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Global stabilization of classes of linear control
systems with bounds on the feedback and its

successive derivatives

Jonathan Laporte, Antoine Chaillet and Yacine Chitour ∗†

Abstract

In this paper, we address the problem of globally stabilizing a linear
time-invariant (LTI) system by means of a static feedback law whose ampli-
tude and successive time derivatives, up to a prescribed order p, are bounded
by arbitrary prescribed values. We solve this problem for two classes of LTI
systems, namely integrator chains and skew-symmetric systems with single
input. For the integrator chains, the solution we propose is based on the
nested saturations introduced by A.R. Teel. We show that this construction
fails for skew-symmetric systems and propose an alternative feedback law.
We illustrate these findings by the stabilization of the third order integra-
tor with prescribed bounds on the feedback and its first two derivatives, and
similarly for the harmonic oscillator with prescribed bounds on the feedback
and its first derivative.

1 Introduction
Actuator constraints constitute an important practical issue in control applications
since they are a possible source of instability or performance degradation. Strong
research efforts have been devoted to the stabilization of linear time-invariant
(LTI) plants. LTI systems are known to be global stabilizable despite actuator
saturations (i.e., by bounded inputs) if and only if they are stabilizable in the ab-
sence of input constraints and their internal dynamics has no eigenvalues with
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positive real part [?]. For systems that do not fulfill these constraints, several
approaches provide stabilization from an arbitrarily large compact set of initial
conditions (semiglobal stability); these include for instance [?, ?, ?, ?]. Some of
these semiglobal approaches can be extended to robust stabilization in presence
of exogenous disturbances [?, ?].

The objective of globally stabilizing plants by a bounded feedback remains of
practical relevance, since the resulting control gains do not depend on the mag-
nitude of initial states. Procedures ensuring global stability of nonlinear plants
by bounded feedback have been proposed in [?, ?] and robustness to exogenous
inputs have been addressed in [?, ?]. Among the LTI systems that can be globally
stabilized by bounded feedback, chains of integrators have received specific atten-
tion. The simple saturation of a linear feedback fails at ensuring global stability
as soon as the integrator chain is of dimension greater than or equal to three [?, ?].
In [?] a globally stabilizing feedback was constructed using nested saturations for
a chain of integrators of arbitrary length. This construction has been extended to
all LTI plants that can be stabilized by bounded feedback in [?], in which a family
of stabilizing feedback laws was proposed as a linear combination of saturation
functions. Global approaches ensuring robustness to exogenous disturbances have
also been investigated. The first general solution to the Lp finite-gain stabilization
problem was provided in [?], based on a gain scheduled feedback initially pro-
posed in [?]. An alternative easily implementable solution to that problem was
recently proposed in [?] for chains of integrators. As for neutrally stable systems,
such a solution was first given in [?].

While actuation magnitude is often the main concern in practical applications,
limited actuation reactivity can also be an issue. Indeed, technological constraints
may affect not only the amplitude of the delivered control signal, but also the
amplitude of its time derivative. This latter problem is known as rate saturation
and has been addressed for instance in [?, ?, ?, ?, ?]. Semiglobal stabilization
has been achieved via a gain scheduling technique [?], or through low-gain feed-
back or low-and-high-gain feedback [?]. In [?, ?], regional stability was ensured
through LMI-based conditions. In [?], this problem has been addressed for non-
linear plants using backstepping procedure ensuring global stability.

In this paper, we deepen the investigations on global stabilization of integra-
tor chains subject to bounded actuation with rate constraints. We consider rate
constraints that affect not only the first time derivative of the control signal, but
also its successive p first derivatives, where p denotes an arbitrary positive inte-
ger. We specifically study two classes of systems that can be globally stabilized
by bounded state feedback, namely chains of integrator and skew-symmetric dy-
namics with single input. No restriction is imposed on the dimension of these
systems. We show that solving the problem for these two cases actually cover
wider classes of systems, namely all systems with either only zero eigenvalues or
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only simple eigenvalues with zero real part. For both these classes of LTI systems,
we propose a bounded static feedback law that ensures global asymptotic stability
of the closed-loop system, and whose magnitude and p first time derivatives are
bounded by arbitrary prescribed values. For the chains of integrators, the pro-
posed control law is based on the nested saturations procedure introduced in [?].
We rely on specific saturation functions, which are linear in a neighborhood of the
origin and constant for large values of their argument. Unfortunately, we show
that this nested saturations feedback fails solve the problem for skew-symmetric
dynamics. For the latter class of systems, we propose an alternative construction.

This paper is organized as follows. In Section 2, we provide definitions and
state our main results for both considered classes of LTI systems. The proofs
of the main results are provided in Section 3 based on several technical lemmas.
In Section ??, we test the efficiency of the proposed control laws via numerical
simulations on the third order integrator and the harmonic oscillator, where we
bound with prescribed values the feedback, as well as its first two time derivatives
for the third order integrator and it first time derivative for the harmonic oscilla-
tor respectively. We provide some conclusions and possible future extensions in
Section ??.

