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GLOBAL STABILIZATION OF LINEAR SYSTEMS WITH BOUNDS1

ON THE FEEDBACK AND ITS SUCCESSIVE DERIVATIVES∗2

JONATHAN LAPORTE, ANTOINE CHAILLET AND YACINE CHITOUR †3

Abstract. We address the global stabilization of linear time-invariant (LTI) systems when the4
magnitude of the control input and its successive time derivatives, up to an arbitrary order p ∈ N, are5
bounded by prescribed values. We propose a static state feedback that solves this problem for any6
admissible LTI systems, namely for stabilizable systems whose internal dynamics has no eigenvalue7
with positive real part. This generalizes previous work done for single-input chains of integrators8
and rotating dynamics.9
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1. Introduction. The study of control systems subject to input constraints is13

motivated by the fact that signals delivered by physical actuators may be limited in14

amplitude, and may not evolve arbitrarily fast. An a priori bound on the amplitude15

of the control signal is usually referred to as input saturation whereas a bound on the16

variation of control signal is referred to as rate saturation (e.g [15]).17

Stabilization of linear time-invariant systems (LTI for short) with input saturation
has been widely studied in the literature. Such a system is given by

(S) ẋ = Ax+Bu,

where x ∈ Rn, u belongs to a bounded subset of Rm, A is an n×n matrix and B is an18

n×m one. Global stabilization of (S) can be achieved if and only if the LTI system19

is asymptotically null controllable with bounded controls, i.e., it can be stabilized20

in the absence of input constraint and the eigenvalues of A have non positive real21

parts. Saturating a linear feedback law may fail at globally stabilizing (S) as it was22

observed first in [4] and then in [18] for the special case of integrator chains (i.e.,23

when A is the n-th Jordan block and B = (0 · · · 0 1)T ). As shown for instance in [12],24

optimal control can be used to define a globally stabilizing feedback for (S) but, when25

the dimension is greater than 3, deriving a closed form for this stabilizer becomes26

extremely difficult. The first globally stabilizing feedback with rather simple closed27

form (nested saturations) was provided in [20] for chains of integrators and then in28

[19] for the general case. In [9], a global feedback stabilizer for (S) was built by relying29

on control Lyapunov functions arising from a mere existence result. Other globally30

stabilizing feedback laws for (S) have been proposed with an additional property of31

robustness with respect to perturbations. In [14], using low-and-high gain techniques,32

a robust stabilizer was proposed to ensure semiglobal stability, meaning that the33

control gains can be tuned in such a way that the basin of attraction contains any34

prescribed compact subset of Rn. This restriction has been removed in [13], where35
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2 JONATHAN LAPORTE, ANTOINE CHAILLET AND YACINE CHITOUR

the authors provided a global feedback stabilizer for (S) which is robust with respect36

to perturbations, based on an earlier idea due to Megretsky [11]. Nonetheless, the37

feedback laws of [13] and [11] require to solve a nonlinear optimization problem at38

every point x ∈ Rn, which makes its practical implementation questionable. An39

easily implementable global feedback stabilizer for (S) which is robust with respect to40

perturbations was proposed in [2], but it only covers the multiple integrator case and41

it is discontinuous since it is based on sliding mode techniques. Robust stabilization of42

(S) was also addressed in [1] by relying on the control Lyapunov function techniques43

developed in [9]. Finally it is important to notice that, while global stabilizers own44

the advantage to be valid for all initial conditions, they are typically low performance45

and less suited for practical implementation because they do not allow the input to46

exceed the saturation limits, which often results in input signals that stay well below47

the maximum value.48

In contrast to stabilization of LTI systems subject to input saturation, there are49

much less results available in the literature regarding global stabilization under rate50

saturation, i.e., when the first time derivative of the control signal is also a priori51

bounded. When only rate saturation is considered (with no constraint on the input52

magnitude), the objective can easily be reduced to the standard case of magnitude53

saturation by considering the augmented system where the control is an extra variable54

and its derivative becomes the new control. The control objective is more challenging55

when both magnitude and rate constraints are considered. In [3], the authors rely56

on a backstepping procedure to build a bounded globally stabilizing feedback with a57

bounded rate, but the methodology does not allow to a priori impose a prescribed58

rate. In [16], a dynamic feedback law inspired from [11] is constructed and can even be59

generalized to take into account constraints on higher time derivatives of the control60

signal. However, as mentioned previously, the numerical efficiency of such feedbacks is61

definitely questionable. A rather involved global feedback stabilizer for (S) achieving62

amplitude and rate saturations was also obtained in [17] for affine systems with a stable63

free dynamics. This corresponds in our setting to requiring that the matrix A is stable,64

i.e., AT +A ≤ 0 (up to similarity) and therefore fails at covering chains of integrators.65

Finally, let us mention the references [8], [10] for semiglobal stabilization results and66

[5] for local stabilization results using LMIs and anti-windup design. One should also67

mention [21] where a nonlinear small gain theorem is given for the behaviour analysis68

of control systems with saturation.69

The results presented here encompass input and rate saturations as special cases.70

More precisely, given any integer p, we construct a globally stabilizing feedback for71

(S) such that the control signal and its p first time derivatives are bounded by arbi-72

trary prescribed positive values, along all trajectories of the closed-loop system. This73

problem has already been solved by the authors in [7] for the multiple integrator and74

skew-symmetric cases. The solution given in that paper for the multiple integrator75

case consisted in considering appropriate nested saturation feedbacks. We also indi-76

cated in [7] that these feedbacks fail at ensuring global stability in the skew-symmetric77

case and we then provided an ad hoc feedback law for this specific case. Here, we solve78

the general case with a unified strategy.79

The paper should be seen as a first theoretical step towards the global stabiliza-80

tion of an LTI system when the input signal is delivered by a dynamical actuator81

that limits the control action in terms of magnitude and p first time derivatives. Fur-82

ther developments are needed to explicitly take into account the dynamics of such an83

actuator. Possible extensions of this work may also address the question of global sta-84

bilization by smooth feedback laws (i.e., C∞ with respect to time) when all successive85
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GLOBAL STABILIZATION OF LINEAR SYSTEMS 3

derivatives need to be bounded by prescribed values.86

The paper is organized as follows. In Section 2, we precisely state the problem we87

want to tackle, the needed definitions as well as the main results we obtain, namely88

Theorem 1 for the single input case and Theorem 2 for the multiple input case. Section89

3 contains the proof of the main results. In Section 3.1.1 we show that the proof of90

Theorem 1 is a consequence of two propositions. In the first one (Proposition 1), we91

show that the feedback proposed in Theorem 1 is indeed a globally stabilizing feedback92

for (S). We actually prove a stronger result dealing with robustness properties of this93

feedback, as it is required in [20] and [19]. The second proposition (Proposition 2)94

specifically deals with bounding the p first derivatives of the control signal by relying95

on delicate estimates. Section 3.2.1 contains the proof of Theorem 2 which is a96

consequence of Proposition 1 and Proposition 3, the latter providing estimates on the97

successive time derivatives of the control signal. In Section 4, we provide a numerical98

validation of our main result based on a four-dimensional system made of a cascade of99

two rotating dynamics. We close the paper by an Appendix, where we gather several100

technical results used throughout the paper.101

Notations. We use R and N to denote the sets of real numbers and the set of102

non negative integers respectively. Given a set I ⊂ R and a constant a ∈ R, we let103

I≥a := {x ∈ I : x ≥ a}. Given m, k ∈ N, we define Jm, kK := {l ∈ N : l ∈ [m, k]}. For104

a given set M , the boundary of M is denoted by ∂M . The factorial of k is denoted105

by k! and the binomial coefficient is denoted
(
k
m

)
:= k!

m!(k−m)! .106

Given k ∈ N and n, p ∈ N≥1, we say that a function f : Rn → Rp is of class107

Ck(Rn,Rp) if its differentials up to order k exist and are continuous, and we use f (k)108

to denote the k-th order differential of f . By convention, f (0) := f .109

Given n,m ∈ N≥1, Rn,m denotes the set of n×m matrices with real coefficients.110

The transpose of a matrix A is denoted by AT . The identity matrix of dimension n is111

denoted by In. We say that an eigenvalue of A is critical if it has zero real part and112

we set µ(A) := s(A) + z(A) where s(A) is the number of conjugate pairs of nonzero113

purely imaginary eigenvalues of A (counting multiplicity), and z(A) is the multiplicity114

of the zero eigenvalue of A. We define A0 :=

(
0 1
−1 0

)
, and b0 :=

(
0
1

)
.115

We use ‖x‖ to denote the Euclidean norm of an arbitrary vector x ∈ Rn. Given116

δ > 0 and f : R≥0 → Rn, we say that f is eventually bounded by δ, and we write117

‖f(·)‖ ≤ev δ, if there exists T > 0 such that ‖f(t)‖ ≤ δ for all t ≥ T .118

2. Problem statement and main results. Given n ∈ N≥1 and m ∈ N≥1,119

consider the LTI system defined by120

(1) ẋ = Ax+Bu,121

where x ∈ Rn, u ∈ Rm, A ∈ Rn,n, and B ∈ Rn,m. Assume that the pair (A,B)122

is stabilizable and that all the eigenvalues of A have non positive real parts. Recall123

that these assumptions on (A,B) are necessary and sufficient for the existence of a124

bounded continuous state feedback u = k(x) which globally asymptotically stabilizes125

the origin of (1), see [19].126

Given an integer p and a (p + 1)-tuple of positive real numbers (Rj)0≤j≤p, we127

want to derive a static state feedback law whose magnitude and p-first time derivatives128

along all trajectories of the closed-loop system are bounded by Rj , j ∈ J0, pK.129

Definition 1 (feedback law p-bounded by (Rj)0≤j≤p). Given n ∈ N≥1, m ∈ N≥1130

and p ∈ N, let (Rj)0≤j≤p be a (p + 1)-tuple of positive real numbers. We say that131

ν : Rn → Rm is a feedback law p-bounded by (Rj)0≤j≤p for system (1) if it is of class132
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4 JONATHAN LAPORTE, ANTOINE CHAILLET AND YACINE CHITOUR

