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Introduction

Actuator constraints constitute an important practical issue in control applications since they are a possible source of instability or performance degradation. Strong research efforts have been devoted to the stabilization of linear time-invariant (LTI) plants. LTI systems are known to be global stabilizable despite actuator saturations (i.e., by bounded inputs) if and only if they are stabilizable in the absence of input constraints and their internal dynamics has no eigenvalues with positive real part [?]. For systems that do not fulfill these constraints, several approaches provide stabilization from an arbitrarily large compact set of initial conditions (semiglobal stability); these include for instance [?, ?, ?, ?]. Some of these semiglobal approaches can be extended to robust stabilization in presence of exogenous disturbances [?, ?].

The objective of globally stabilizing plants by a bounded feedback remains of practical relevance, since the resulting control gains do not depend on the magnitude of initial states. Procedures ensuring global stability of nonlinear plants by bounded feedback have been proposed in [?, ?] and robustness to exogenous inputs have been addressed in [?, ?]. Among the LTI systems that can be globally stabilized by bounded feedback, chains of integrators have received specific attention. The simple saturation of a linear feedback fails at ensuring global stability as soon as the integrator chain is of dimension greater than or equal to three [?, ?]. In [?] a globally stabilizing feedback was constructed using nested saturations for a chain of integrators of arbitrary length. This construction has been extended to all LTI plants that can be stabilized by bounded feedback in [?], in which a family of stabilizing feedback laws was proposed as a linear combination of saturation functions. Global approaches ensuring robustness to exogenous disturbances have also been investigated. The first general solution to the L p finite-gain stabilization problem was provided in [?], based on a gain scheduled feedback initially proposed in [?]. An alternative easily implementable solution to that problem was recently proposed in [?] for chains of integrators. As for neutrally stable systems, such a solution was first given in [?].

While actuation magnitude is often the main concern in practical applications, limited actuation reactivity can also be an issue. Indeed, technological constraints may affect not only the amplitude of the delivered control signal, but also the amplitude of its time derivative. This latter problem is known as rate saturation and has been addressed for instance in [?, ?, ?, ?, ?]. Semiglobal stabilization has been achieved via a gain scheduling technique [?], or through low-gain feedback or low-and-high-gain feedback [?]. In [?, ?], regional stability was ensured through LMI-based conditions. In [?], this problem has been addressed for nonlinear plants using backstepping procedure ensuring global stability.

In this paper, we deepen the investigations on global stabilization of integrator chains subject to bounded actuation with rate constraints. We consider rate constraints that affect not only the first time derivative of the control signal, but also its successive p first derivatives, where p denotes an arbitrary positive integer. We specifically study two classes of systems that can be globally stabilized by bounded state feedback, namely chains of integrator and skew-symmetric dynamics with single input. No restriction is imposed on the dimension of these systems. We show that solving the problem for these two cases actually cover wider classes of systems, namely all systems with either only zero eigenvalues or only simple eigenvalues with zero real part. For both these classes of LTI systems, we propose a bounded static feedback law that ensures global asymptotic stability of the closed-loop system, and whose magnitude and p first time derivatives are bounded by arbitrary prescribed values. For the chains of integrators, the proposed control law is based on the nested saturations procedure introduced in [?]. We rely on specific saturation functions, which are linear in a neighborhood of the origin and constant for large values of their argument. Unfortunately, we show that this nested saturations feedback fails solve the problem for skew-symmetric dynamics. For the latter class of systems, we propose an alternative construction.

This paper is organized as follows. In Section 2, we provide definitions and state our main results for both considered classes of LTI systems. The proofs of the main results are provided in Section 3 based on several technical lemmas. In Section ??, we test the efficiency of the proposed control laws via numerical simulations on the third order integrator and the harmonic oscillator, where we bound with prescribed values the feedback, as well as its first two time derivatives for the third order integrator and it first time derivative for the harmonic oscillator respectively. We provide some conclusions and possible future extensions in Section ??.

Notations. The function sign : R\{0} → R is defined as sign(r) := r/ |r|. Given a set I ⊂ R and a constant a ∈ R, we let I ≥a := {x ∈ I : x ≥ a}. Given k ∈ N and n, p ∈ N ≥1 , we say that a function f : R n → R p is of class C k (R n , R p ) if its differentials up to order k exist and are continuous, and we use f (k) to denote the k-th order differential of f . By convention, f (0) := f . The factorial of k is denoted by k! and the binomial coefficient is denoted k

m := k! m!(k-m)! . We define m, k := {l ∈ N : l ∈ [m, k]}.
We use R n,n to denote the set of n × n matrices with real coefficients. The matrices I n and J n ∈ R n,n denote the identity matrix of dimension n and the n-th Jordan block respectively, i.e., the n × n matrix given by (J n ) i, j = 1 if i = j -1 and zero otherwise. For each i ∈ 1, n , e i ∈ R n refers to the column vector with coordinates equal to zero except the i-th one equal to one. We use x to denote the Euclidean norm of an arbitrary vector x ∈ R n . For two sets A and B, the relative complement of A in B is denoted by B\A.

Statement of the main results

Problem statement

We start by introducing in more details the general problem we address. Given n ∈ N ≥1 , consider LTI systems with single input:

ẋ = Ax + Bu, (1) 
where x ∈ R n , A and B are n × n and n × 1 matrices respectively. Assume that the pair (A, B) is stabilizable and that all the eigenvalues of A have non positive real part. Recall that these assumptions on (A, B) are necessary and sufficient for the existence of a bounded continuous state feedback u = k(x) which globally asymptotically stabilizes the closed-loop system [?]. We say that an eigenvalue of A is critical if it has zero real part. Given a family of prescribed bounds (R j ) 0≤ j≤p on the control signal and its successive p-first derivative, we start by introducing the notion of p-bounded feedback law by (R j ) 0≤ j≤p for system [START_REF] Sussmann | A general result on the stabilization of linear systems using bounded controls[END_REF]. This terminology will be used all along the document.

Definition 1. Given n ∈ N ≥1 and p ∈ N, let (R j ) 0≤ j≤p denote a family of positive constants. We say that ν : R n → R is a p-bounded feedback law by (R j ) 0≤ j≤p for system (1) if it is of class C p (R n , R) and, for every trajectory of the closed-loop system ẋ = Ax + Bν(x), the control signal U : R ≥0 → R defined by U(t) := ν(x(t)) for all t ≥ 0 satisfies, for all j ∈ 1, p ,

sup t≥0 U ( j) (t) ≤ R j .
Based on this definition, we can restate our stabilization problem as follows.