Notations. The function sign : R\{0} → R is defined as sign(r) := r/ |r|.
Given a set I ⊂ R and a constant a ∈ R, we let I≥a := {x ∈ I : x≥ a}. Given
k ∈ N and n, p ∈ N≥1, we say that a function f : Rn→ Rp is of class Ck(Rn,Rp)
if its differentials up to order k exist and are continuous, and we use f (k) to denote
the k-th order differential of f . By convention, f (0) := f . The factorial of k is
denoted by k! and the binomial coefficient is denoted

(k
m

)
:= k!

m!(k−m)! . We define
Jm,kK := {l ∈ N : l ∈ [m,k]}. We use Rn,n to denote the set of n× n matrices
with real coefficients. The matrices In and Jn ∈ Rn,n denote the identity matrix of
dimension n and the n-th Jordan block respectively, i.e., the n×n matrix given by
(Jn)i, j = 1 if i = j−1 and zero otherwise. For each i ∈ J1,nK, ei ∈Rn refers to the
column vector with coordinates equal to zero except the i-th one equal to one. We
use ‖x‖ to denote the Euclidean norm of an arbitrary vector x ∈ Rn. For two sets
A and B, the relative complement of A in B is denoted by B\A.

2 Statement of the main results

2.1 Problem statement
We start by introducing in more details the general problem we address. Given
n ∈ N≥1, consider LTI systems with single input:

ẋ = Ax+Bu, (1)

3



where x ∈ Rn, A and B are n× n and n× 1 matrices respectively. Assume that
the pair (A,B) is stabilizable and that all the eigenvalues of A have non positive
real part. Recall that these assumptions on (A,B) are necessary and sufficient for
the existence of a bounded continuous state feedback u = k(x) which globally
asymptotically stabilizes the closed-loop system [?]. We say that an eigenvalue of
A is critical if it has zero real part.

Given a family of prescribed bounds (R j)0≤ j≤p on the control signal and its
successive p-first derivative, we start by introducing the notion of p-bounded feed-
back law by (R j)0≤ j≤p for system (1). This terminology will be used all along the
document.

Definition 1. Given n ∈N≥1 and p ∈N, let (R j)0≤ j≤p denote a family of positive
constants. We say that ν : Rn→ R is a p-bounded feedback law by (R j)0≤ j≤p for
system (1) if it is of class Cp(Rn,R) and, for every trajectory of the closed-loop
system ẋ = Ax+Bν(x), the control signal U :R≥0→R defined by U(t) := ν(x(t))
for all t ≥ 0 satisfies, for all j ∈ J1, pK,

sup
t≥0

{∣∣∣U ( j)(t)
∣∣∣}≤ R j.

Based on this definition, we can restate our stabilization problem as follows.

Problem. Given p ∈N and a family of positive real numbers (R j)0≤ j≤p, design a
feedback law ν such that

- the origin of the closed-loop system ẋ = Ax+Bν(x) is globally asymptoti-
cally stable;

- the feedback ν : Rn → R is a p-bounded feedback law by (R j)0≤ j≤p for
System (1).

The case p= 0 corresponds to global stabilization with bounded state feedback
and has been addressed in e.g. [?, ?, ?, ?]. The case p = 1 corresponds to global
stabilization with bounded state feedback and limited rate, in the line of e.g. [?, ?,
?, ?, ?].

In this paper, we present a general solution to the problem at stake for two
classes of LTI systems:

Case 1: All the critical eigenvalues of A are zero;

Case 2: All the critical eigenvalues of A are simple and have zero real parts.

Since the pair (A,B) is stabilizable, there exists a linear change of coordinates

transforming the matrices A and B into
(

A1 A3
0 A2

)
and

(
B1
B2

)
, where A1 is Hurwitz,

4



the eigenvalues of A2 have zero real parts and the pair (A2,B2) is controllable.
Then, it is immediate to see that we only have to treat the case where A has only
critical eigenvalues. From now on, we therefore assume that A has only eigenval-
ues with zero real part, and that the pair (A,B) is controllable.

2.2 Multiple integrators
In Case 1, up to a linear change of coordinates, A can be put in a block-diagonal
form with Jordan blocks Jr on the diagonal. It is then clear that, up to an additional
linear change of coordinates, addressing Case 1 amounts to dealing with the sole
case of a multiple integrator of arbitrary length n, i.e. the LTI control system given
by 

ẋ1 = x2,
...

ẋn−1 = xn,
ẋn = u.

(2)

Letting x := (x1, . . . ,xn)
T , system (2) can be compactly written as

ẋ = Jnx+ enu.

Inspired by [?], our design of a p-bounded feedback for this system is based on a
nested saturations feedback. We focus on the specific class of saturations that are
linear around zero, and constant for large values of their argument.

Definition 2. Given p ∈ N, S (p) is defined as the set of all odd functions σ of
class Cp(R,R) such that there exists positive constants α , L, σmax and S satisfy-
ing, for all r ∈ R,

(i) rσ(r)> 0, when r 6= 0,

(ii) σ(r) = αr, when |r| ≤ L,

(iii) |σ(r)|= σmax, when |r| ≥ S.