Cp(Rn,Rm) and, for every trajectory of the closed-loop system ẋ = Ax + Bν(x), the133

control signal U : R≥0 → Rm, t 7→ U(t) := ν(x(t)) satisfies supt≥0

∥∥U (j)(t)
∥∥ ≤ Rj134

for all j ∈ J0, pK and all t ≥ 0. The function ν : Rn → Rm is said to be a feedback135

law p-bounded for system (1), if there exists a (p + 1)-tuple of positive real numbers136

(Rj)0≤j≤p such that ν(·) is a feedback law p-bounded by (Rj)0≤j≤p for system (1).137

We stress that the above definition includes only static state feedback laws, mean-138

ing control laws that depend solely on the current state value. Based on this definition,139

we can write our stabilization problem of Bounded Higher Derivatives as follows.140

Problem (BHD). Given p ∈ N and a (p + 1)-tuple of positive real numbers141

(Rj)0≤j≤p, design a state feedback law ν : Rn → Rm such that the origin of the142

closed-loop system ẋ = Ax + Bν(x) is globally asymptotically stable (GAS for short)143

and the feedback ν is a feedback law p-bounded by (Rj)0≤j≤p for system (1).144

Our construction to solve Problem (BHD) will often use the property of Small145

Input Small State with linear gain (SISSL for short) developed in [19]. We recall146

below its definition147

Definition 2 (SISSL, [19]). Given positive ∆, N , the control system ẋ = f(x, u),148

with x ∈ Rn and u ∈ Rm, is said to be SISSL(∆, N) if, for every δ ∈ (0,∆] and every149

bounded measurable signal e : R≥0 → Rm eventually bounded by δ, then any solution150

of ẋ = f(x, e) is eventually bounded by Nδ. A control system ẋ = f(x, u) is said to151

be SISSL if it is SISSL(∆, N) for some ∆, N > 0. An input-free system ẋ = f(x) is152

called SISSL, if the control system ẋ = f(x) + u is SISSL.153

Remark 1. Note that if ẋ = f(x) is SISSL, then all its solutions converge to the154

origin. To see this, pick a sequence (δk)k∈N of positive numbers tending to zero so that155

δ0 ≤ ∆ and apply the SISSL property to every δk with the zero input. Note, however,156

that the SISSL property does not necessarily ensure GAS in the absence of input, as157

it does not imply stability of the origin.158

When a state feedback law ensures both global asymptotic stability and SISSL,159

we refer to is an SISSL-stabilizing feedback.160

Definition 3 (SISSL-stabilizing feedback). Given a control system ẋ = f(x, u)161

with x ∈ Rn and u ∈ Rm, we say that a state feedback law ν : Rn → Rm is stabilizing if162

the origin of the closed-loop system ẋ = f(x, ν(x)) is globally asymptotically stable. If,163

in addition, this closed-loop system is SISSL, then we say that ν is SISSL-stabilizing.164

As mentioned before the state feedback law given in [7], which solves Problem165

(BHD) for the special case of multiple integrators, simply made use of nested sat-166

urations with carefully chosen saturation functions. We recall next why this state167

feedback construction cannot work in general. For that purpose it is enough to con-168

sider the 2D simple oscillator case which is the control system given by ẋ = ωA0x+b0u,169

with x = (x1, x2)T , u ∈ R and ω > 0. This system is one of the two basic systems to170

be stabilized by means of a bounded feedback, as explained in [19]. According to [7],171

one must then consider a stabilizing feedback law u = −σ(kTx), where k = (k1, k2)T172

is a fixed vector in R2 and σ : R→ R is a saturation function, i.e., a bounded, continu-173

ously differentiable function satisfying sσ(s) > 0 for s 6= 0 and σ(1)(0) > 0. Note that174

k is chosen so that the linearized system at (0, 0) is Hurwitz. In particular this implies175

that k2 6= 0. Pick now the following sequence of initial conditions (l,−k1l/k2)l≥1. A176

straightforward computation yields that the first time derivative of the control along177

each trajectory satisfies u̇(0) = −σ(1)(0)ωl(k2
1/k2 + k2), which grows unbounded as l178

tends to infinity. Therefore the feedback law proposed in [7] can not be a 1-bounded179
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GLOBAL STABILIZATION OF LINEAR SYSTEMS 5

feedback for this system.180

In order to solve Problem (BHD) for the 2D oscillator, we showed in [7] that a181

feedback law of the type uk,α := kT x
(1+‖x‖2)α with k ∈ R2 and α ≥ 1/2 does the job182

and it also solves Problem (BHD) in case the matrix A in (1) is stable. However,183

we are not able to show whether uk,α stabilizes or not the system in the case where184

A :=

(
A0 bT0 b0
0 A0

)
. It turns out that the previous issue is as difficult as asking if a185

saturated linear feedback stabilizes or not the above-mentioned 4D case, which is an186

open problem. It is therefore not immediate how to address the general case. This187

is why our main result is a non trivial extension of the solution of Problem (BHD)188

provided for the two-dimensional oscillator.189

2.1. Single input case. For the case of single input systems, the solution of190

Problem (PHB) is given by the following statement.191

Theorem 1 (Single input). Given n ∈ N>0, consider a single input system192

ẋ = Ax+ bu where x ∈ Rn, A ∈ Rn,n and b ∈ Rn,1. Assume that A has no eigenvalue193

with positive real part and that the pair (A, b) is stabilizable. Then, given any p ∈ N194

and any (p+ 1)-tuple (Rj)0≤j≤p of positive real numbers, there exist vectors ki ∈ Rn195

and matrices Ti ∈ Rn,n, i ∈ J1, µ(A)K, such that the feedback law ν : Rn → R defined196

as197

(2) ν(x) = −
µ(A)∑
i=1

kTi x

(1 + ‖Tix‖2)1/2
,198

is a feedback law p-bounded by (Rj)0≤j≤p and SISSL-stabilizing for system ẋ = Ax+199

bu.200

In view of Definition 3, the feedback law (2) globally asymptotically stabilizes201

the origin of (1), and thus solves Problem (BHD). We stress that, even though the202

exact computation of the control gains ki is quite involved (see proof in Section 3),203

the structure of the proposed feedback law (2) is rather simple. It should also be204

noted that, unlike the results developed in [7], this state feedback law applies to any205

admissible single-input systems (including rotating dynamics and integrator chains)206

in a unified manner.207

2.2. Multiple input case. To give the main result for LTI system with multiple208

inputs we need this following definition.209

Definition 1 (Reduced controllability form). Given n ∈ N and q ∈ N, a LTI210

system is said to be in reduced controllability form if it reads211

(3)

ẋ0 = A00x0 +A01x1 +A02x2 + . . .+A0qxq+ b01u1 + b02u2 + . . .+ b0quq,
ẋ1 = A11x1 +A12x2 + . . .+A1qxq+ b11u1 + b22u2 + . . .+ b1quq,
ẋ2 = A22x2 + . . .+A2qxq+ b22u2 + . . .+ b2quq,

...
ẋq = Aqqxq+ bqquq,

212

where, for some (q + 1)-tuple (ni)0≤i≤q+1 in N × (N>0)q with
∑q
i=0 ni = n, A00 ∈213

Rn0,n0 is Hurwitz, for every i ∈ J1, qK all the eigenvalues of Aii ∈ Rni,ni are critical,214

bii ∈ Rni,1 and the pairs (Aii, bii) are controllable.215
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6 JONATHAN LAPORTE, ANTOINE CHAILLET AND YACINE CHITOUR

From Lemma 5.1 in [19], we can consider that system (1) is already given in the216

reduced controllability form without loss of generality. We can now establish the217

solution of Problem (BHD) for the multiple input case.218

Theorem 2 (Multiple input). Let p ∈ N and consider any (p+1)-tuple (Rj)0≤j≤p219

of positive real numbers. Given n ∈ N and q ∈ N, consider system (3). Then, there220

exist κ1, . . . , κq such that:221

i) for every i ∈ J1, qK, κi : Rni → R is a feedback law p-bounded and SISSL-222

stabilizing for ẋi = Aiixi + biiui;223

ii) the state feedback law µ = [µ1, . . . , µq]
T given by224

µi(xi, . . . , xq) :=
κi(xi)

(1 + ‖xi+1‖2 + . . .+ ‖xq‖2)p+1
, ∀i ∈ J1, q − 1K,(4)225

µq(xq) := κq(xq),(5)226

is a feedback law p-bounded by (Rj)0≤j≤p and SISSL-stabilizing for system227

(3).228

This statement provides a unified control law solving Problem (BHD) for all229

admissible LTI systems. It allows in particular multi-input systems, which was not230

covered in [7].231

3. Proof of the main results.232

3.1. Proof of Theorem 1. In this section, we prove Theorem 1. For that233

purpose, we first reduce the argument to establishing of Propositions 1 and 2 given234

below. The first one states that the feedback given in Theorem 1 is SISSL stabilizing235

for (S) in the case of single input. The second proposition provides an estimate of236

the successive time derivatives of the control signal.237

3.1.1. Reduction of the proof of Theorem 1 to the proofs of Proposi-238

tions 1 and 2. Let n ∈ N≥1, p ∈ N and (Rj)0≤j≤p be a (p + 1)-tuple of positive239

real numbers. Define R := minj∈J0,pKRj . Consider a single input linear system240

ẋ = Ax + bu where x ∈ Rn, A and b are n × n and n × 1 matrices respectively. We241

assume that the pair (A, b) is stabilizable and that all the eigenvalues of A have non242

positive real parts. As observed in [19], it is sufficient to consider the case where the243

pair (A, b) is controllable and all eigenvalues of A are critical. Indeed, since (A, b)244

is stabilizable there exists a linear change of coordinates transforming A and b into245 (
A1 0
0 A2

)
and

(
b1
b2

)
, where A1 is Hurwitz, the eigenvalues of A2 are critical and the246

pair (A2, b2) is controllable. Then, it is immediate to see that we only have to treat247

the case where A has only critical eigenvalues. From now on, we therefore assume that248

A has only eigenvalues with zero real parts, and that the pair (A, b) is controllable.249

Our construction uses the following linear change of coordinates given by [19,250