Problem. Given p ∈ N and a family of positive real numbers (R j ) 0≤ j≤p , design a feedback law ν such that -the origin of the closed-loop system ẋ = Ax + Bν(x) is globally asymptotically stable;

-the feedback ν : R n → R is a p-bounded feedback law by (R j ) 0≤ j≤p for System (1).

The case p = 0 corresponds to global stabilization with bounded state feedback and has been addressed in e.g. [?, ?, ?, ?]. The case p = 1 corresponds to global stabilization with bounded state feedback and limited rate, in the line of e.g. [?, ?, ?, ?, ?].

In this paper, we present a general solution to the problem at stake for two classes of LTI systems: Since the pair (A, B) is stabilizable, there exists a linear change of coordinates transforming the matrices A and B into

A 1 A 3 0 A 2 and B 1 B 2
, where A 1 is Hurwitz, the eigenvalues of A 2 have zero real parts and the pair (A 2 , B 2 ) is controllable. Then, it is immediate to see that we only have to treat the case where A has only critical eigenvalues. From now on, we therefore assume that A has only eigenvalues with zero real part, and that the pair (A, B) is controllable.

Multiple integrators

In Case 1, up to a linear change of coordinates, A can be put in a block-diagonal form with Jordan blocks J r on the diagonal. It is then clear that, up to an additional linear change of coordinates, addressing Case 1 amounts to dealing with the sole case of a multiple integrator of arbitrary length n, i.e. the LTI control system given by

         ẋ1 = x 2 , . . . ẋn-1 = x n , ẋn = u. (2) 
Letting x := (x 1 , . . . , x n ) T , system (2) can be compactly written as ẋ = J n x + e n u.

Inspired by [?], our design of a p-bounded feedback for this system is based on a nested saturations feedback. We focus on the specific class of saturations that are linear around zero, and constant for large values of their argument.

Definition 2. Given p ∈ N, S (p) is defined as the set of all odd functions σ of class C p (R, R) such that there exists positive constants α, L, σ max and S satisfying, for all r ∈ R, (i) rσ (r) > 0, when r = 0,

(ii) σ (r) = αr, when |r| ≤ L, (iii) |σ (r)| = σ max , when |r| ≥ S.
In the sequel, we associate with every σ ∈ S (p) the 4-tuple (σ max , L, S, α).

The constants σ max , L, α, and S will be extensively used throughout the paper and are referred to as the saturation level, the linearity threshold, the gain of the saturation in the linear part and the saturation threshold respectively. See Figure 1 to fix ideas. Notice that it necessarily holds that S ≥ L and the equality may only hold when p = 0. We also stress that the successive derivatives up to order p of an element of S (p) are bounded. An example of such function is given in Section ?? for p = 2. The first result of this paper establishes that global stabilization on any chain of integrators by bounded feedback with constrained p first derivatives can always be achieved by a particular choice of nested saturations. In other words, it solves the Problem in Case 1.

Theorem 1. Given n ∈ N ≥1 and p ∈ N, let (R j ) 0≤ j≤p be a family of positive constants. For every set of saturation functions σ 1 , . . . , σ n ∈ S (p), there exists vectors k 1 , . . . , k n in R n , and positive constants a 1 , . . . , a n such that the feedback law ν defined, for each x ∈ R n , as

ν(x) = -a n σ n k T n x + a n-1 σ n-1 k T n-1 x + . . . + a 1 σ 1 (k T 1 x) . . . (3) 
is a p-bounded feedback law by (R j ) 0≤ j≤p for system (2), and the origin of the closed-loop system ẋ = J n x + e n ν(x) is globally asymptotically stable.

The proof of this result is given in Section 3.1 and the argument also provides an explicit choice of the gain vectors k 1 , . . . , k n and constants a 1 , . . . a n .

Remark 1. It can be seen along the proof of Theorem 1 that the proposed construction allows to chose the magnitude of control signal independently of the magnitude of its p first derivatives. More precisely, a 0 can be chosen to ensure that max x∈R n |ν(x)| = R 0 and the gain vectors k 1 , . . . , k n and constants a 1 , . . . a n-1 can be taken in such a way that the p first derivatives of the feedback are bounded by (R j ) 1≤ j≤p .

Remark 2. In [?], a stabilizing feedback law was constructed using linear combinations of saturated functions. That feedback with saturation functions in S (p) cannot be a p-bounded feedback for System (2) for p ≥ 1. To see this, consider the double integrator, given by ẋ1 = x 2 , ẋ2 = u. Any stabilizing feedback using a linear combination of saturation functions in S (p) is given by ν

(x 1 , x 2 ) = -aσ 1 (bx 2 ) -cσ 2 (d(x 2 + x 1 ))
, where the constants a, b, c, and d are chosen to insure stability of the closed-loop system according to

[?]. Let u(t) = ν(x 1 (t), x 2 (t)) for all t ≥ 0. A straightforward computation yields, for t ≥ 0, u(t) = -abσ (1) 1 (ax 2 (t))u(t) -cdσ (1) 2 (d(x 2 (t) + x 1 (t)))(x 2 (t) + u(t)).
Consider now consider a solution with initial condition x 2 (0) = x 20 , and x 1 (0) = -x 20 such that σ

(1)

1 (ax 20 ) = 0. We then have u(0) = -cdσ (1) 2 (0)(x 20 + u(0)), whose norm is greater than c 1 (|x 20 | -c 2 )
for some positive constants c 1 , c 2 . Thus | u(0)| grows unbounded as |x 20 | tends to infinity, which contradicts the definition of a 1-bounded feedback.