In the sequel, we associate with every σ ∈S (p) the 4-tuple (σmax,L,S,α).

The constants σmax, L, α , and S will be extensively used throughout the paper
and are referred to as the saturation level, the linearity threshold, the gain of the
saturation in the linear part and the saturation threshold respectively. See Figure 1
to fix ideas. Notice that it necessarily holds that S ≥ L and the equality may only
hold when p = 0. We also stress that the successive derivatives up to order p of an
element of S (p) are bounded. An example of such function is given in Section
?? for p = 2.
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Figure 1: A typical example of a S (p) saturation function with constants
(σmax,L,S,α).

The first result of this paper establishes that global stabilization on any chain
of integrators by bounded feedback with constrained p first derivatives can always
be achieved by a particular choice of nested saturations. In other words, it solves
the Problem in Case 1.

Theorem 1. Given n ∈ N≥1 and p ∈ N, let (R j)0≤ j≤p be a family of positive
constants. For every set of saturation functions σ1, . . . ,σn ∈ S (p), there exists
vectors k1, . . . ,kn in Rn, and positive constants a1, . . . ,an such that the feedback
law ν defined, for each x ∈ Rn, as

ν(x) =−anσn

(
kT

n x+an−1σn−1
(
kT

n−1x+ . . .+a1σ1(kT
1 x)
)
. . .
)

(3)

is a p-bounded feedback law by (R j)0≤ j≤p for system (2), and the origin of the
closed-loop system ẋ = Jnx+ enν(x) is globally asymptotically stable.

The proof of this result is given in Section 3.1 and the argument also provides
an explicit choice of the gain vectors k1, . . . ,kn and constants a1, . . .an.

Remark 1. It can be seen along the proof of Theorem 1 that the proposed con-
struction allows to chose the magnitude of control signal independently of the
magnitude of its p first derivatives. More precisely, a0 can be chosen to ensure
that max

x∈Rn
|ν(x)|= R0 and the gain vectors k1, . . . ,kn and constants a1, . . .an−1 can

be taken in such a way that the p first derivatives of the feedback are bounded by
(R j)1≤ j≤p.
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Remark 2. In [?], a stabilizing feedback law was constructed using linear com-
binations of saturated functions. That feedback with saturation functions in S (p)
cannot be a p-bounded feedback for System (2) for p ≥ 1. To see this, consider
the double integrator, given by ẋ1 = x2, ẋ2 = u. Any stabilizing feedback using
a linear combination of saturation functions in S (p) is given by ν(x1,x2) =
−aσ1(bx2)−cσ2(d(x2+x1)), where the constants a, b, c, and d are chosen to in-
sure stability of the closed-loop system according to [?]. Let u(t) = ν(x1(t),x2(t))
for all t ≥ 0. A straightforward computation yields, for t ≥ 0,

u̇(t) =−abσ
(1)
1 (ax2(t))u(t)− cdσ

(1)
2 (d(x2(t)+ x1(t)))(x2(t)+u(t)).

Consider now consider a solution with initial condition x2(0) = x20, and x1(0) =
−x20 such that σ

(1)
1 (ax20) = 0. We then have u̇(0) = −cdσ

(1)
2 (0)(x20 + u(0)),

whose norm is greater than c1(|x20|− c2) for some positive constants c1,c2. Thus
|u̇(0)| grows unbounded as |x20| tends to infinity, which contradicts the definition
of a 1-bounded feedback.

2.3 Harmonic oscillators
In Case 2, up to a linear change of coordinates, A can be put in a block-diagonal
form with skew-symmetric matrices on the diagonal. Addressing the stabiliza-
tion problem under concern therefore amounts to only considering the following
control system:

ẋ = Ax+bu, (4)

where x ∈ Rn, A ∈ Rn,n is skew-symmetric, b ∈ Rn and the pair (A,b) is control-
lable.

Unfortunately, the nested saturations feedback law given in (3) is a generic
solution to the Problem for this class of systems only in the scalar case (n = 1)
or when when no rate constraint is imposed (p = 0). To see why it may fail for
n≥ 2, consider for instance the harmonic oscillator given by ẋ1 = x2, ẋ2 =−x1+u
(which we address in more details in Section ??) with a bounded stabilizing law
given by u = −σ(x2) with σ ∈S (p) for some integer p. The time derivative of
u then satisfies

|u̇(t)| ≥
∣∣∣σ (1)(x2(t))

∣∣∣(|x1(t)|− |u(t)|),

which grows unbounded as x1 goes unbounded and |x2| remains small (i.e. in the
linear zone of σ ). This prevents the feedback−σ(x2) to be a 1-bounded feedback,
hence a p-bounded feedback for all p≥ 1.

