequently, it holds that V < 0 whenever ||z|| > 80 (28 | Psbol|* + % | Psbol| ). Let
p> 1 and set v := 8u(28 || Psbol” + £ || Psbol|). Define S := {z € R? : V(z) <
ag(rd)}. If x ¢ S then ||z|| > rd. Consequently, any trajectory eventually enters and
stay in S. Moreover, we have that ai(||z(-)]]) <ew V(z(t)) < az(rd) . From (62),
it follows that ||z(-)|| <ew 7MJ. Moreover, one can see that there exists a constant
D > 0 such that for any 8 < 1 we have r < %. So we obtain

No

Iz <ev =5

for some N > 0, which concludes the proof.
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5.3. Faa Di Bruno’s Formula.

LEMMA 5 (Faa Di Bruno’s formula, [6], p. 96). For k € N, let ¢ € C*(Rxo,R)
and p € C*(R,R). Then the k-th order derivative of the composite function p o ¢ is
given by

k

o dlP(1) = 3" 060 Bra (600), ., 6 (1),

a=1
where By, q is the Bell polynomial given by

k—a+1

Bea (600)..... 0= 0):=Y e [] (60

0€Pk,a I=1

where Py o denotes the set of (k — a + 1)—tuples 6 := (01, 02,...,0k—at1) Of positive
integers satisfying

51+§2+-~~+5k7a+1 =a,
01+250+ ...+ (k—a+1)0k—ar1 =k,

k!
(01! O !(IN - (B — a + 1))0k—at1)’

Cs ‘=
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