Harmonic oscillators

In Case 2, up to a linear change of coordinates, A can be put in a block-diagonal form with skew-symmetric matrices on the diagonal. Addressing the stabilization problem under concern therefore amounts to only considering the following control system:

ẋ = Ax + bu, (4) 
where

x ∈ R n , A ∈ R n,n is skew-symmetric, b ∈ R n and the pair (A, b) is control- lable.
Unfortunately, the nested saturations feedback law given in ( 3) is a generic solution to the Problem for this class of systems only in the scalar case (n = 1) or when when no rate constraint is imposed (p = 0). To see why it may fail for n ≥ 2, consider for instance the harmonic oscillator given by ẋ1 = x 2 , ẋ2 = -x 1 + u (which we address in more details in Section ??) with a bounded stabilizing law given by u = -σ (x 2 ) with σ ∈ S (p) for some integer p. The time derivative of u then satisfies

| u(t)| ≥ σ (1) (x 2 (t)) (|x 1 (t)| -|u(t)|),
which grows unbounded as x 1 goes unbounded and |x 2 | remains small (i.e. in the linear zone of σ ). This prevents the feedback -σ (x 2 ) to be a 1-bounded feedback, hence a p-bounded feedback for all p ≥ 1.

Our second result provides an alternative p-bounded feedback for the harmonic oscillator, thus solving the Problem in Case 2.

Theorem 2. Given n ∈ N ≥1 and p ∈ N, let (R j ) 0≤ j≤p be a family of positive constants, let A ∈ R n,n be a skew-symmetric matrix, and let b ∈ R n be such that the pair (A, b) is controllable. Then, for any α ≥ 1/2, there exists a positive constant β such that the feedback law ν : R n → R defined as

ν(x) := -β b T x (1 + x 2 ) α (5) 
is a p-bounded feedback law by (R j ) 0≤ j≤p for system (4), and the origin of the closed-loop system ẋ = Ax + bν(x) is globally asymptotically stable.

The proof of this theorem is given in Section 3.2.

Remark 3. Unlike for chains of integrators (see Remark 1), the magnitude of the proposed feedback cannot be chosen independently of the amplitude of its p first derivatives.

3 Proof of main results

Multiple integrators

Technical lemma

We start by estimating upper bounds on composed saturation functions of the class S (p). This estimate, presented in Lemma 2, relies on Faà di Bruno's formula recalled below.

Lemma 1 (Faà Di Bruno's formula, [?], p. 96).

Given k ∈ N, let φ ∈ C k (R ≥0 , R) and ρ ∈ C k (R, R).
Then the k-th order derivative of the composite function ρ • φ is given by

d k dt k ρ(φ (t)) = k ∑ a=1 ρ (a) (φ (t))B k,a φ (1) (t), . . . , φ (k-a+1) (t) , (6) 
where B k,a is the Bell polynomial given by

B k,a φ (1) (t), . . . , φ (k-a+1) (t) := ∑ δ ∈P k,a c δ k-a+1 ∏ l=1 φ (l) (t) δ l (7) 
where P k,a denotes the set of (ka + 1)-tuples δ := (δ 1 , δ 2 , . . . , δ k-a+1 ) of positive integers satisfying

δ 1 + δ 2 + . . . + δ k-a+1 = a, δ 1 + 2δ 2 + . . . + (k -a + 1)δ k-a+1 = k, and c δ := k!/ δ 1 ! • • • δ k-a+1 !(1!) δ 1 • • • ((k -a + 1)!) δ k-a+1 .
Remark 4. We stress that the Bell polynomial B k,a φ (1) (t), . . . , φ (k-a+1) (t) is of (homogeneous) degree a with respect to the (ka + 1)-dimensional vector representing the argument of B k,a .

The proof of Theorem 1 extensively relies on the following upper bound on composition of functions of S (p), which exploits their constant value in their saturation region.

Lemma 2. Given k ∈ N, let f and g be functions of class C k (R ≥0 , R), σ be a saturation function in S (k) with constants (σ max , L, S, α), and E and F be subsets of R ≥0 such that E ⊆ F. Assume that

| f (t)| > S, ∀t ∈ F\E, (8) 
and that there exist positive constants M, Q 1 , . . . ,

Q k such that f (a) (t) ≤ Q a , ∀t ∈ E, ∀a ∈ 1, k , (9) 
g (k) (t) ≤ M, ∀t ∈ F. (10) 
Then the kth-order derivative of the function h : R ≥0 → R defined by h(•)

:= g(•)+ σ ( f (•)), satisfies h (k) (t) ≤ M + k ∑ a=1 σ a B k,a (Q 1 , . . . , Q k-a+1 ), ∀t ∈ F, (11) 
where B k,a (Q 1 , . . . , Q k-a+1 ) is a polynomial function of Q 1 , . . . , Q k-a+1 of degree a, and σ a := max s∈R |σ (a) (s)| for each a ∈ 1, k .

Proof of Lemma 2. Using Lemma 1, a straightforward computation yields

h (k) (t) = g (k) (t) + k ∑ a=1 σ (a) ( f (t))B k,a f (1) (t), . . . , f (k-a+1) (t) , ∀t ≥ 0,
where the polynomials B k,a are defined in [START_REF] Dai | Output feedback design for saturated linear plants using deadzone loops[END_REF]. Since σ ∈ S (k), [START_REF] Lin | A universal formula for stabilization with bounded controls[END_REF] ensures that the set F \ E is contained in the saturation zone of σ . It follows that

d k dt k σ ( f (t)) = 0, ∀t ∈ F \ E. (12) 
Furthermore, from ( 9) and ( 7) it holds that, for all t ∈ E,

B k,a f (1) (t), . . . , f (k-a+1) (t) ≤ ∑ δ ∈P k,a c δ k-a+1 ∏ l=1 Q δ l l , = B k,a (Q 1 , . . . , Q k-a+1 ).
From the definition of σ a and (6), we get that

d k dt k σ ( f (t)) ≤ k ∑ a=1 σ a B k,a (Q 1 , . . . , Q k-a+1 ), ∀t ∈ E. (13) 
In view of ( 12), the estimate ( 13) is valid on the whole set F. Thanks to [START_REF] Angeli | Robust stabilization via saturated feedback[END_REF], a straightforward computation leads to the estimate (11).

Intermediate results

The proof of Theorem 1 relies on the two propositions presented in this section.

The first one provides bounds on the successive derivatives of the arguments of the nested saturations and of the resulting control signal. The second proposition provides conditions on the parameters involved to guarantee global asymptotic stability of the closed-loop system. Both these propositions rely on notations and change of variables that we introduce first.