Our second result provides an alternative p-bounded feedback for the har-
monic oscillator, thus solving the Problem in Case 2.
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Theorem 2. Given n ∈ N≥1 and p ∈ N, let (R j)0≤ j≤p be a family of positive
constants, let A ∈ Rn,n be a skew-symmetric matrix, and let b ∈ Rn be such that
the pair (A,b) is controllable. Then, for any α ≥ 1/2, there exists a positive
constant β such that the feedback law ν : Rn→ R defined as

ν(x) :=−β
bT x

(1+‖x‖2)α
(5)

is a p-bounded feedback law by (R j)0≤ j≤p for system (4), and the origin of the
closed-loop system ẋ = Ax+bν(x) is globally asymptotically stable.

The proof of this theorem is given in Section 3.2.

Remark 3. Unlike for chains of integrators (see Remark 1), the magnitude of the
proposed feedback cannot be chosen independently of the amplitude of its p first
derivatives.

3 Proof of main results

3.1 Multiple integrators
3.1.1 Technical lemma

We start by estimating upper bounds on composed saturation functions of the class
S (p). This estimate, presented in Lemma 2, relies on Faà di Bruno’s formula
recalled below.

Lemma 1 (Faà Di Bruno’s formula, [?], p. 96). Given k ∈ N, let φ ∈Ck(R≥0,R)
and ρ ∈Ck(R,R). Then the k-th order derivative of the composite function ρ ◦φ

is given by

dk

dtk ρ(φ(t)) =
k

∑
a=1

ρ
(a)(φ(t))Bk,a

(
φ
(1)(t), . . . ,φ (k−a+1)(t)

)
, (6)

where Bk,a is the Bell polynomial given by

Bk,a

(
φ
(1)(t), . . . ,φ (k−a+1)(t)

)
:= ∑

δ∈Pk,a

cδ

k−a+1

∏
l=1

(
φ
(l)(t)

)δl
(7)

where Pk,a denotes the set of (k−a+1)−tuples δ := (δ1,δ2, . . . ,δk−a+1) of pos-
itive integers satisfying

δ1 +δ2 + . . .+δk−a+1 = a,
δ1 +2δ2 + . . .+(k−a+1)δk−a+1 = k,

and cδ := k!/
(

δ1! · · ·δk−a+1!(1!)δ1 · · ·((k−a+1)!)δk−a+1

)
.
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Remark 4. We stress that the Bell polynomial Bk,a

(
φ (1)(t), . . . ,φ (k−a+1)(t)

)
is

of (homogeneous) degree a with respect to the (k− a + 1)-dimensional vector
representing the argument of Bk,a.

The proof of Theorem 1 extensively relies on the following upper bound on
composition of functions of S (p), which exploits their constant value in their
saturation region.

Lemma 2. Given k ∈ N, let f and g be functions of class Ck(R≥0,R), σ be a
saturation function in S (k) with constants (σmax,L,S,α), and E and F be subsets
of R≥0 such that E ⊆ F. Assume that

| f (t)|> S, ∀t ∈ F\E, (8)

and that there exist positive constants M,Q1, . . . ,Qk such that∣∣∣ f (a)(t)∣∣∣≤ Qa, ∀t ∈ E, ∀a ∈ J1,kK, (9)∣∣∣g(k)(t)∣∣∣≤M, ∀t ∈ F. (10)

Then the kth-order derivative of the function h :R≥0→R defined by h(·) := g(·)+
σ( f (·)), satisfies∣∣∣h(k)(t)∣∣∣≤M+

k

∑
a=1

σaBk,a(Q1, . . . ,Qk−a+1), ∀t ∈ F, (11)

where Bk,a(Q1, . . . ,Qk−a+1) is a polynomial function of Q1, . . . ,Qk−a+1 of degree
a, and σa := maxs∈R |σ (a)(s)| for each a ∈ J1,kK.

Proof of Lemma 2. Using Lemma 1, a straightforward computation yields

h(k)(t) = g(k)(t)+
k

∑
a=1

σ
(a)( f (t))Bk,a

(
f (1)(t), . . . , f (k−a+1)(t)

)
, ∀t ≥ 0,

where the polynomials Bk,a are defined in (7). Since σ ∈S (k), (8) ensures that
the set F \E is contained in the saturation zone of σ . It follows that

dk

dtk σ( f (t)) = 0, ∀t ∈ F \E. (12)

Furthermore, from (9) and (7) it holds that, for all t ∈ E,∣∣∣Bk,a

(
f (1)(t), . . . , f (k−a+1)(t)

)∣∣∣ ≤ ∑
δ∈Pk,a

cδ

k−a+1

∏
l=1

Qδl
l ,

= Bk,a(Q1, . . . ,Qk−a+1).
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From the definition of σa and (6), we get that∣∣∣∣ dk

dtk σ( f (t))
∣∣∣∣≤ k

∑
a=1

σaBk,a(Q1, . . . ,Qk−a+1), ∀t ∈ E. (13)

In view of (12), the estimate (13) is valid on the whole set F . Thanks to (10), a
straightforward computation leads to the estimate (11).