Lemma 5.2]. This decomposition puts the original system in a triangular form made251

of one-dimensional integrators and two-dimensional oscillators.252

Lemma 1 (Lemma 5.2 in [19]). Let ẋ = Ax+bu, x ∈ Rn, u ∈ R, be a controllable253

single input linear system. Assume that all the eigenvalues of A are critical. Let254

±iω1, . . . ,±iωs(A) be the nonzero eigenvalues of A. Let (a2, . . . , aµ(A)) be a family of255
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positive numbers. Define256

θi,k = 1, for k = i+ 1,257

θi,k =

k−2∏
h=i

1/ah+1, for i+ 2 ≤ k ≤ µ(A) + 1.(6)258

Then there exists a linear change of coordinates that puts ẋ = Ax+ bu in the form259

ẏi = ωiA0yi + b0

s(A)∑
k=i+1

θi,kb
T
0 yk260

+ b0

µ(A)∑
k=s(A)+1

θi,kyk + θi,µ(A)+1b0u, i = 1, . . . , s(A),261

ẏi =

µ(A)∑
k=i+1

θi,kyk + θi,µ(A)+1u, i = s(A) + 1, . . . , µ(A)− 1,(7)262

ẏµ(A) = u, if µ(A) > s(A),263264

where yi ∈ R2 for i = 1, . . . , s(A) , yi ∈ R for i = s(A)+1, . . . , µ(A)−1, and yµ(A) ∈ R265

if µ(A) > s(A).266

With no loss of generality, we prove Theorem 1 for system (7). We rely on a267

candidate feedback ν : Rn → R under the form268

(8) κ(y) = −
s(A)∑
i=1

Qi,µ(A)b
T
0 yi(

1 +
µ(A)∑
m=i

‖ym‖2
)1/2

−
µ(A)∑

i=s(A)+1

Qi,µ(A)yi(
1 +

µ(A)∑
m=i

‖ym‖2
)1/2

,269

with270

(9) Qi,µ(A) :=

µ(A)∏
l=i

al,271

where a1, . . . , aµ(A) are positive constants that will be picked in such a way that the272

feedback law (8) is a feedback law p-bounded by (Rj)0≤j≤p, and SISSL-stabilizing273

for system (7). To that aim, we rely on the next two propositions, respectively proven274

in Sections 3.1.2 and 3.1.3.275

Proposition 1. Let ẋ = Ax + bu, x ∈ Rn, u ∈ R, be a controllable single input276

linear system. Assume that all the eigenvalues of A are critical. Let ±iω1, . . . ,±iωs(A)277

be the nonzero eigenvalues of A. Then, there exist µ(A)−1 functions ai : R>0 → R>0,278

i ∈ J1, µ(A)− 1K such that for any constants a1, . . . , aµ(A) satisfying279

aµ(A) ∈ (0, 1], ai ∈ (0 , ai(ai+1)], ∀i ∈ J1, µ(A)− 1K,280281

the feedback law (8) is SISSL-stabilizing for system (7).282

Proposition 2. Let ẋ = Ax + bu, x ∈ Rn, u ∈ R, be a controllable single input283

linear system. Assume that all the eigenvalues of A are critical. Let ±iω1, . . . ,±iωs(A)284

be the nonzero eigenvalues of A. Let ai, i ∈ J1, µ(A)K, be positive constants in (0, 1].285

Then, there exist a positive constant cµ(A), and continuous functions ci : Rµ(A)−i
>0 →286
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R>0, i ∈ J1, µ(A)− 1K, such that for any trajectory of the closed-loop system (7) with287

the feedback law (8), the control signal U : R≥0 → R defined by U(t) := ν(y(t)) for all288

t ≥ 0 satisfies, for all k ∈ J0, pK,289

∣∣∣U (k)(t)
∣∣∣ ≤ aµcµ(A) +

µ(A)−1∑
i=1

aici(aµ(A), . . . , ai+1), ∀t ≥ 0.290

Based on these two propositions, pick aµ(A) ∈ (0, 1] in such a way that291

aµ(A) ≤
R

(p+ 1)cµ(A)
.292

Choose recursively ai ∈ (0, 1], i = µ(A)− 1, . . . , 1, such that293

ai ≤ ai(ai+1), ai ≤
R

(p+ 1)ci(aµ(A), . . . , ai+1)
,294

where the functions ci appearing above are defined in Proposition 2. By Proposition 1,295

the feedback law (8) is SISSL-stabilizing for system (7). Moreover, as a consequence296

of Proposition 2, for any trajectory of the closed-loop system (7) with the feedback law297

(8), the control signal U : R≥0 → R defined by U(t) := ν(y(t)) for all t ≥ 0 satisfies298

supt≥0

∣∣U (k)(t)
∣∣ ≤ R for all k ∈ J0, pK. Thus, the feedback law (8) is a feedback law299

p-bounded by (Rj)0≤j≤p for system (7). Since there is a linear change of coordinate300

(y = Tx) that puts (7) into the original form ẋ = Ax+ bu, the feedback law defined301

given in (2) can be picked as302

ν(x) := κ(Tx)303

and it is a feedback law p-bounded by (Rj)0≤j≤p, and SISSLL-stabilizing for (1). To304

sum up, the proof of Theorem 1 boils down to establishing Propositions 1 and 2.305

3.1.2. Proof of Proposition 1. Proposition 1 is proved by induction on µ(A).306

More precisely, we show that the following property holds true for every positive307

integer µ.308

(Pµ) : Let s, z ∈ N be such that s + z = µ and ω1, . . . , ωs be positive constants.309

Then there exist µ− 1 functions ai : R>0 → R>0, i ∈ J1, µ− 1K such that for310

any constants a1, . . . , aµ satisfying311

aµ ∈ (0, 1], ai ∈ (0 , ai(ai+1)], ∀i ∈ J1, µ− 1K,312313

the feedback law (8) is SISSL-stabilizing for system (7), with µ(A) = µ,314

s(A) = s, and z(A) = z. Moreover the linearization of this closed-loop315

system around the origin is asymptotically stable (AS).316

In order to start the argument, we give intermediate results whose proofs are given317

in Appendix and which will be used for the initialization step of the induction and318

the inductive step. The first statement establishes SISSL for the one-dimensional319

integrator.320

Lemma 2. Let ε > 1. For every β > 0, the scalar system given by321

(10) ẋ = −β x

(1 + x2)1/2
322

is SISSL(β2 ,
2ε
β ), its origin is GAS and its linearisation around zero is AS.323
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The next lemma guarantees that the two-dimensional oscillator is SISSL.324

Lemma 3. For every ω > 0, there exist Γ, N > 0 such that for any β ∈ (0, 1] the325

two-dimensional system given by326

(11) ẋ = ωA0x− βb0
bT0 x

(1 + ‖x‖2)1/2
327

is SISSL(βΓ, Nβ ), its origin is GAS and its linearisation around zero is AS.328

We now start the inductive proof of (Pµ). For µ = 1, we have to consider two cases.329

Either z = 1 and s = 0 corresponding to the simple integrator330

ẏ1 = u, with u = κ(y1) = −a1
y1

(1 + y2
1)1/2

,(12)331

or s = 1 and z = 0 corresponding to the simple oscillator332

ẏ1 = ω1A0y1 + b0u, with u = κ(y1) = −a1
bT0 y1

(1 + ‖y1‖2)1/2
,(13)333

for some ω1 > 0. In both cases, (P1) can be readily deduced by invoking Lemma 2334

and 3 respectively. Given µ ∈ N>0, assume that (Pµ) holds. In order to establish335

(Pµ+1), it is sufficient to consider the following two cases:336

case i) z = µ+ 1, i.e, all the eigenvalues of A are zero (multiple integrator);337

case ii) s ≥ 1 , i.e some eigenvalues of A have non zero imaginary part (multiple338

integrator with rotating modes).339

In both cases we reduce our problem to the choice of only one constant a1 using the340

inductive hypothesis.341

Case i). Let (a1, . . . , aµ+1) be a set of positive numbers to be chosen later. Con-342

sider the multiple integrator given by343

ẏi =

µ+1∑
k=i+1

θi,kyk + θi,µ+2u, i = 1, . . . , µ,344

ẏµ+1 = u,345346

where yi ∈ R for i = 1, . . . , µ + 1. Let ỹ = [y2, . . . , yµ+1]T . We then can rewrite this347

system as348

ẏ1 =

µ+1∑
k=2

θi,kyk + θi,µ+2u,349

˙̃y = Ãỹ + b̃u,350351

for some matrices Ã and b̃ of appropriate dimensions. From the inductive hypothesis,352

there exist µ − 1 functions ai : R>0 → R>0 for i ∈ J2, µK such that for any set353

of positive constants a2, . . . , aµ+1 satisfying a2, . . . , aµ+1 satisfying aµ+1 ∈ (0, 1] and354

0 < ai ≤ ai(ai+1) , for each i ∈ J2, µK, the feedback law κ̃ : Rµ → R defined by355

κ̃(ỹ) = −
µ+1∑
i=2

Qi,µ+1 yi

(1 +
µ+1∑
m=i

‖ym‖2)1/2

356
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is SISSL-stabilizing for ˙̃y = Ãỹ + b̃u. Choose (a2, . . . , aµ+1) satisfying the above357

conditions. The feedback law (8) is then given by358

κ(y) = −κ̃(ỹ)− a1Q2,µ+1
y1

(1 +
µ+1∑
m=1
‖ym‖2)1/2

.359

Since θ1,µ+2Qk,µ+1 = θ1,k for all k ∈ J2, µ+1K(see (6) and (9)), the closed-loop system360

can be rewritten as361

ẏ1 = −a1
y1

(1 + ‖y1‖2)1/2
+ a1ρ1(y) + g1(ỹ),362

˙̃y = Ãỹ − b̃κ̃(ỹ)− b̃a1f1(y),(14)363364

with365

ρ1(y) =
y1

(1 + ‖y1‖2)1/2

(
1− (1 + ‖y1‖2)1/2

(1 +
µ+1∑
m=1
‖ym‖2)1/2

)
,(15)366

g1(ỹ) =

µ+1∑
k=2

θ1,kyk
(
1− 1

(1 +
µ+1∑
m=k

‖ym‖2)1/2

)
,(16)367

f1(y) =
Q2,µ+1 y1

(1 +
µ+1∑
m=1
‖ym‖2)1/2

.(17)368

369

We now move to the other case where the dynamics involves multiple integrators with370

rotating modes.371

Case ii). Let (a1, . . . , aµ+1) be a set of positive constants to be chosen later. Let372

s ∈ N≥1, and z ∈ N be such that µ = s + z. Let ω1, . . . , ωs be a set of non zero real373

numbers. Consider the following linear control system374

ẏi = ωiA0yi + b0

s∑
k=i+1

θi,kb
T
0 yk + b0

µ+1∑
k=s+1

θi,kyk + θi,µ+2b0u, i = 1, . . . , s,375

ẏi =

µ+1∑
k=i+1

θi,kyk + θi,µ+2u, i = s+ 1, . . . , µ,376

ẏµ+1 = u,377378

where yi ∈ R2 for i = 1, . . . , s , and yi ∈ R for i = s + 1, . . . , µ + 1. Let ỹ =379