Given n ∈ N ≥1 and p ∈ N, let µ 1 , . . . , µ n be saturations in S (p) with respective constants

(µ max i , L µ i , S µ i , α µ i ), i ∈ 1, n . We define, for each i ∈ 1, n , µ i, j := max µ ( j) i (r) : r ∈ R , ∀ j ∈ 1, p , (14) 
b µ i := max |r -µ i (r)| : |r| ≤ S µ i + 2µ max i-1 . (15) 
We also let

b µ n := max µ n (r) r : 0 < |r| ≤ S µ n , (16) 
b µ n := min µ n (r) r : 0 < |r| ≤ S µ n . (17) 
Note that these quantities are well defined since the functions µ i are all in S (p).

We also make a linear change of coordinates y = Hx, with H ∈ R n,n , that puts system (2) into the form

ẏi = α µ n n ∑ l=i+1 y l + u, ∀i ∈ 1, n . (18) 
The matrix H can be determined from the following relation:

y n-i = i ∑ k=0 i k α µ n k x n-k , ∀i ∈ 0, n -1 , (19) 
and since H is triangular with non zero elements on the main diagonal, it is invertible. For this system, we define a nested saturations feedback law ϒ : R n → R as

ϒ(y) = -µ n (y n + µ n-1 (y n-1 + . . . + µ 1 (y 1 )) . . .). (20) 
Note that, in the original x-coordinates, this feedback law reads ϒ(y) = ϒ(Hx) therefore the bounds of the successive time derivatives of ϒ(y) coincide with those of ϒ(Hx). The global stabilization [START_REF] Liu | On finite-gain stabilizability of linear systems subject to input saturation[END_REF] with a p-bounded feedback law by (R j ) 0≤ j≤p is thus equivalent to that of the original system (2). So, from now on, we will rely on this expression. Let y(•) be a trajectory of the system

ẏi = α µ n n ∑ l=i+1 y l + ϒ(y), ∀i ∈ 1, n , (21) 
which is the closed-loop system [START_REF] Liu | On finite-gain stabilizability of linear systems subject to input saturation[END_REF] with the feedback defined in [START_REF] Freeman | Integrator backstepping for bounded controls and control rates[END_REF]. For each i ∈ 1, n , let z i : R ≥0 → R be the time function defined recursively as

z i (•) := y i (•) + µ i-1 (z i-1 (•)),
with µ 0 (•) = 0. With the above functions, the closed-loop system (21) can be rewritten as

   ẏi = α µ n z n -µ n (z n ) + α µ n n-1 ∑ l=i+1 (z l -µ l (z l )) -α µ n µ i (z i ), ∀i ∈ 1, n -1 , ẏn = -µ n (z n ). (22) 
For each i ∈ 1, n , we also let

E i := y ∈ R n : |y v | ≤ S µ v + µ max v-1 , ∀v ∈ i, n , (23) 
with µ max 0 = 0, and

I i := {t ∈ R ≥0 : y(t) ∈ E i }. (24) 
Note that from the definitions of I i and E i , we have I 1 ⊆ I 2 ⊆ . . . ⊆ I n , and a straightforward computation yields

|z i (t)| > S µ i , ∀t ∈ I i+1 \I i , ∀i ∈ 1, n -1 , ( 25 
) |z n (t)| > S µ n , ∀t ∈ R ≥0 \I n , (26) 
which allows us to determine when saturation occurs. Moreover from the definitions of saturation functions of class S (p), E i , I i , ( 16) and ( 17), the following estimates can easily be derived:

|z i (t) -µ i (z i (t))| ≤ b µ i , ∀t ∈ I i , (27) 
α µ n z n (t)-µ n (z n (t)) ≤ (b µ n -B µ n )(S µ n +2µ max n-1 ), ∀t ∈ I n , (28) 
with

B µ n := min b µ n , µ max n S µ n +2µ max n-1
. The following statement provides explicit bounds on the successive derivatives of each functions y i (t), z i (t) for each i ∈ 1, n and the control input given by U(•) := ϒ(y(•)).

Proposition 1. Given n ∈ N ≥1 and p ∈ N, let µ 1 , . . . , µ n be saturation functions in S (p) with respective constants (µ max i , L µ i , S µ i , α µ i ) for each i ∈ 1, n . With the notation introduced in this section and the Bell polynomials introduced in (7), every trajectory of the closed-loop system (21) satisfies, for each i ∈ 1, n and each j ∈ 1, p ,

(P 1 (i, j)) : y ( j) i (t) ≤ Y i, j , ∀t ∈ I i ; ( 29 
) (P 2 (i, j)) : z ( j) i (t) ≤ Z i, j , ∀t ∈ I i ; ( 30 
) (P 3 ( j)) : sup t≥0 U ( j) (t) ≤ j ∑ q=1 G q, j µ n,q ; ( 31 
)
where Y i, j , Z i, j , and G q, j are independent of initial conditions and are obtained recursively as follows: for j = 1,

Y n,1 := µ max n , Y i,1 := (b µ n -B µ n )(S µ n + 2µ max n-1 ) + α µ n n-1 ∑ l=i+1 b µ l + α µ n µ max i , ∀i ∈ 1, n -1 , Z 1,1 := Y 1,1 , Z i,1 := Y i,1 + µ i-1, j Z i-1,1 , ∀i ∈ 2, n , G 1,1 := Z n,1
and, for each j ∈ 2, p ,

Y i, j := α µ n n ∑ b=i+1 Y b, j-1 + j-1 ∑ q=1 G q, j-1 µ n,q , ∀i ∈ 1, n -1 , Z 1, j := Y 1, j , Z i, j := Y i, j + j ∑ a=1 µ i-1,a B j,a (Z i-1,1 , . . . , Z i-1, j-1+a ), ∀i ∈ 2, n ,
G q, j := B j,q (Z n,1 , . . . , Z n, j-q+1 ), ∀q ∈ 1, j .