3.1.2 Intermediate results

The proof of Theorem 1 relies on the two propositions presented in this section.
The first one provides bounds on the successive derivatives of the arguments of
the nested saturations and of the resulting control signal. The second proposition
provides conditions on the parameters involved to guarantee global asymptotic
stability of the closed-loop system. Both these propositions rely on notations and
change of variables that we introduce first.

Given n∈N≥1 and p∈N, let µ1, . . . ,µn be saturations in S (p) with respective
constants (µmax

i ,Lµi,Sµi,αµi), i ∈ J1,nK. We define, for each i ∈ J1,nK,

µ i, j := max
{∣∣∣µ( j)

i (r)
∣∣∣ : r ∈ R

}
, ∀ j ∈ J1, pK, (14)

bµi := max
{
|r−µi(r)| : |r| ≤ Sµi +2µ

max
i−1
}
. (15)

We also let

bµn := max
{

µn(r)
r

: 0 < |r| ≤ Sµn

}
, (16)

bµn
:= min

{
µn(r)

r
: 0 < |r| ≤ Sµn

}
. (17)

Note that these quantities are well defined since the functions µi are all in S (p).
We also make a linear change of coordinates y = Hx, with H ∈ Rn,n, that puts

system (2) into the form

ẏi = αµn

n

∑
l=i+1

yl +u, ∀i ∈ J1,nK. (18)

The matrix H can be determined from the following relation:

yn−i =
i

∑
k=0

(
i
k

)(
αµn

)k xn−k, ∀i ∈ J0,n−1K, (19)
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and since H is triangular with non zero elements on the main diagonal, it is in-
vertible. For this system, we define a nested saturations feedback law ϒ : Rn→ R
as

ϒ(y) =−µn(yn +µn−1(yn−1 + . . .+µ1(y1)) . . .). (20)

Note that, in the original x-coordinates, this feedback law reads ϒ(y) = ϒ(Hx)
therefore the bounds of the successive time derivatives of ϒ(y) coincide with
those of ϒ(Hx). The global stabilization (18) with a p-bounded feedback law
by (R j)0≤ j≤p is thus equivalent to that of the original system (2). So, from now
on, we will rely on this expression. Let y(·) be a trajectory of the system

ẏi = αµn

n

∑
l=i+1

yl +ϒ(y), ∀i ∈ J1,nK, (21)

which is the closed-loop system (18) with the feedback defined in (20). For each
i ∈ J1,nK, let zi : R≥0→ R be the time function defined recursively as

zi(·) := yi(·)+µi−1(zi−1(·)),

with µ0(·) = 0. With the above functions, the closed-loop system (21) can be
rewritten asẏi = αµnzn−µn(zn)+αµn

n−1
∑

l=i+1
(zl−µl(zl))−αµn µi(zi), ∀i ∈ J1,n−1K,

ẏn =−µn(zn).
(22)

For each i ∈ J1,nK, we also let

Ei :=
{

y ∈ Rn : |yv| ≤ Sµv +µ
max
v−1 ,∀v ∈ Ji,nK

}
, (23)

with µmax
0 = 0, and

Ii := {t ∈ R≥0 : y(t) ∈ Ei}. (24)

Note that from the definitions of Ii and Ei, we have I1 ⊆ I2 ⊆ . . . ⊆ In, and a
straightforward computation yields

|zi(t)|> Sµi, ∀t ∈ Ii+1\Ii, ∀i ∈ J1,n−1K, (25)
|zn(t)|> Sµn, ∀t ∈ R≥0\In, (26)

which allows us to determine when saturation occurs. Moreover from the defi-
nitions of saturation functions of class S (p), Ei, Ii, (16) and (17), the following
estimates can easily be derived:

|zi(t)−µi(zi(t))| ≤ bµi, ∀t ∈ Ii, (27)∣∣αµnzn(t)−µn(zn(t))
∣∣≤ (bµn−Bµn

)(Sµn+2µ
max
n−1), ∀t ∈ In, (28)
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with Bµn
:= min

{
bµn

,
µmax

n
Sµn+2µmax

n−1

}
.

The following statement provides explicit bounds on the successive derivatives
of each functions yi(t), zi(t) for each i ∈ J1,nK and the control input given by
U(·) := ϒ(y(·)).

Proposition 1. Given n ∈ N≥1 and p ∈ N, let µ1, . . . ,µn be saturation functions
in S (p) with respective constants (µmax

i ,Lµi,Sµi,αµi) for each i ∈ J1,nK. With
the notation introduced in this section and the Bell polynomials introduced in (7),
every trajectory of the closed-loop system (21) satisfies, for each i ∈ J1,nK and
each j ∈ J1, pK,

(P1(i, j)) :
∣∣∣y( j)

i (t)
∣∣∣≤ Yi, j, ∀t ∈ Ii ; (29)

(P2(i, j)) :
∣∣∣z( j)

i (t)
∣∣∣≤ Zi, j, ∀t ∈ Ii ; (30)

(P3( j)) : sup
t≥0

{∣∣∣U ( j)(t)
∣∣∣}≤ j

∑
q=1

Gq, jµn,q ; (31)

where Yi, j, Zi, j, and Gq, j are independent of initial conditions and are obtained
recursively as follows: for j = 1,