[y2, . . . , yµ+1]T . We then can rewrite this system as follows380

ẏ1 = ω1A0y1 + b0

s∑
k=i+1

θi,kb
T
0 yk + b0

µ+1∑
k=s+1

θi,kyk + θi,µ+2b0u,381

˙̃y = Ãỹ + b̃u.382383

From the inductive hypothesis, there exist µ−1 functions ai : R>0 → R>0 for i ∈ J2, µK384

such that for any set of positive constant a2, . . . , aµ+1 satisfying aµ+1 ∈ (0, 1] and385
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0 < ai ≤ ai(ai+1) , for each i ∈ J2, µK, the feedback law κ̃ : Rµ → R defined by386

(18) κ̃(ỹ) = −
s∑
i=2

Qi,µ+1 b
T
0 yi

(1 +
µ+1∑
m=i

‖ym‖2)1/2

−
µ+1∑
i=s+1

Qi,µ+1 yi

(1 +
µ+1∑
m=i

‖ym‖2)1/2

387

is SISSL-stabilizing for ˙̃y = Ãỹ + b̃u. Choose a2, . . . , aµ+1 satisfying the above con-388

ditions. The feedback law (8) is then given by389

κ(y) = −κ̃(ỹ)− a1Q2,µ+1
bT0 y1

(1 +
µ+1∑
m=1
‖ym‖2)1/2

.390

By noticing that θ1,µ+2Qk,µ+1 = θ1,k for all k ∈ J2, µ + 1K (see (6) and (9)), the391

closed-loop system can be rewritten as392

ẏ1 = ω1A0y1 − a1b0
bT0 y1

(1 + ‖y1‖2)1/2
+ a1b0ρ1(y) + b0g1(ỹ),393

˙̃y = Ãỹ − b̃κ̃(ỹ)− b̃a1f1(y),(19)394395

with396

ρ1(y) =
bT0 y1

(1 + ‖y1‖2)1/2

(
1− (1 + ‖y1‖2)1/2

(1 +
µ+1∑
m=1
‖ym‖2)1/2

)
,(20)397

g1(ỹ) =

s∑
k=2

θ1,kb
T
0 yk(1− 1

(1 +
µ+1∑
m=k

‖ym‖2)1/2

)398

+

µ+1∑
k=s+1

θ1,kyk(1− 1

(1 +
µ+1∑
m=k

‖ym‖2)1/2

),(21)399

f1(y) =
Q2,µ+1 b

T
0 y1

(1 +
µ+1∑
m=1
‖ym‖2)1/2

.(22)400

401

In both cases, it remains to show that there exists a function a1 such that if402

a1 ∈ (0, a1] then the closed-loop systems (14) and (19) are SISSL and globally asymp-403

totically stable with respect to the origin, and their respective linearization at zero is404

asymptotically stable as well. According to Remark 1, one only needs to prove that405

the closed-loop systems are SISSL and their linearization at zero is asymptotically406

stable.407

We start by showing the latter fact. For any a1 > 0, the linearization at zero of408

the y1-subsystem in (14) (respectively (19)) is asymptotically stable since it is given by409

ẏ1 = −a1y1 (respectively ẏ1 = (ω1A0−a1b0b
T
0 )y1). Moreover, the linearization at zero410

of the ỹ-subsystem in (14) (respectively (19)) is given by ˙̃y = (Ã− b̃κ̃(1)(0))ỹ − a1b̃y1411

(respectively ˙̃y = (Ã − b̃κ̃(1)(0))ỹ − a1b̃b
T
0 y1). Due to the inductive hypothesis, the412

origin of ˙̃y = Ã− b̃κ̃(1)(0))ỹ is asymptotically stable. Thus, local asymptotic stability413

of (14) and (19) follows easily.414
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It remains to prove that systems (14) and (19) are SISSL. In both cases, using415

that 1− 1/(1 + s)1/2 ≤ s for all s ≥ 0, it holds from (16) and (21) that416

(23) ‖g1(ỹ)‖ ≤
µ+1∑
k=2

θ1,k ‖yk‖

(
µ+1∑
m=k

‖ym‖2
)
≤ ‖ỹ‖3

µ+1∑
k=2

θ1,k,417

and from (15) and (20) that418

(24) |ρ1(y)| ≤ ‖ỹ‖2 .419

Recall that, due to the inductive hypothesis, ˙̃y = Ãỹ − b̃k̃(ỹ) is SISSL(∆̃, Ñ) for420

some ∆̃ > 0 and Ñ > 0. We next prove the SISSL property for Case ii), i.e., for421

system (19). Let422

C1 := Ñ(Q2,µ+1

∥∥∥b̃∥∥∥+ 1),(25)423

C2 := C2
1 + C3

1

µ+1∑
k=2

θi,k.(26)424

From Lemma 3 (with ω = ω1), there exist Γ1, N1 > 0 such that for any a1 ∈ (0, 1]425

the system ẏ1 = ω1A0y1 − a1b0
bT0 y1

(1+‖y1‖2)1/2
is SISSL(Γ1a1, N1/a1). Define426

(27) a1 := min

1 ,
∆̃Ñ

C1
,

√
Γ1

2C2
,

√√√√ C1

4Q2,µ+1Ñ
∥∥∥b̃∥∥∥N1C2

 ,427

and choose a1 ∈ (0, a1]. Let428

(28) ∆ := min

{
a1Γ1

2
, a1

}
.429

Given δ ≤ ∆, let e1 : R≥0 → R2 and e2 : R≥0 → R2s+z−2 be two bounded measur-430

able functions, eventually bounded by δ. Consider any trajectory (y1(·), ỹ(·)) of the431

following system432

ẏ1 = ω1A0y1 − a1b0
bT0 y1

(1 + ‖y1‖2)1/2
+ a1b0ρ1(y) + b0g1(ỹ) + e1,433

˙̃y = Ãỹ − b̃κ̃(ỹ)− b̃a1f1(y) + e2,(29)434435

In view of (19), (20), (21), (22) and (18) the above system is clearly forward complete.436

We next show that there exists a constant N > 0 such that ‖y1(·)‖ ≤ev Nδ and437

‖ỹ(·)‖ ≤ev Nδ. From (22) and recalling that ‖b0‖ = 1, a straightforward computation438

yields439 ∥∥∥a1b̃f1(y)
∥∥∥ ≤ a1Q2,µ+1

∥∥∥b̃∥∥∥ .440

Since ‖e2(·)‖ ≤ev δ, it follows that441 ∥∥∥a1b̃f1(y(·) + e2(·)
∥∥∥ ≤ev a1Q2,µ+1

∥∥∥b̃∥∥∥+ δ.442
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Moreover from (27), (28) and it follows that443 ∥∥∥a1b̃f1(y(·) + e2(·))
∥∥∥ ≤ev a1(Q2,µ+1

∥∥∥b̃∥∥∥+ 1) ≤ a1C1/Ñ ≤ ∆̃,444

where C1 is defined in (25). Using the SISSL(∆̃, Ñ) property of System ˙̃y = Ãỹ −
b̃κ̃(ỹ), it follows that the solution of (29) satisfies

‖ỹ(·)‖ ≤ev a1C1.

Consequently, using (24) and (23), it follows that445

(30) ‖a1b0ρ1(y(·)) + b0g1(ỹ(·))‖ ≤ev a3
1C2.446

Using (27), we have a3
1C2 ≤ a1Γ1

2 . Moreover (28) ensures that ‖e1(·)‖ ≤ev a1Γ1

2 . So it447

follows that448

‖a1b0ρ1(y(·)) + b0g1(ỹ(·)) + e1(·)‖ ≤ev a1Γ1.449

The SISSL(Γ1a1, N1/a1) property of ẏ1 = ω1A0y1 − a1b0
bT0 y1

(1+‖y1‖2)1/2
ensures that450

(31) ‖y1(·)‖ ≤ev
N1

a1
(a3

1C2 + δ) ≤ N1Γ1.451

Now let θ > 0 be defined as452

(32) θ := lim sup
t→+∞

‖ỹ(t)‖ .453

Then ‖ỹ(·)‖ ≤ev 2θ. There are two cases to consider, either 2θ ≤ a1C1 or a1C1 < 2θ.454

In the case when 2θ ≤ a1C1, we have455

‖a1b0ρ1(y(·)) + b0g1(ỹ(·)) + e1(·)‖ ≤ev 2θa2
1C2/C1.456

So invoking again the SISSL(ρ1Γ1a1, N/a1) property of ẏ1 = ω1A0y1−a1b0b
T
0 y1/(1+457

‖y1‖2)1/2, one gets that the solution of (29) satisfies458

(33) ‖y1(·)‖ ≤ev
N1

a1
(
2θa2

1C2

C1
+ δ).459

In the case when a1C < 2θ, the estimate (33) follows readily from (31). Exploiting460

again the SISSL(∆̃, Ñ) property of System ˙̃y = Ãỹ − b̃κ̃(ỹ), it follows that461

‖ỹ(·)‖ ≤ev Ñ
(∥∥∥b̃∥∥∥Q2,µ+1N1(

2θa2
1C2

C1
+ δ) + δ

)
462

= θ
2Q2,µ+1Ñ

∥∥∥b̃∥∥∥N1a
2
1C2

C1
+ δÑ(

∥∥∥b̃∥∥∥Q2,µ+1N1 + 1).463

It then follows from (27) that464

‖ỹ(·)‖ ≤ev
θ

2
+ δÑ(

∥∥∥b̃∥∥∥Q2,µ+1N1 + 1).465
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Taking the limsup of the above estimate, we get from (32) that466