Proof of Proposition 1. Let y(•) be a trajectory of the closed-loop system [START_REF] Gomes Da Silva | Local stabilization of linear systems under amplitude and rate saturating actuators[END_REF]. The right-hand side of (21) being of class C p (R n , R n ) and globally Lipschitz, system ( 21) is forward complete and its trajectories are of class C p+1 (R ≥0 , R n ). In particular, the successive time derivatives of y i (•), z i (•), and U(•) are well defined for all positive time. We establish the result by induction on j. We start by j = 1. We begin to prove that P 1 (i, 1) holds for all i ∈ 1, n . Let i ∈ 1, n -1 . From ( 22), (27), and (28) a straightforward computation leads to

| ẏi (t)| ≤ (b µ n -B µ n )(S µ n + 2µ max n-1 ) + α µ n n-1 ∑ l=i+1 b µ l + α µ n µ max i ,
for all t ∈ I i+1 . Since I i ⊆ I i+1 , the above estimate is still true on I i . Moreover, from [START_REF] Galeani | A magnitude and rate saturation model and its use in the solution of a static anti-windup problem[END_REF] it holds that | ẏn (t)| ≤ µ max n at all positive time. Thus, P 1 (i, 1) has been proven for each i ∈ 1, n .

We now prove by induction on i the statement P 2 (i, 1). Since z 1 (•) = y 1 (•), the case i = 1 is done. Assume that, for i ∈ 1, n -1 , P 2 (i 2 , 1) holds true for every

1 ≤ i 2 ≤ i. From Lemma 2 (with k = 1, f (•) = z i (•), g(•) = y i+1 (•), h(•) = z i+1 (•), σ (•) = µ i (•), Q 1 = Z i,1 , M = Y i+1,1 , σ 1 = µ i,1 , E = I i , F = I i+1
, and ( 25)), we can establish that P 2 (i + 1, 1) holds. Thus P 2 (i, 1) holds for all i ∈ 1, n .

Notice that the applied control input reads U(•) = -µ n (z n (•)). We then can establish 26)). This ends the case j = 1. Now, assume that for a given j ∈ 1, p -1 , statements P 1 (i, j 2 ), P 2 (i, j 2 ) and P 3 ( j 2 ) hold for all j 2 ≤ j and all i ∈ 1, n . Let i ∈ 1, n . From [START_REF] Liu | On finite-gain stabilizability of linear systems subject to input saturation[END_REF], a straightforward computation yields

P 3 (1) from Lemma 2 (with k = 1, f = z n , g ≡ 0, h = u, σ = µ n , Q 1 = Z 1,i , M = 0, σ 1 = µ n,1 , E = I n , F = R ≥0 and (
y ( j+1) i (t) ≤ α µ n n ∑ l=i+1 y ( j) l (t) + u ( j) (t) , ∀t ≥ 0.
From P 3 ( j), P 1 (i + 1, j), . . . , P 1 (n, j), we obtain that

y ( j+1) i (t) ≤ α µ n n ∑ l=i+1 Y l, j + j ∑ q=1 G q, j µ n,q , ∀t ≥ I i .
Thus the statement P 1 ( j + 1, i) is proven for all i ∈ 1, n .

We now prove by induction on i the statement P 2 (i, j + 1). As before, since z 1 = y 1 , the case for i = 1 is done. Assume that for a given i ∈ 1, n -1 , the statement P 2 (i 1 , j + 1) holds for all i 1 ≤ i. From Lemma 2 (with

k = j + 1, f = z i , g = y i+1 , h = z i+1 , σ = µ i , Q k 1 = Z i,k 1 , M = Y i+1, j+1 , σ a = µ i,a , E = I i , F = I i+1
, and ( 25)), we can establish that P 2 (i + 1, j + 1) holds. P 2 (i, j + 1) is thus satisfied for all i ∈ 1, n .

Finally, we can establish P 3 ( j + 1) from Lemma 2 (with 26)). This ends the proof of Proposition 1.

k = j + 1, f = z n , g ≡ 0, h = u, σ = µ n , Q k1 = Z n,k 1 , M = 0, σ a = µ n,a , E = I n , F = R ≥0 and (
We next provide sufficient conditions on the parameters of the saturation functions in S (p) guaranteeing global asymptotic stability of the closed-loop system [START_REF] Gomes Da Silva | Local stabilization of linear systems under amplitude and rate saturating actuators[END_REF].

Proposition 2. Given n ∈ N and p ∈ N, let µ 1 , . . . , µ n be saturation functions in S (p) with respective constants (µ max i , L µ i , S µ i , α µ i ) for each i ∈ 1, n and assume that, for all i ∈ 1, n -1 ,

α µ i = 1, ( 32a 
)
µ max i < L µ i+1 /2. ( 32b 
)
Then the origin of the closed-loop system ( 21) is globally asymptotically stable.

Actually the above proposition is almost the same as the one given in [?], except that we allow the first level of saturation µ n to have a slope different from 1. This feature is instrumental for the proof of the main result, as reducing this slope will allow to decrease the amplitudes of the successive time derivatives on the control signal.

Proof of Proposition 2. We prove that after a finite time any trajectory of the closed-loop system (21) enters a region in which the feedback (20) becomes simply linear.

To that end, we consider the Lyapunov function candidate V n (y n ) := 1 2 y 2 n . Its derivative along the trajectories of ( 21) reads Vn = -y n µ n (y n + µ n-1 (z n-1 )).

From (32b), we obtain the following implication:

|y n | ≥ L µ n /2 ⇒ Vn ≤ -θ L µ n /2, ( 33 
)
where θ := inf

r∈[L µ n /2-µ max n-1 ,S µ n ]
{µ n (r)}.

We next show that there exists a time T 1 ≥ 0 such that |y n (t)| ≤ L µ n /2, for all t ≥ T 1 . To prove that, we consider the following alternative: either for every t ≥ 0, |y n (t)| ≤ L µ n /2 and we are done, or there exist

T 0 ≥ 0 such that |y n (T 0 )| > L µ n /2.
In that case there exists T0 ≥ T 0 such that y n ( T0 ) = L µ n /2 (otherwise thanks to (33), V n (t) → -∞ as t → ∞ which is impossible). Due to (33), we have |y n (t)| < L µ n /2 in a right open neighbourhood of T0 . Suppose that there exists a positive time T1 > T0 such that y n ( T1 ) ≥ L µ n /2. Then by continuity, there must exists T2 ∈ ( T0 , T1 ] such that y n ( T2 ) = L µ n /2, and |y n (t)| < L µ n /2 for all t ∈ ( T0 , T2 ). However, it then follows from (33) that for a left open neighbourhood of T2 we have |y n (t)| > y n ( T2 ) = L µ n /2. This is a contradiction with the fact that on a right open neighbourhood of T0 we have |y n (t)| < L µ n /2. Therefore, for every T1 > T0 , one has y n ( T1 ) < L µ n /2 and the claim is proved.