Yn,1 := µ
max
n ,

Yi,1 := (bµn−Bµn
)(Sµn +2µ

max
n−1)+αµn

n−1

∑
l=i+1

bµl +αµn µ
max
i , ∀i ∈ J1,n−1K,

Z1,1 := Y1,1,

Zi,1 := Yi,1 +µ i−1, jZi−1,1, ∀i ∈ J2,nK,

G1,1 := Zn,1

and, for each j ∈ J2, pK,

Yi, j := αµn

n

∑
b=i+1

Yb, j−1 +
j−1

∑
q=1

Gq, j−1µn,q, ∀i ∈ J1,n−1K,

Z1, j := Y1, j,

Zi, j := Yi, j +
j

∑
a=1

µ i−1,aB j,a(Zi−1,1, . . . ,Zi−1, j−1+a), ∀i ∈ J2,nK,

Gq, j := B j,q(Zn,1, . . . ,Zn, j−q+1), ∀q ∈ J1, jK.

Proof of Proposition 1. Let y(·) be a trajectory of the closed-loop system (21).
The right-hand side of (21) being of class Cp(Rn,Rn) and globally Lipschitz, sys-
tem (21) is forward complete and its trajectories are of class Cp+1(R≥0,Rn). In
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particular, the successive time derivatives of yi(·), zi(·), and U(·) are well defined
for all positive time.

We establish the result by induction on j. We start by j = 1. We begin to prove
that P1(i,1) holds for all i ∈ J1,nK. Let i ∈ J1,n−1K. From (22), (27), and (28) a
straightforward computation leads to

|ẏi(t)| ≤ (bµn−Bµn
)(Sµn +2µ

max
n−1)+αµn

n−1

∑
l=i+1

bµl +αµn µ
max
i ,

for all t ∈ Ii+1. Since Ii ⊆ Ii+1, the above estimate is still true on Ii. Moreover,
from (22) it holds that |ẏn(t)| ≤ µmax

n at all positive time. Thus, P1(i,1) has been
proven for each i ∈ J1,nK.

We now prove by induction on i the statement P2(i,1). Since z1(·) = y1(·), the
case i = 1 is done. Assume that, for i ∈ J1,n− 1K, P2(i2,1) holds true for every
1≤ i2 ≤ i. From Lemma 2 (with k = 1, f (·) = zi(·), g(·) = yi+1(·), h(·) = zi+1(·),
σ(·) = µi(·), Q1 = Zi,1, M =Yi+1,1, σ1 = µ i,1, E = Ii, F = Ii+1, and (25)), we can
establish that P2(i+1,1) holds. Thus P2(i,1) holds for all i ∈ J1,nK.

Notice that the applied control input reads U(·) = −µn(zn(·)). We then can
establish P3(1) from Lemma 2 (with k = 1, f = zn, g≡ 0, h= u, σ = µn, Q1 = Z1,i,
M = 0, σ1 = µn,1, E = In, F = R≥0 and (26)). This ends the case j = 1.

Now, assume that for a given j ∈ J1, p−1K, statements P1(i, j2), P2(i, j2) and
P3( j2) hold for all j2 ≤ j and all i ∈ J1,nK. Let i ∈ J1,nK. From (18), a straight-
forward computation yields∣∣∣y( j+1)

i (t)
∣∣∣≤ αµn

n

∑
l=i+1

∣∣∣y( j)
l (t)

∣∣∣+ ∣∣∣u( j)(t)
∣∣∣ , ∀t ≥ 0.

From P3( j), P1(i+1, j), . . . ,P1(n, j), we obtain that∣∣∣y( j+1)
i (t)

∣∣∣≤ αµn

n

∑
l=i+1

Yl, j +
j

∑
q=1

Gq, jµn,q, ∀t ≥ Ii.

Thus the statement P1( j+1, i) is proven for all i ∈ J1,nK.
We now prove by induction on i the statement P2(i, j + 1). As before, since

z1 = y1, the case for i = 1 is done. Assume that for a given i ∈ J1,n− 1K, the
statement P2(i1, j+1) holds for all i1 ≤ i. From Lemma 2 (with k = j+1, f = zi,
g = yi+1, h = zi+1, σ = µi, Qk1 = Zi,k1 , M = Yi+1, j+1, σa = µ i,a, E = Ii, F = Ii+1,
and (25)), we can establish that P2(i+1, j+1) holds. P2(i, j+1) is thus satisfied
for all i ∈ J1,nK.

Finally, we can establish P3( j + 1) from Lemma 2 (with k = j + 1, f = zn,
g≡ 0, h = u, σ = µn, Qk1 = Zn,k1 , M = 0, σa = µn,a, E = In, F = R≥0 and (26)).
This ends the proof of Proposition 1.
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We next provide sufficient conditions on the parameters of the saturation func-
tions in S (p) guaranteeing global asymptotic stability of the closed-loop system
(21).