θ ≤ 2δÑ(
∥∥∥b̃∥∥∥Q2,µ+1N1 + 1).467

Consequently, we obtain that468

‖ỹ(·)‖ ≤ev 2Ñ(
∥∥∥b̃∥∥∥Q2,µ+1N1 + 1)δ,469

‖y1(·)‖ ≤ev 2
N1

a1
(
2a2

1C2

C1
+ 1)Ñ(N1 + 1)δ,470

which finishes to establish (Pµ+1) for the case ii). Proceeding as in case ii), it can be471

shown that system (14) is SISSL. This end the inductive proof of (Pµ).472

473

3.1.3. Proof of Proposition 2. Fix µ ∈ N≥1. Let s and z be two integers such474

that s + z = µ, ω1, . . . , ωs be positive constant numbers, and a1, . . . , aµ be positive475

numbers less than or equal to 1. Consider the system (7) with the feedback law (8),476

where µ(A) = µ, s(A) = s and z(A) = z. We establish Proposition 2 by induction477

on the number of time derivatives, i.e., p. More precisely we prove the following478

statement: for each p ∈ N,479

(Hp) : there exist a positive constant cµ and continuous functions ci : Rµ−i>0 → R>0,480

i ∈ J1, µ − 1K, such that for every trajectory y(·) of the closed-loop system481

(7) with the feedback law (8), the control signal U : R≥0 → R defined by482

U(t) := κ(y(t)) for all t ≥ 0 satisfies, for all k ∈ J0, pK,483

∣∣∣U (k)(t)
∣∣∣ ≤ aµcµ +

µ−1∑
i=1

aici(aµ, . . . , ai+1), ∀t ≥ 0.484

For p = 0, this statement (H0) holds trivially. Indeed, it is easy to see that for485

any trajectory of the closed-loop system (7) with the feedback law (8) we have486

|U(t)| ≤ aµ +

µ−1∑
i=1

aiQi+1,µ, ∀t ≥ 0.487

Now, assume that (Hp) holds true for some p ∈ N. We next prove that (Hp+1)488

also holds true. To that aim, let y(·) be any trajectory of the closed-loop system489

(7) with the feedback law (8), and the control signal U(t) := κ(y(t)), ∀t ≥ 0. By490

the induction hypothesis, there exist a positive constant Υµ and continuous functions491

Υi : Rµ−i>0 → R>0, i ∈ J1, µ− 1K, such that for every k ∈ J0, pK it holds that492

(34)
∣∣∣U (k)(t)

∣∣∣ ≤ aµΥµ +

µ−1∑
i=1

aiΥi(aµ, . . . , ai+1), ∀t ≥ 0.493

It is sufficient to show that there exist a positive constant Υ̃µ and continuous functions494

Υ̃i : Rµ−i>0 → R>0, i ∈ J1, µ− 1K, such that495

(35)
∣∣∣U (p+1)(t)

∣∣∣ ≤ aµΥ̃µ +

µ−1∑
i=1

aiΥ̃i(aµ, . . . , ai+1), ∀t ≥ 0.496
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Indeed, the desired results will be obtained by setting cµ := max{Υµ, Υ̃µ}, and ci(·) :=497

max{Υi(·), Υ̃i(·)} for i ∈ J1, µ − 1K. In order to establish (35), we start by defining498

the following auxiliary functions:499

g(s) := s−1/2, ∀s > 0(36)500501

and, for all t ≥ 0,502

fi(t) := 1 +

µ∑
l=i

‖yl(t)‖2 , i ∈ J1, µK.(37)503

Then, we can rewrite U(·) as504

(38) U(t) = −
µ∑
i=1

Ui(t), ∀t ≥ 0,505

where, for every i ∈ J1, µK,506

Ui(t) := Qi,µb
T
0,iyi(t)g(fi(t)), ∀t ≥ 0,(39)507

where b0,i = b0 for all i ∈ J1, sK and b0,i = 1 otherwise, and Qi,µ is defined in (9).508

The (p + 1)-th time derivative of the control signal U(·) is given, for all t ≥ 0, by509

U (p+1)(t) = −
∑µ
i=1 U

(p+1)
i (t). Therefore to prove (Hp+1), it is sufficient to show that,510

for each i ∈ J1, µK, there exists continuous functions ci,l : Rµ−l>0 → R>0 , l ∈ J1, iK,511

such that, for all t ≥ 0,512

(40)
∣∣∣U (p+1)
i (t)

∣∣∣ ≤ i∑
l=1

alci,l(aµ, . . . , al+1),513

ci,µ is actually a constant independent of aµ, we write it as ci,µ(aµ, aµ+1) for the sake514

of notation homogeneity.515

For i ∈ J1, µK, we apply Leibniz’s rule to (39) with respect to bT0,iyi(t) and g(fi(t))516

and obtain that the (p+ 1)-th time derivative of Ui(·) is given, for all t ≥ 0, by517

U
(p+1)
i (t) = aiQi+1,µ

(
p+1∑
l1=0

(
p+ 1

l1

)
bT0,iy

(p+1−l1)
i (t)[g ◦ fi](l1)(t)

)
.518

To obtain (40), it is sufficient to prove that for each i ∈ J1, µK, and l1 ∈ J0, p + 1K519

there exist continuous functions βi,l,l1 : Rµ−l>0 → R>0 for l ∈ J1, iK such that, for all520

t ≥ 0,521 ∣∣∣bT0,iy(p+1−l1)
i (t)[g ◦ fi](l1)(t)

∣∣∣ ≤ βi,i,l1(aµ, . . . , ai+1) +

i−1∑
l=1

alβi,l,l1(aµ, . . . , al+1).(41)522

In order to get (41) we next provide, for each i ∈ J1, µK, estimates of ‖y(l1)
i (t)‖,523

|f (l1)
i (t)| and [g ◦ fi](l1)(t) for l1 ∈ J1, p+ 1K. One can observe that, for each i ∈ J1, µK,524

ẏi depends on the constants ai+1, . . . , aµ, the states yi, . . . , yµ and u = κ(y). By an525

induction argument using differentiation of system (7), one can obtain the following526

statement: for any k ∈ J1, p+ 1K, i ∈ J1, µK, there exist continuous functions527

Ψk,i,l : Rµ−i>0 → R>0, l ∈ Ji+ 1, µK, Φk,i,l : Rµ−i>0 → R>0, l ∈ J0, pK,528
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such that, for all positive times, it holds that529

∥∥∥y(k)
i (t)

∥∥∥ ≤ µ∑
l=i

Ψk,i,l(aµ, . . . , ai+1) ‖yl(t)‖+

k−1∑
l=0

Φk,i,l(aµ, . . . , ai+1)
∣∣∣U (l)(t)

∣∣∣ ,530

where, by convention, Ψk,i,µ are constant functions independent of aµ for k ∈ J1, p+1K531

and i ∈ J1, µK. Using (34) in the above estimate, one gets that, for any k ∈ J1, p+ 1K532

and i ∈ J1, µ − 1K, there exist functions ṽl,k,i : Rµ−i>0 → R>0, for l ∈ Ji + 1, µK, and533

Φ̃l,k,i : Rµ−i>0 → R>0 such that, for all t ≥ 0,534

∥∥∥y(k)
i (t)

∥∥∥ ≤ µ∑
l=i

Ψk,i,l(aµ, . . . , ai+1) ‖yl(t)‖+ Φ̃k,i(aµ, . . . , ai+1) +

i∑
l=1

alṽl,k,i(aµ, . . . , al+1).535

Setting, for i ∈ J1, µK,536

Ψi(aµ, . . . , ai+1) := max{Ψk,i,l(aµ, . . . , ai+1) : k ∈ J1, p+ 1K, l ∈ Ji+ 1, µK},537

Φi(aµ, . . . , ai+1) := max{Φ̃k,i(aµ, . . . , ai+1) : k ∈ J1, p+ 1K},538

ṽl,i(aµ, . . . , al+1) := max{ṽl,k,i(aµ, . . . , al+1) : k ∈ J1, p+ 1K}, l ∈ J1, iK,539

one can obtain that, for all k ∈ J1, p+ 1K, all i ∈ J1, µK, and all t ≥ 0,540

(42)∥∥∥y(k)
i (t)

∥∥∥ ≤ Ψi(aµ, . . . , ai+1)

µ∑
l=i

‖yl(t)‖+ Φi(aµ, . . . , ai+1) +

i∑
l=1

alṽl,i(aµ, . . . , al+1).541

It follows that (41) for l1 = 0 holds true. For any i ∈ J1, µK and k ∈ J1, p + 1K, the542

k-th time derivative of fi(·), defined in (37), is given, for all t ≥ 0, by543

f
(k)
i (t) =

k∑
l1=0

(
k

l1

) µ∑
l2=i

(y
(l1)
l2

(t))T y
(k−l1)
l2

(t).544

Thus, one can get that545

∣∣∣f (k)
i (t)

∣∣∣ ≤ 2

µ∑
l2=i

‖yl2(t)‖
∥∥∥y(k)
l2

(t)
∥∥∥+

k−1∑
l1=1

(
k

l1

) µ∑
l2=i

∥∥∥y(l1)
l2

(t)
∥∥∥∥∥∥y(k−l1)

l2
(t)
∥∥∥ ,546

≤
µ∑
l2=i

(
‖yl2(t)‖2 +

∥∥∥y(k)
l2

(t)
∥∥∥2
)