It follows from (32b) that

|y n (t) + µ n-1 (z n-1 (t))| ≤ L µ n , ∀t ≥ T 1 .
Therefore µ n operates in its linear region after time T 1 . Similarly, we now consider V n-1 (y n-1 ) := 1 2 y 2 n-1 , whose derivative along the trajectories of ( 21) satisfies

Vn = -α µ n y n-1 µ n-1 y n-1 + µ n-2 (y n-2 + . . .) , ∀t ≥ T 1 .
Reasoning as before and invoking (32b), there exists a time T 2 > 0 such that |y n-1 (t)| ≤ L µ n-1 /2 and µ n-1 operates in its linear region for all t ≥ T 2 .

By repeating this procedure, we construct a time T n such that for every t ≥ T n the whole feedback law becomes linear, that is

ϒ(y(t)) = -α µ n (y n (t) + . . . + y 1 (t)), ∀t ≥ T n .
Thus, after time T n , the system (21) becomes linear and its local exponential stability follows readily. Thus the origin of the closed-loop system ( 21) is globally asymptotically stable, which concludes the proof of Proposition 2.

Proof of Theorem 1

Based on Propositions 2 and 1, we now proceed to the final stage of the proof of Theorem 1. We explicitly construct the vectors k 1 , . . . , k n and the constants a 1 , . . . , a n guaranteeing global asymptotic stability with a bounded feedback law whose successive derivatives remain below prescribed bounds at all times. This proof can thus be used as an algorithm to compute the nested saturations feedback proposed in Theorem 1.

Given p ∈ N and n ∈ N ≥1 , let σ i be saturation functions in S (p) with constants (σ max i , L σ i , S σ i , α σ i ) for each i ∈ 1, n , and let (R j ) 0≤ j≤p be the family of prescribed positive bounds on the amplitude and the successive time derivatives

We next choose λ in such a way that ϒ(y) is a p-bounded feedback law by (R j ) 0≤ j≤p for System [START_REF] Liu | On finite-gain stabilizability of linear systems subject to input saturation[END_REF]. To that end, first notice that

b µ n = α μ b σ n λ α σ n , (36) 
b µ n = α μ b σ n λ α σ n , (37) 
B µ n = 1 λ min α μ b σ n α σ n , R 0 S σ n /L σ n + 2σ max n-1 /λ , (38) 
µ n,q = μn,q /λ q , (39) 
where b µ n , b µ n , and µ n,q are defined in ( 16), [START_REF] Chitour | L p -stabilization of integrator chains subject to input saturation using Lyapunov-based homogeneous design[END_REF], and ( 14) respectively. Using Proposition 1 it follows that, along every trajectory of the closed-loop system (21), the control input

U(•) = ϒ(y(•)) satisfies, for each j ∈ 1, p , sup t≥0 U ( j) (t) ≤ j ∑ q=1 G q, j μn,q λ q . (40) 
By substituting (36), (37), (38), and (39) into the recurrence of Proposition 1, it can be seen that, for each j ∈ 1, p , j ∑ q=1 G q, j μn,q λ q = 1 λ P( 1 λ ) where P is a polynomial with positive coefficients. This sum is thus decreasing in λ . Hence, we can pick λ ≥ 1 in such a way that j ∑ q=1 G q, j μn,q

λ q ≤ R, ∀ j ∈ 1, p . It follows that, for each j ∈ 1, p , sup t≥0 u ( j) (t) ≤ R ≤ R j .
Recalling that the feedback ϒ is bounded by R 0 , we conclude that it is p-bounded feedback law by (R j ) 0≤ j≤p for System [START_REF] Liu | On finite-gain stabilizability of linear systems subject to input saturation[END_REF].

With the linear change y = Hx proposed in [START_REF] Gomes Da Silva | Local stabilization of linear systems under amplitude and rate saturating actuators[END_REF], the closed-loop system (21) can be put into the form of the original system (2) in closed loop with u = ϒ(Hx). Thus, the sought feedback law ν of Theorem 1 is obtained by ν(x) = ϒ(Hx). This leads to the following choices of parameters:

a n = R 0 /σ max n , a i = L σ i+1 µ max i L µ i+1 σ max i , ∀i ∈ 1, n -1 , k T n x = L σ n L µ n x n , k T n-i x = L σ n-i L µ n-i i ∑ k=0 i! k!(i -k)! α μ L µ n k x n-k , ∀i ∈ 1, n -1 ,
and L µ n = λ .

Skew-symmetric systems with scalar input

The proof of Theorem 2 is divided into two steps:

Step 1: We will prove that for any β > 0 and any α ≥ 1/2, the origin of the closed-loop system

ẋ = Ax -β b b T x (1 + x 2 ) α (41) 
is globally asymptotically stable;

Step 2: We will show that for any α ≥ 1/2 there exists a positive constant β such the feedback law ( 5) is a p-bounded feedback law by (R j ) 0≤ j≤p for system (4).

Step 1

Let β be a positive constant and α ≥ 1/2. We define A β := Aβ bb T . The matrix A β is then Hurwitz. To see this, observe that the Lyapunov equation A T β + A β = -2β bb T holds and that the pair (A β , b) is controllable. Thus there exists a real symmetric positive definite matrix P ∈ R n,n such that

PA β + A T β P = -I n . (42) 
Furthermore, the closed-loop system (??) can be rewritten as

ẋ = A β x + β bb T x 1 - 1 (1 + x 2 ) α .
Lemma 4. Given β > 0 and α ≥ 1/2, let x : R ≥0 → R n be any trajectory of the closed-loop system (??) and let G(•) := 1 + x(•) 2 . Then, for any k ∈ N ≥1 and all t ∈ R ≥0 , it holds that

G (k) (t) = k ∑ m=0 k m n ∑ i=1 x (m) i (t)x (k-m) i (t), (44) 
and

U (k) (t) = -β b T x (k) (t) (1 + x(t) 2 ) α + k ∑ l=1 k l l ∑ a=1 d a B l,a (G (1) (t), . . . , G (l-a+1) (t))b T x (k-l) (t) (1 + x(t) 2 ) α+a , (45) 
where d a := (-1) a a ∏ i=0 (α + i) and B l,a are the Bell polynomials introduced in [START_REF] Dai | Output feedback design for saturated linear plants using deadzone loops[END_REF].