Proposition 2. Given n ∈ N and p ∈ N, let µ1, . . . ,µn be saturation functions in
S (p) with respective constants (µmax

i ,Lµi,Sµi,αµi) for each i∈ J1,nK and assume
that, for all i ∈ J1,n−1K,

αµi = 1, (32a)
µ

max
i < Lµi+1/2. (32b)

Then the origin of the closed-loop system (21) is globally asymptotically stable.

Actually the above proposition is almost the same as the one given in [?],
except that we allow the first level of saturation µn to have a slope different from
1. This feature is instrumental for the proof of the main result, as reducing this
slope will allow to decrease the amplitudes of the successive time derivatives on
the control signal.

Proof of Proposition 2. We prove that after a finite time any trajectory of the
closed-loop system (21) enters a region in which the feedback (20) becomes sim-
ply linear.

To that end, we consider the Lyapunov function candidate Vn(yn) := 1
2y2

n. Its
derivative along the trajectories of (21) reads

V̇n =−ynµn(yn +µn−1(zn−1)).

From (32b), we obtain the following implication:

|yn| ≥ Lµn/2 ⇒ V̇n ≤−θLµn/2, (33)

where θ := inf
r∈[Lµn/2−µmax

n−1,Sµn ]
{µn(r)}.

We next show that there exists a time T1 ≥ 0 such that |yn(t)| ≤ Lµn/2, for all
t ≥ T1. To prove that, we consider the following alternative: either for every t ≥ 0,
|yn(t)| ≤ Lµn/2 and we are done, or there exist T0 ≥ 0 such that |yn(T0)|> Lµn/2.
In that case there exists T̃0 ≥ T0 such that yn(T̃0) = Lµn/2 (otherwise thanks to
(33), Vn(t)→−∞ as t → ∞ which is impossible). Due to (33), we have |yn(t)|<
Lµn/2 in a right open neighbourhood of T̃0. Suppose that there exists a positive
time T̃1 > T̃0 such that

∣∣yn(T̃1)
∣∣ ≥ Lµn/2. Then by continuity, there must exists

T̃2 ∈ (T̃0, T̃1] such that
∣∣yn(T̃2)

∣∣ = Lµn/2, and |yn(t)| < Lµn/2 for all t ∈ (T̃0, T̃2).
However, it then follows from (33) that for a left open neighbourhood of T̃2 we
have |yn(t)|>

∣∣yn(T̃2)
∣∣= Lµn/2. This is a contradiction with the fact that on a right
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open neighbourhood of T̃0 we have |yn(t)|< Lµn/2. Therefore, for every T̃1 > T̃0,
one has

∣∣yn(T̃1)
∣∣< Lµn/2 and the claim is proved.

It follows from (32b) that

|yn(t)+µn−1(zn−1(t))| ≤ Lµn , ∀t ≥ T1.

Therefore µn operates in its linear region after time T1. Similarly, we now consider
Vn−1(yn−1) := 1

2y2
n−1, whose derivative along the trajectories of (21) satisfies

V̇n =−αµnyn−1µn−1
(
yn−1 +µn−2(yn−2 + . . .)

)
, ∀t ≥ T1.

Reasoning as before and invoking (32b), there exists a time T2 > 0 such that
|yn−1(t)| ≤ Lµn−1/2 and µn−1 operates in its linear region for all t ≥ T2.

By repeating this procedure, we construct a time Tn such that for every t ≥ Tn
the whole feedback law becomes linear, that is

ϒ(y(t)) =−αµn(yn(t)+ . . .+ y1(t)), ∀t ≥ Tn.

Thus, after time Tn, the system (21) becomes linear and its local exponential sta-
bility follows readily. Thus the origin of the closed-loop system (21) is globally
asymptotically stable, which concludes the proof of Proposition 2.

3.1.3 Proof of Theorem 1

Based on Propositions 2 and 1, we now proceed to the final stage of the proof
of Theorem 1. We explicitly construct the vectors k1, . . . ,kn and the constants
a1, . . . ,an guaranteeing global asymptotic stability with a bounded feedback law
whose successive derivatives remain below prescribed bounds at all times. This
proof can thus be used as an algorithm to compute the nested saturations feedback
proposed in Theorem 1.

Given p ∈ N and n ∈ N≥1, let σi be saturation functions in S (p) with con-
stants (σmax

i ,Lσi,Sσi,ασi) for each i ∈ J1,nK, and let (R j)0≤ j≤p be the family of
prescribed positive bounds on the amplitude and the successive time derivatives

15



of the control signal. We let

R := min{R j : j ∈ J1, pK},

σn, j := max
r∈R

{∣∣∣σ ( j)
n (r)

∣∣∣} , ∀ j ∈ J1, pK,

αµ̃ := R0Lσnασn/σ
max
n ,

µ̃n, j :=
R0σn, j(Lσn)

j

σmax
n

, ∀ j ∈ J1, pK,

bσn := max
{

σn(r)
r

: 0 < |r| ≤ Sσn

}
,

bσn
:= min

{
σn(r)

r
: 0 < |r| ≤ Sσn

}
.