+

k−1∑
l1=1

(
k

l1

) µ∑
l2=i

(∥∥∥y(l1)
l2

(t)
∥∥∥2

+
∥∥∥y(k−l1)
l2

(t)
∥∥∥2
)
.547

From (42), and using the fact that

(
m∑
i1=1

|xi1 |
)2

≤ m
m∑
i1=1

x2
i1

, one can obtain that for548

each l2 ∈ J1, µK and l1 ∈ J1, p+ 1K it holds that, for all t ≥ 0,549

∥∥∥y(l1)
l2

(t)
∥∥∥2

≤(µ+ 2)
(

Ψl2(aµ, . . . , al2+1)2

µ∑
l=l2

‖yl(t)‖2 + Φl2(aµ, . . . , al2+1)2
550

+

l2∑
l=1

(alṽl,l2(aµ, . . . , al+1))2
)
.(43)551
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Since the right-hand side of (43) is independent of l1, and al ≤ 1 for all l ∈ J1, µK, one552

can gets that there exist continuous functions553

Ψ̃l : Rµ−l>0 → R>0, l ∈ J1, µK,554

Φ̃l : Rµ−l>0 → R>0, l ∈ J1, µK,555

ṽl,l1 : Rµ−l>0 → R>0, l1 ∈ J1, µK, l ∈ J1, l1K,556

such that, for any k ∈ J1, pK and all t ≥ 0, it holds557

∣∣∣f (k)
i (t)

∣∣∣ ≤ Ψ̃l2(aµ, . . . , ai+1)

µ∑
l=i

‖yl(t)‖2 + Φ̃l2(aµ, . . . , ai+1) +

i∑
l=1

alṽl,i(aµ, . . . , al+1).558

A trivial estimate for any k ∈ J1, p+ 1K, any i ∈ J1, µK, and all t ≥ 0 is given by559

(44)
∣∣∣f (k)
i (t)

∣∣∣ ≤ Ψ̃i(aµ, . . . , ai+1)fi(t) + Φ̃i(aµ, . . . , ai+1) +

i∑
l=1

alṽl,l2(aµ, . . . , al+1).560

By the Faà di Bruno’s formula (given in Lemma 5 in Appendix), for each i ∈ J1, µK,561

and l1 ∈ J1, p+ 1K, the l1-th time derivative of g ◦ fi(·) is given, for all t ≥ 0, by562

[g ◦ fi](l1)(t) =

l1∑
l2=1

g(l2)(fi(t))
∑

δ∈Pl1,l2

cδ

l1−l2+1∏
l=1

(f
(l)
i (t))δl ,563

where Pl1,l2 denotes the set of (l1− l2 +1)−tuples δ := (δ1, δ2, . . . , δl1−l2+1) of positive564

integers satisfying δ1+δ2+. . .+δl1−l2+1 = l2 and δ1+2δ2+. . .+(l1−l2+1)δl1−l2+1 = l1.565

Observe that the k-th derivative of the function g defined in (36) reads566

(45) g(k)(s) = dks
−1/2−k, ∀s > 0,567

with dk = (−1)k
k−1∏
l=0

(1/2 + l). Using (45), and taking the absolute value, one can get,568

for all t ≥ 0,569

∣∣∣[g ◦ fi](l1)(t)
∣∣∣ ≤ l1∑

l2=1

dl2
1

(fi(t))l2+1/2

∑
δ∈Pl1,l2

cδ

l1−l2+1∏
l=1

∣∣∣f (l)
i (t)

∣∣∣δl .570

Using (44), one can obtain that, for any l1 ∈ J1, p + 1K, any l2 ∈ J1, l1K and for all571

t ≥ 0,572

∑
δ∈Pl1,l2

cδ

l1−l2+1∏
l=1

∣∣∣f (l)
i (t)

∣∣∣δl ≤ (Ψ̃i(aµ, . . . , ai+1)fi(t) + Φ̃i(aµ, . . . , ai+1)573

+

i∑
l3=1

al3 ṽl3,i(aµ, . . . , ai+1)

)l2 ∑
δ∈Pl1,l2

cδ.574
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It follows that, for all l1 ∈ J1, p+ 1K, t ≥ 0,575

∣∣∣[g ◦ fi](l1)(t)
∣∣∣ ≤ l1∑

l2=1

dl2

∑
δ∈Pl1,l2

cδ

(fi(t))1/2

(
576

Ψ̃i(aµ, . . . , ai+1)fi(t) + Φ̃i(aµ, . . . , ai+1) +
i∑

l3=1

al3 ṽl3,i(aµ, . . . , ai+1)

fi(t)

)l2
,577

≤
l1∑
l2=1

dl2

∑
δ∈Pl1,l2

cδ

(fi(t))1/2

(
578

Ψ̃i(aµ, . . . , ai+1) + Φ̃i(aµ, . . . , ai+1) +

i∑
l3=1

al3 ṽl3,i(aµ, . . . , ai+1)

)l2
,579

Thus, it can be seen that, for every i ∈ J1, µK and l1 ∈ J1, p + 1K, there exist580

continuous functions Γi,l1 : Rµ−i>0 → R>0 and Γi,l1,l : Rµ−l>0 → R>0, l ∈ J1, i+ 1K, such581

that, for all t ≥ 0,582

(46)
∣∣∣[g ◦ fi](l1)(t)

∣∣∣ ≤ 1(
fi(t)

)1/2
(

Γi,l1(aµ, . . . , ai+1) +

i∑
l=1

aiΓi,l1,l(aµ, . . . , ai+1)

)
.583

Then, from (46) and (42) it follows that (41) holds true for any l1 ∈ J1, p+ 1K. This584

ends the inductive proof of (Hp).585

3.2. Proof of Theorem 2.586

3.2.1. Reduction of the proof of Theorem 2 to the proof of Propositions587

1 and 3. We prove Theorem 2 by induction on the number of inputs q. We show588

that the inductive step reduces to Proposition 1 and Proposition 3 which is proven in589

Section 3.2.2.590

For q = 1, the conclusion follows from Theorem 1. For a given q ∈ N≥1 assume591

that Theorem 2 holds. We show that Theorem 2 then holds for LTI systems given592

in the reduced controllability form with q + 1 inputs. Let p ∈ N and (Rj)0≤j≤p be593

a (p + 1)-tuple of positive real numbers. Define R := minj∈J0,pKRj . Given n ∈ N≥2594

consider a LTI system given in the reduced controllability form with q̃ := q+ 1 inputs595

by596

ẋ0 = A00x0 +A01x1 +A02x2 + . . .+A0q̃xq̃+ b01u1 + b02u2 + . . .+ b0quq̃,
ẋ1 = A11x1 +A12x2 + . . .+A1q̃xq̃+ b11u1 + b22u2 + . . .+ b1quq̃,
ẋ2 = A22x2 + . . .+A2q̃xq̃+ b22u2 + . . .+ b2quq̃,

...
ẋq̃ = Aq̃q̃xq̃+ bq̃q̃uq̃,

597

where xi ∈ Rni and ui ∈ R for each i ∈ J0, q+1K, A00 is Hurwitz, for every i ∈ J1, q+1K598

all the eigenvalues of Aii are critical, and the pairs (Aii, bii) are controllable.599

Since A00 is Hurwitz, if we find a feedback law p-bounded by (Rj)0≤j≤p, and600

SISSL-stabilizing for (x1, . . . , xq̃)−subsystem then, clearly, this feedback does the job601

for the complete system. From now on, we only consider the (x1, . . . , xq̃)−subsystem602
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and we rewrite it compactly as603

ẋ1 = A11x1 + b11u1 + Ãz + B̃u,(47a)604

ż = Az +Bu,(47b)605606

where z := [x2, . . . , xq̃]
T , u := [u2, . . . , uq̃]

T .607

We next provide a key technical lemma.608

Lemma 4. Let ẋ = Ax+ bu, x ∈ Rn, u ∈ R, be a controllable single input linear
system. Assume that all the eigenvalues of A are critical. Let ±iω1, . . . ,±iωs(A) be
the nonzero eigenvalues of A, (a2, . . . , aµ(A)) be a sequence of positive numbers and
T ∈ Rn,n be such that the linear change of coordinate y = Tx transforms ẋ = Ax+ bu
into system (7) compactly written as ẏ = Jy + bu. Rewrite T as

T = [T1, . . . , Ts(A), Ts(A)+1, . . . , Tµ(A)]
T ,

where Ti ∈ R2,n if i ∈ J1, s(A)K otherwise Ti ∈ R1,n. Then T has the following609

property610

(I) : Tµ(A) is independent of (a2, . . . , aµ(A)), and each Ti depend only on (ai+1,611

. . . , aµ(A)).612

Moreover, given r, k ∈ N, let M ∈ Rn,r be independent of the constants ai, then the613

matrices TM and JkT satisfy property (I).614

The proof of Lemma 4 follows from a careful examination of the proofs of Lemmas615

3.1 and 5.1 in [19].616

. Let (a2, . . . , aµ(A11)) be a sequence of positive numbers (to be chosen later). Let617

T be the linear change of coordinate that transforms ẋ = A11x+ b11u1 into the form618

of system (7) compactly written as ẏ = Jy+ bu. We now make the following changes619

of coordinates y = Tx, and system (47) is then given by620

ẏ = Jy + bu1 + TÃz + TB̃u,(48a)621

ż = Az +Bu.(48b)622623

Let κ be a feedback law p-bounded by (Rj/2)0≤j≤p, and SISSL(N2,∆2)-stabilizing624

for subsystem (48b), for some N2,∆2 > 0 (thanks to the inductive hypothesis, we625

know that this feedback law exists). Let a1 > 0, to be chosen later. We seek the626

following state feedback law:627

u1(y, z) :=
µ(y)

(1 + ‖z‖2)p
,(49a)628

u(z) := κ(z),(49b)629630

where µ(y) is defined in (8). We now show that there exist positive constants631

(a1, a2, . . . , aµ(A11)) such that the feedback law (49) is a feedback law p-bounded and632

SISSL-stabilizing for system (48). This choice is based on Proposition 1 and the633

following statement which is proven in Section 3.2.2.634

Proposition 3 (p-bounded feedback). Let ai, for i ∈ J1, µ(A11)K, be positive635

constants in (0, 1]. Consider system (48) with the feedback law (49). Assume that κ636

is a feedback law p-bounded by (Rj/2)0≤j≤p, and SISSL(N2,∆2)-stabilizing for sub-637

system (48b). Then, there exist a positive constant cµ(A11), and continuous functions638
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ci : Rµ(A11)−i
>0 → R>0, i ∈ J1, µ(A11) − 1K, such that for any trajectory of the closed-639

loop system (48) with the feedback law (49), the control signal U1 : R≥0 → R defined640

by U1(t) := u1(y(t), z(t)) for all t ≥ 0 satisfies, for all k ∈ J0, pK,641

∣∣∣U (k)
1 (t)

∣∣∣ ≤ aµcµ(A11) +

µ(A11)−1∑
i=1

aici(aµ(A11), . . . , ai+1), ∀t ≥ 0.642

Pick aµ(A11) ∈ (0, 1] in such a way that

aµ(A11) ≤
R

2(p+ 1)cµ(A11)
.