Proof of Assertion ??. Expression (??) is readily obtained from the general Leibniz rule. In order to establish (??), let f : R >0 → R >0 be defined as f (z) := 1 z α . The feedback law can then be rewritten as

U(t) = -β b T x(t) f G(t) .
Using the general Leibniz rule we get that, for any k ∈ N ≥1 and any t ∈ R ≥0 ,

U (k) (t) = -β b T x (k) (t) f G(t) + k ∑ l=1 k l d l dt l [ f G(t) ]b T x (k-l) (t). (46) 
Thanks to Faà Di Bruno's formula (Lemma 1), we obtain that, for each l ∈ 1, k and each t ∈ R ≥0 ,

d l dt l f G(t) = l ∑ a=1 f (a) (G(t))B l,a G (1) (t), . . . , G (l-a+1) (t) . (47) 
Since a+α) for all a ∈ 1, k , Assertion ?? is proven.

f (a) (z) = (-1) a a ∏ i=0 (α + i)z -(
We now proceed with Step 2. Let p ∈ N, α ≥ 1/2 and (R j ) 0≤ j≤p be a family of positive constants. Let R := min R 0 , . . . , R p . We now prove by induction on j ∈ 0, p that there exist β j > 0 such that, for any β ≤ β j , each trajectory of the closed-loop system (??) satisfies sup t≥0 U ( j 1 ) (t) ≤ R, ∀ j 1 ∈ 1, j .

Note that this in turn ensures that the feedback law ( 5) is a j-bounded feedback law by (R j 1 ) 0≤ j 1 ≤ j .

We start by j = 0. Since sup x∈R n {|ν(x)|} ≤ β , the base case follows by choosing β 0 = R. Now assume that, for a given j ∈ 0, p -1 , there exists β j > 0 such that for any β ≤ β j the feedback law ( 5) is a j-bounded feedback law by (R j 1 ) 0≤ j 1 ≤ j . Using Lemma ??, we get that for each β ≤ β j there exists for each i ∈ 1, n and k ∈ 1, j + 1 a multivariate polynomial P i,k : R n → R of degree 1 (which not depend on β ) such that

x (k) i (t) ≤ P i,k (|x 1 (t)| , . . . , |x 2 (t)|), ∀t ≥ 0. ( 48 
)
From (??) and (??) it follows that, for each k ∈ 1, j + 1 , there exists a multivariate polynomial P k : R n → R of degree 2, which not depend on β , such that

G (k) (t) ≤ P k (|x 1 (t)| , . . . , |x 2 (t)|), ∀t ≥ 0. ( 49 
)
In view of Remark 4, (??), and (??), we conclude that, for each l ∈ 1, j + 1 and each a ∈ 1, l , there exists a multivariate polynomial P l,a : R n → R of degree 2a + 1, which does not depend on β , such that B l,a (G (1) (t), . . . , G (l-a+1) b T x (k-l) (t) ≤ P l,a (|x 1 (t)| , . . . , |x 2 (t)|), ∀t ≥ 0. (50)

Since Pl,a and P i, j+1 are respectively of degree 2a + 1 and 1 and recalling that α ≥ 1/2, we conclude that, for each l ∈ 1, j + 1 and each a ∈ 1, l , there exists a positive constant M l,a, j such that sup

x∈R n P l,a (x) (1 + x 2 ) α+a ≤ M l,a, j , (51) 
and, for each i ∈ 1, n , there exists a positive constant Q i, j such that sup

x∈R n P i, j+1 (x) (1 + x 2 ) α ≤ Q i, j . (52) 
Let β j and x(•) be a trajectory of the closed-loop system (??). Thanks to Assertion ?? (with k = j + 1), we get that, for all t ∈ R ≥0 ,

U ( j+1) (t) ≤ β b T x ( j+1) (t) (1 + x(t) 2 ) α + j+1 ∑ l=1 j + 1 l l ∑ a=1 d a B l,a (G (1) (t), . . . , G (l-a+1) (t))b T x ( j+1-l) (t) (1 + x(t) 2 ) α+a .
Therefore a straightforward computation using (??), (??), (??), (??), and (??) leads to the existence of a positive constant M j such that

U ( j+1) (t) ≤ β M j , ∀t ≥ 0. ( 53 
)
Thus for all β ≤ min 0≤ j≤p {β j , R/M j }, it follows that sup t≥0 U ( j+1) (t) ≤ R.

This ends the induction on j and concludes the proof of Theorem 2.

4 Numerical examples

The triple integrator

In this subsection, we illustrate the applicability and the performance of the feedback law proposed for Case 1 on a particular example. We use the procedure described in Section 3.1.3 in order to compute a 2-bounded feedback law by [START_REF] Lin | Semi-global exponential stabilization of linear systems subject to "input saturation" via linear feedbacks[END_REF][START_REF] Freeman | Integrator backstepping for bounded controls and control rates[END_REF][START_REF] Liu | On finite-gain stabilizability of linear systems subject to input saturation[END_REF] for the multiple integrator of length three. Our set of saturation functions is σ 1 = σ 2 = σ 3 = σ , where σ is an S (2) saturation function with constants (2, 1, 2, 1) given by

σ (r) :=        r if |r| ≤ 1, h 1 (r) if 1 ≤ |r| ≤ 1.5, h 2 (r) if 1.5 ≤ |r| ≤ 2, 2sign(r) otherwise,
where h 1 and h 2 were picked in order to ensure sufficient smoothness for σ : ??. These grey curves validate the fact that asymptotic stability is reached and that the control feedback magnitude, and two first derivatives, never overpass the prescribed values [START_REF] Lin | Semi-global exponential stabilization of linear systems subject to "input saturation" via linear feedbacks[END_REF][START_REF] Freeman | Integrator backstepping for bounded controls and control rates[END_REF][START_REF] Liu | On finite-gain stabilizability of linear systems subject to input saturation[END_REF]. In order to illustrate the behavior of one particular trajectory, the specific simulation obtained for initial condition x 10 = 446.7937, x 20 = -69.875 and x 30 = 11.05 is highlighted in bold black.