Choose recursively ai ∈ (0, 1], i = µ(A11)− 1, . . . , 1, such that643

ai ≤ ai(ai+1), ai ≤
R

2(p+ 1)ci(aµ(A), . . . , ai+1)
,644

where the functions ci appearing above are defined in Proposition 3 and the functions645

ai are defined in Proposition 1. By Proposition 1, the feedback law µ(y) is SISSL-646

stabilizing for system ẋ = Jx + bu. We now prove that the closed-loop system (48)647

with the feedback (49) is SISSL (now, all the coefficients have been chosen). To that648

aim, first notice that there exist α1, α2 > 0 such that, for all ‖z‖ ≤ 1,649 ∥∥∥TÃz + TB̃κ(z)
∥∥∥ ≤ α1 ‖z‖ ,650 ∥∥∥∥∥bµ(y)

(
1− 1

(1 + ‖z‖2)p

)∥∥∥∥∥ ≤ α2 ‖z‖ .651

Let

∆ := min

{
1, ∆2,

1

N2
,

∆1

(α2 + α1)N2 + 1

}
.

Given δ ≤ ∆, let e1, e2 be two bounded measurable functions of the appropriate di-652

mension, eventually bounded by δ. Consider any trajectory (y(·), z(·)) of the following653

system654

ẏ = Jy + bµ(y)− bµ(y)
(
1− 1

(1 + ‖z‖2)p

)
+ TÃz + TB̃κ(z) + e1,(50)655

ż = Az +Bκ(z) + e2,(51)656657

From the SISSL(∆2, N2) property of z-subsystem it follows that ‖z(·)‖ ≤ev N2δ ≤ 1.658

Thus, using the above estimate, it is immediate to see that659 ∥∥∥∥∥bµ(y(·))
(
1− 1

(1 + ‖z(·)‖2)p

)
+ TÃz(·) + TB̃κ(z(·)) + e1(·)

∥∥∥∥∥ ≤ev δ((α1 + α2)N2 + 1
)

660

≤ ∆1.661

Therefore, invoking the SISSL(∆1, N1) property of ẋ = Jx + bµ(y), it follows that
‖y(·)‖ ≤ev δ

(
(α1 + α2)N2 + 1

)
N1. So, the closed-loop system (48) with the feedback

(49) is SISSL. Moreover, as a consequence of Proposition 3 and of the inductive
hypothesis, for any trajectory of the closed-loop system (7) with the feedback law
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(49), the control signal U : R≥0 → Rm, defined by U(·) := [U1(·), U2(·)]T with
U1(t) := u1(y(t), z(t)) and U2(t) := κ(z(t)) for all t ≥ 0, satisfies

sup
t≥0

∥∥∥U (k)(t)
∥∥∥ ≤ Rk

for all k ∈ J0, pK. Thus, the feedback law (49) is a feedback law p-bounded by662

(Rj)0≤j≤p for system (48).663

3.2.2. Proof of Proposition 3. For the sake of notation compactness let µ =664

µ(A11). To prove Proposition 3, we establish by induction on k that the following665

property holds, for all k ∈ J0, pK:666

(Hk) : There exist a positive constant cµ, and continuous functions ci : Rµ−i>0 → R>0,667

i ∈ J1, µ − 1K, such that for any trajectory of the closed-loop system (48)668

with the feedback law (49), the control signal U1 : R≥0 → R defined by669

U1(t) := u1(y(t), z(t)) for all t ≥ 0 satisfies, for all j ∈ J0, kK,670

∣∣∣U (j)
1 (t)

∣∣∣ ≤ aµcµ +

µ−1∑
i=1

aici(aµ, . . . , ai+1), ∀t ≥ 0.671

For k = 0, the statement (H0) holds trivially. Now, assume that (Hk) holds true672

for some k ∈ J0, p − 1K. We next prove that (Hk+1) also holds true. Let (y(·), z(·))673

be any trajectory of the closed-loop system (48) with the feedback law (49), and the674

control signal U1(t) := u1(y(t), z(t))) and U2(t) := κ(z(t)), ∀t ≥ 0. As in the proof675

of Proposition 2, it is sufficient to prove that there exist a positive constant Υ̃µ and676

continuous functions Υ̃i : Rµ−i>0 → R>0, i ∈ J1, µ− 1K, such that677

(52)
∣∣∣U (k+1)

1 (t)
∣∣∣ ≤ aµΥ̃µ +

µ−1∑
i=1

aiΥ̃i(aµ, . . . , ai+1), ∀t ≥ 0.678

Let q̃(s) := s−(p+1), for all s > 0. Define h(t) := 1 + ‖z(t)‖2, for all t ≥ 0. With the679

same notation given in the proof of Proposition 2, one can write U1(·) as680

(53) U1(t) = −
µ∑
i=1

U1i(t), ∀t ≥ 0,681

where, for every i ∈ J1, µK,682

U1i(t) := Qi,µb
T
0,iyi(t)[g ◦ fi](t) [q̃ ◦ h](t), ∀t ≥ 0.(54)683

As in the proof of Proposition 2, we next show that for each i ∈ J1, µK, there exist684

continuous functions ci,l : Rµ−l>0 → R>0 , l ∈ J1, iK, such that, for all t ≥ 0,685

(55)
∣∣∣U (k+1)

1i (t)
∣∣∣ ≤ i∑

l=1

alci,l(aµ, . . . , al+1),686

ci,µ is actually a constant independent of aµ, we write it as ci,µ(aµ, aµ+1) for the sake687

of notation homogeneity. For i ∈ J1, µK, we apply Leibniz’s rule to (54) and obtain688

that the (k + 1)-th time derivative of U1i(·) is given, for all t ≥ 0, by689

U
(k+1)
1i (t) = aiQi+1,µ

(
k+1∑
l1=0

l1∑
l2=0

(
k + 1

l1

)(
l1
l2

)
[q̃ ◦ h](k+1−l1)(t) [g ◦ fi](l2)(t) bT0,iy

(l1−l2)
i (t)

)
.690

Then, to get (55), it is sufficient to show that :691
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a) there exists C > 0 such that, for any l̃ ∈ J0, k + 1K and for all t ≥ 0,∣∣∣[q̃ ◦ h](l̃)(t)
∣∣∣ ≤ C[q̃ ◦ h](t).

b) for each i ∈ J1, µK, there exist Ψi, Θi,Φi : Rµ−i>0 → R>0, and vi,j : Rµ−j>0 →692

R>0 for j ∈ J1, iK such that, for any l̃ ∈ J0, k + 1K and for all t ≥ 0,693 ∥∥∥y(l̃)
i (t)

∥∥∥ ≤Ψi(aµ, . . . , ai+1)

µ∑
l=i

‖yl(t)‖+ Θi(aµ, . . . , ai+1) ‖z(t)‖694

+ Φi(aµ, . . . , ai+1) +

i∑
l=1

alṽl,i(aµ, . . . , al+1).695

c) for each i ∈ J1, µK, there exist Γi, θi : Rµ−i>0 → R>0, and Γi,j : Rµ−j>0 → R>0696

for j ∈ J1, iK such that, for any l̃ ∈ J0, k + 1K and for all t ≥ 0,697

∣∣∣[g ◦ fi](l̃)(t)∣∣∣ ≤[g ◦ fi](t)
(

Γi(aµ, . . . , ai+1) +

i∑
l=1

alṽl,i(aµ, . . . , al+1)698

+ θi(aµ, . . . , ai+1) ‖z(t)‖2l̃
)
.699

We now establish a). By an inductive argument using differentiation of the z-
subsystem (48b) coupled with the fact that the feedback law κ is p-bounded, one
easily shows that there exist C0, C1 > 0 such that for any l̃ ∈ J1, k + 1K and for any
t ≥ 0, ∥∥∥z(l̃)(t)

∥∥∥ ≤ C0 + C1 ‖z(t)‖ .

Using the Leibniz rule, it can be establish that there exist C̃0, C̃1 > 0 such that, for
any l̃ ∈ J1, k + 1K, ∣∣∣h(l̃)(t)

∣∣∣ ≤ C̃0 + C̃1 ‖z(t)‖2 ,

for all t ≥ 0. Thanks to Faá Di Bruno Formula (Lemma 5) applied to [q ◦ h], item a)700

follows.701

We now deal with item b). From Lemma 4 and an induction argument using702

differentiation of system (48a), one can obtain the following statement: for any l1 ∈703

J1, k + 1K, i ∈ J1, µK, there exist continuous functions Ψl1,i,l : Rµ−i>0 → R>0, l ∈704

Ji + 1, µK , Φl1,i,l : Rµ−i>0 → R>0, l ∈ J0, pK, Θl1,i,l : Rµ−i>0 → R>0, l ∈ J0, pK, and705

Ξl1,i,l : Rµ−i>0 → R>0, l ∈ J0, pK, such that, for all t ≥ 0,706

∥∥∥y(l1)
i (t)

∥∥∥ ≤ µ∑
l=i

Ψl1,i,l(aµ, . . . , ai+1) ‖yl(t)‖+ Θl1,i,l(aµ, . . . , ai+1) ‖z(t)‖707

+

l1−1∑
l=0

Φl1,i,l(aµ, . . . , ai+1)
∣∣∣U (l)

1 (t)
∣∣∣+ Ξl1,i,l(aµ, . . . , ai+1)

∥∥∥U (l1)
2 (t)

∥∥∥ .708

So, using the inductive hypothesis and the fact that κ is a p-bounded feedback law,709

one can obtain item b).710

Proceeding as in Proposition 2, one can get item c). This ends the proof of711

Proposition 3.712
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4. Numerical validation.713

In order to test the validity of our main result, we consider the single-input system714

discussed after Definition 3, namely ẋ = Ax+ bu with715

A =


0 −1 0 0
1 0 0 1
0 0 0 −1
0 0 1 0

 , b =


0
0
0
1

 .716

717

It can easily be checked that A has no eigenvalue with positive real part (it actually718

has two pairs of purely imaginary eigenvalues: s(A) = µ(A) = 2) and that the pair719

(A, b) is controllable, thus making the assumptions of Theorem 1 fulfilled. The system720

is readily in the form (7) and the proposed control law (8) reads721

κ(y) = − Q1,2x2(
1 + ‖x‖2

)1/2 − Q2,2x4(
1 + x2

3 + x2
4

)1/2 ,722

723

where Q1,2 = a1a2 and Q2,2 = a2 for some a1, a2 > 0. In Figure 1, we run 30724

simulations, each of them starting from initial conditions randomly picked in the725

interval [−5; 5], with a1 = 0.5 and a2 = 1. A particular solution is reported in bold726

black.727

Fig. 1. Time evolution of the state norm, the control signal, and its first two derivatives for
30 random initial states within [−5; 5].

These simulations indicate that, despite poor closed-loop performance, stabiliza-728

tion is achieved for all considered initial states, while u(t), u̇(t), and ü(t) all remain729

within [−2; 2].730

Varying the parameter a1 between 0.25 and 5, and running again 30 simulations731

for each of these values, Figure 2 reports the largest transient state norm and con-732

vergence time (top), and the values reached by |u(t)|, |u̇(t)| and |ü(t)| respectively733

(bottom).734

It can be seen that the control signal and its first two derivatives can be con-735

strained to smaller values, while still achieving stabilization. Not surprisingly, the736

price to pay is a larger overshoot and a slower convergence towards the origin as a1737

decreases.738

5. Appendix.739
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Fig. 2. Top: Maximum value of the transient state norm and maximum convergence time
over 30 random simulations, as a function of the feedback gain a1. Bottom: Maximum norm of
the control signal and of its first two derivatives over 30 random simulations, as a function of the
feedback gain a1.

5.1. Proof of Lemma 2 . Let ε > 1 and β > 0. We first prove forward740

completeness of741

(56) ẋ = −β x

(1 + x2)1/2
+ d1742

in response to any locally bounded function d1(·). For this, let V (x) := x2/2. Its743

derivative along trajectories of (56) satisfies744

(57) V̇ (x) = −β x2

(1 + x2)1/2
+ xT d1(t).745

Then, a straightforward computation leads to V̇ (x) ≤ V (x) + d1(t)2 and forward746

completeness follows using classical comparison results. Moreover when d1 = 0, (57)747

ensures that the origin of (56) is G.A.S.748

We then prove the SISSL(β/2, 2ε
β ) property of the system (56) with respect to749

d1(·). Given δ ≤ β/2, let d1 be a bounded measurable function on R≥0 eventually750

bounded by δ. Since the system is forward complete, we can consider without loss of751

generality that d1(t) ≤ δ for all t ≥ 0. From (57) and the fact that (1+x2)1/2 ≤ 1+|x|,752

one can obtain that753

V̇ (x) = −β x2

(1 + x2)1/2
+

1

(1 + x2)1/2
(|d1(t)| |x|+ |d1(t)|x2).754

Observing that755

(58)
|d1(t)|x2

(1 + x2)1/2
≤ βx2

2(1 + x2)1/2
,756

it follows that757

(59) V̇ (x) ≤ −β |x|
(1 + x2)1/2

(
|x| − 2

β
δ
)
.758

Consequently, V̇ < 0 whenever |x| > 2δ
β . It follows that every trajectory of (10)759

eventually enters and remains in the set S = {x ∈ R : x2 ≤ ε2( 2δ
β )2} (indeed, V̇ < 0760

for all x /∈ S and x ∈ ∂S). Thus Lemma 2 can be easily established.761
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5.2. Proof of Lemma 3. Let ω > 0. Given any 0 < β < 1, let Aβ :=762

ωA0−βb0bT0 , which is Hurwitz since A0 is skew-symmetric and (A0, b0) is controllable.763

Therefore there exists a symmetric positive definite matrix Pβ satisfying the following764

Lyapunov equation765

(60) PβAβ +ATβPβ = −I2.766

A simple computation gives767

Pβ =

(
β

2ω2 + 1
β

1
2ω

1
2ω

1
β

)
.768

The smallest and largest eigenvalues of Pβ denoted by σβ and σβ respectively are769

given by770

σβ := β ‖Pβb0‖2 −
β

2ω
‖Pβb0‖ ,771

σβ := β ‖Pβb0‖2 +
β

2ω
‖Pβb0‖ ,772

with773

‖Pβb0‖ =

√
1

4ω2
+

1

β2
.774

Define V : R2 → R≥0 as775

(61) V (x) := xTPβx+
(σβ + σβ)

3

(
(1 + ‖x‖2)3/2 − 1

)
, ∀x ∈ R2.776

Given C > 1, let α1 and α2 be class K∞ functions given by777

α1(r) :=
(σβ + σβ)

C
max{r2, r3},778

α2(r) := C(σβ + σβ) max{r2, r3}.779

There exists C > 1 such that780

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖), ∀x ∈ R2.781

Moreover, there exists a constant M > 0, independent of β, such that782

(62) α−1
1 ◦ α2(r) ≤Mr, ∀r ≥ 0.783

Proceeding as in the proof of Lemma 2, forward completeness of784

(63) ẋ = ωA0x− βb0
bT0 x

(1 + ‖x‖2)1/2
+ d1785

can easily be derived in response to any locally measurable bounded function d1. We786

next show that the system (63) is SISSL(βΓ, N/β) with respect to d1, for some N > 0787

and with788

(64) Γ :=
1

8
(

1
4ω2 + 1

) .789
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Since (63) is forward complete, we can assume without loss of generality that d1790

satisfies ‖d1(t)‖ ≤ δ, ∀t ≥ 0, for some δ ≤ βΓ. Consider the Lyapunov function791

V : R2 → R defined in (61). By noticing that (63) can be rewritten as792

ẋ = Aβx+ βb0b
T
0 x

(
1− 1

(1 + ‖x‖2)1/2

)
+ d1,793

one gets that the time derivative of V along trajectories of (63) satisfies794

V̇ =xTPβ

(
Aβx+ βb0b

T
0 x
(

1− 1

(1 + ‖x‖2)1/2

)
+ d1

)
795

+

(
xTATβ + βbT0 b

T
0 x(1− 1

(1 + ‖x‖2)1/2
) + dT1

)
Pβx796

+ (σβ + σβ)(1 + ‖x‖2)1/2

(
−β (bT0 x)2

(1 + ‖x‖2)1/2
+ xT d1

)
.797

798

Since Pβ is a symmetric matrix satisfying the Lyapunov equation (60), it follows that799

V̇ =− ‖x‖2 + 2βxTPβb0b
T
0 x
(

1− 1

(1 + ‖x‖2)1/2

)
+ 2xTPβd1 − β(σβ + σβ)(bT0 x)2

800

+ (σβ + σβ)(1 + ‖x‖2)1/2xT d1.801802

By completing the squares it holds that, for all t ≥ 0,803 ∣∣∣∣∣2βxTPβb0bT0 x(1− 1

(1 + ‖x‖2)1/2

)∣∣∣∣∣ ≤ ‖x‖22
+ 2β2 ‖Pβb0‖2 (bT0 x)2.804

Therefore, one can get that805

V̇ ≤ −1

2
‖x‖2 + 2xTPd1 + 2β ‖Pb0‖2 (1 + ‖x‖2)1/2xT d1.806

Using the fact that (1 + ‖x‖2)1/2 ≤ 1 + ‖x‖ for all x ∈ R2, and exploiting (64), it807

follows that808

V̇ ≤ −1

4
‖x‖2 + 2 ‖x‖ δ

(
2β ‖Pβb0‖2 +

β

2ω
‖Pβb0‖

)
.809

Consequently, it holds that V̇ < 0 whenever ‖x‖ > 8δ
(
2β ‖Pβb0‖2 + β

2ω ‖Pβb0‖
)
. Let810

µ > 1 and set r := 8µ(2β ‖Pβb0‖2 + β
2ω ‖Pβb0‖). Define S := {x ∈ R2 : V (x) ≤811

α2(rδ)}. If x /∈ S then ‖x‖ > rδ. Consequently, any trajectory eventually enters and812

stay in S. Moreover, we have that α1(‖x(·)‖) ≤ev V (x(t)) ≤ α2(rδ) . From (62),813

it follows that ‖x(·)‖ ≤ev rMδ. Moreover, one can see that there exists a constant814

D > 0 such that for any β ≤ 1 we have r ≤ D
β . So we obtain815

‖x(·)‖ ≤ev
Nδ

β
,816

for some N > 0, which concludes the proof.817
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5.3. Faà Di Bruno’s Formula.818

Lemma 5 (Faà Di Bruno’s formula, [6], p. 96). For k ∈ N, let φ ∈ Ck(R≥0,R)819

and ρ ∈ Ck(R,R). Then the k-th order derivative of the composite function ρ ◦ φ is820

given by821

[ρ ◦ φ](k)(t) =

k∑
a=1

ρ(a)(φ(t))Bk,a

(
φ(1)(t), . . . , φ(k−a+1)(t)

)
,822

where Bk,a is the Bell polynomial given by823

Bk,a

(
φ(1)(t), . . . , φ(k−a+1)(t)

)
:=
∑

δ∈Pk,a

cδ

k−a+1∏
l=1

(
φ(l)(t)

)δl
,824

825

where Pk,a denotes the set of (k − a + 1)−tuples δ := (δ1, δ2, . . . , δk−a+1) of positive826

integers satisfying827

δ1 + δ2 + . . .+ δk−a+1 = a,828

δ1 + 2δ2 + . . .+ (k − a+ 1)δk−a+1 = k,829

cδ :=
k!

(δ1! · · · δk−a+1!(1!)δ1 · · · ((k − a+ 1)!)δk−a+1)
.830

831
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Boston, 2012.869

[16] J. M. Shewchun and E. Feron, High performance control with position and rate limited870
actuators, International Journal of Robust and Nonlinear Control, 9 (1999), pp. 617–630.871
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