(•) = ϒ(y(•)) = ϒ(Hx(•)), with H =   1/λ 2 2/λ 1 0 1/λ 1 0 0 1   , satisfies sup t≥0 u ( 
It can be seen from Figure ?? that our procedure shows some conservativeness as the amplitude of the second derivative of the feedback never exceeds the value 2, although maximum value of 18 was tolerated.

The harmonic oscillator

We finally test the performance of the control law proposed for Case 2 through example of a 1-bounded feedback law by (1, 1) for an harmonic oscillator. We consider the following system ẋ1 = 10x 2 , ẋ2 = -10x 1 + u.

In accordance with Theorem 2, we take u(x 1 , x 2 ) = -β x 2 / 1 + x 

Conclusion

In this paper, we have shown that any LTI system admitting either only zero eigenvalues or simple eigenvalues with zero real part can be globally asymptotically sta- control_value_ci11-eps-converted-to.pdf bilized by a static feedback whose amplitude and p first time derivatives along any trajectory of the closed-loop system can be bounded arbitrary prescribed values.

We have shown that the former case boils down to studying chains of integrators, while the latter one sums up to LTI systems with skew-symmetric internal dynamics and single input. For integrator chains, the design of this feedback relies on the technique of nested saturations first introduced in [?]. We also showed that this strategy does not work in general for the case of skew-symmetric systems. For this second case, we have proposed an alternative control law. The applicability of the design procedure and the performance of the resulting closed-loop system was tested on two particular examples: the triple integrator and the harmonic oscillator.

The first natural issue to address next is designing p-bounded feedback laws without restrictions on the spectrum of A, namely to just assume that all the eigenvalues of A have non positive real parts. The second problem that one may consider is to relax the requirement of the order p of considered successive derivatives, that is, to design (if possible) a smooth bounded feedback law such that the feedback itself and all its successive derivatives along any trajectory of the closed-loop system are bounded arbitrary prescribed values.

Case 1 :Case 2 :

 12 All the critical eigenvalues of A are zero; All the critical eigenvalues of A are simple and have zero real parts.

Figure 1 :

 1 Figure 1: A typical example of a S (p) saturation function with constants (σ max , L, S, α).

h 1 2 = 2 / 5 , L µ 2 = 1 / 5 , µ max 1 = 1

 122521511 (r) := sign(r)(-4 + 15 |r| -18r 2 + 10 |r| 3 -2r 4 ), h 2 (r) := 2sign(r)(25 -60 |r| + 54r 2 -21 |r| 3 + 3r 4 ).In accordance with (34) and (35), we choose µ max /12, and L µ 1 = 1/24. Following the procedure, we obtain that the two first time derivatives of the control signal U

4 .

 4 The behavior of the resulting closed-loop system is presented in Figure?? for initial conditions x 10 = 1 and x 20 = -1. The corresponding values of the feedback and its first time derivative are shown in Figure??, where it can be seen that these values stay below 1.

Figure 2 :

 2 Figure 2: Evolution of the states for a set of initial conditions.

Figure 3 :

 3 Figure 3: Evolution of the control and its derivative up to order 2 for the same set of initial conditions.

2 Figure 4 :

 24 Figure 4: Trajectory of the harmonic oscillator with a feedback law of the form (5) for initial conditions x 10 = 1 and x 20 = -1.

Figure 5 :

 5 Figure 5: Evolution of the control and its first derivative for the same initial conditions.

  This feedback law is tested in simulations and the results are presented in Figure ??. Trajectories of triple integrator with the above feedback are plotted in grey for several initial conditions. The corresponding values of the control law and its time derivatives up to order 2 are shown in Figure

	Choosing λ = 6.5, we obtain that sup	U (1) (t) ≤ 0.9, and sup	U (2) (t) ≤
					t≥0	t≥0
	18. Observing that the amplitude of U is below 2 by construction, this confirms
	the fact that this is a 2-bounded feedback by (2, 20, 18). The desired feedback is
	then given by				
		ν(x) = -σ	1 6.5	x 3 +	1 5	σ 5(x 2 /6.5 + x 3
		+	1 24	σ 24(x 3 + 2x 2 /6.5 + x 1 /6.5 2 ))	.
		1) (t)		≤ (7.91 + 4.35λ )/λ 2 ,
	sup t≥0	u (2) (t)		≤	26.2λ 3 + 396λ 2 + 1147.2λ + 125.2 λ 4	.
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of the control signal. We let R := min{R j : j ∈ 1, p }, σ n, j := max r∈R σ ( j) n (r) , ∀ j ∈ 1, p ,

Note that all these quantities are well defined since σ n ∈ S (p). We first construct saturations µ 1 , . . . µ n in order to use the results of Section 3.1.2. Let (µ max i ) 1≤i≤n-1 and (L µ i ) 1≤i≤n-1 be two families of positive constants such that

and, for each i ∈ 1, n -2 ,

For each i ∈ 1, n -1 , the saturation function

For λ ≥ 1, to be chosen later, we define the saturation function µ n as

and α µ n = α μ /λ . Then µ n belongs to the class of saturation functions S (p). From (34) and (35) we can establish that the functions µ 1 , . . . , µ n satisfy conditions (32). It follows from Proposition 2 that the nested saturations feedback ϒ(y) defined in [START_REF] Freeman | Integrator backstepping for bounded controls and control rates[END_REF] globally asymptotically stabilizes the origin of [START_REF] Liu | On finite-gain stabilizability of linear systems subject to input saturation[END_REF].

Consider the candidate Lyapunov function given by

. The derivative of V along trajectories of (??) is then given by

Using that x T Pb ≤ x Pb and

we get from (??) that

Therefore the origin of the closed-loop system (??) is globally asymptotically stable.

Step 2

We first give and prove two lemmas which give explicit formula of the successive derivatives of the trajectories and of the control signal.

Lemma 3. Given any β > 0 and α ≥ 1/2, each trajectory x : R ≥0 → R n of the closed-loop system (??) is C ∞ and satisfies, for any k

where U(•) := ν(x(•)).

Proof of Assertion ??. The right hand side of (??) is C ∞ and globally Lipschitz. Therefore system (??) is forward complete and its trajectories are of class C ∞ (R ≥0 , R n ).

In particular, the successive derivatives of U(•) and x(•) are well defined. Equation (??) then follows by a trivial induction argument using differentiation of (??) at any order.