Note that all these quantities are well defined since σn ∈S (p). We first construct
saturations µ1, . . .µn in order to use the results of Section 3.1.2. Let (µmax

i )1≤i≤n−1
and (Lµi)1≤i≤n−1 be two families of positive constants such that

µ
max
n−1 <

1
2
, Lµn−1 =

µmax
n−1Lσn−1ασn−1

σmax
n−1

, (34)

and, for each i ∈ J1,n−2K,

µ
max
i <

1
2

Lµi+1, Lµi =
µmax

i Lσiασi

σmax
i

. (35)

For each i ∈ J1,n− 1K, the saturation function µi ∈S (p) with constants (µmax
i ,

Lµi , Sµi , 1), where Sµi = SσiLµi/Lσi , is then given by

µi(s) :=
µmax

i
σmax

i
σi

(
s
Lσi

Lµi

)
, ∀s ∈ R.

For λ ≥ 1, to be chosen later, we define the saturation function µn as

µn(s) :=
R0

σmax
n

σn

(
Lσn

λ
s
)
, ∀s ∈ R,

with µmax
n = R0, Lµn = λ , Sµn = Sσnλ/Lσn , and αµn = αµ̃/λ . Then µn belongs

to the class of saturation functions S (p). From (34) and (35) we can establish
that the functions µ1, . . . ,µn satisfy conditions (32). It follows from Proposition 2
that the nested saturations feedback ϒ(y) defined in (20) globally asymptotically
stabilizes the origin of (18).
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We next choose λ in such a way that ϒ(y) is a p-bounded feedback law by
(R j)0≤ j≤p for System (18). To that end, first notice that

bµn =
αµ̃bσn

λασn

, (36)

bµn
=

αµ̃bσn

λασn

, (37)

Bµn
=

1
λ

min
{

αµ̃bσn

ασn

,
R0

Sσn/Lσn +2σmax
n−1/λ

}
, (38)

µn,q = µ̃n,q/λ
q, (39)

where bµn , bµn
, and µn,q are defined in (16), (17), and (14) respectively. Using

Proposition 1 it follows that, along every trajectory of the closed-loop system
(21), the control input U(·) = ϒ(y(·)) satisfies, for each j ∈ J1, pK,

sup
t≥0

{∣∣∣U ( j)(t)
∣∣∣}≤ j

∑
q=1

Gq, j
µ̃n,q

λ q . (40)

By substituting (36), (37), (38), and (39) into the recurrence of Proposition 1, it

can be seen that, for each j ∈ J1, pK,
j

∑
q=1

Gq, j µ̃n,q
λ q = 1

λ
P( 1

λ
) where P is a polynomial

with positive coefficients. This sum is thus decreasing in λ . Hence, we can pick
λ ≥ 1 in such a way that

j

∑
q=1

Gq, jµ̃n,q

λ q ≤ R, ∀ j ∈ J1, pK.

It follows that, for each j ∈ J1, pK,

sup
t≥0

{∣∣∣u( j)(t)
∣∣∣}≤ R≤ R j.

Recalling that the feedback ϒ is bounded by R0, we conclude that it is p-bounded
feedback law by (R j)0≤ j≤p for System (18).

With the linear change y = Hx proposed in (21), the closed-loop system (21)
can be put into the form of the original system (2) in closed loop with u = ϒ(Hx).
Thus, the sought feedback law ν of Theorem 1 is obtained by ν(x) = ϒ(Hx). This
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leads to the following choices of parameters:

an = R0/σ
max
n ,

ai =
Lσi+1 µmax

i
Lµi+1σmax

i
, ∀i ∈ J1,n−1K,

kT
n x =

Lσn

Lµn

xn,

kT
n−ix =

Lσn−i

Lµn−i

i

∑
k=0

i!
k!(i− k)!

(
αµ̃

Lµn

)k

xn−k, ∀i ∈ J1,n−1K,

and Lµn = λ .

3.2 Skew-symmetric systems with scalar input
The proof of Theorem 2 is divided into two steps:

Step 1: We will prove that for any β > 0 and any α ≥ 1/2, the origin of the
closed-loop system

ẋ = Ax−βb
bT x

(1+‖x‖2)α
(41)

is globally asymptotically stable;

Step 2: We will show that for any α ≥ 1/2 there exists a positive constant
β such the feedback law (5) is a p-bounded feedback law by (R j)0≤ j≤p for
system (4).

3.2.1 Step 1

Let β be a positive constant and α ≥ 1/2. We define Aβ := A−βbbT . The matrix
Aβ is then Hurwitz. To see this, observe that the Lyapunov equation AT

β
+Aβ =

−2βbbT holds and that the pair (Aβ ,b) is controllable. Thus there exists a real
symmetric positive definite matrix P ∈ Rn,n such that

PAβ +AT
β

P =−In. (42)

Furthermore, the closed-loop system (??) can be rewritten as

ẋ = Aβ x+βbbT x

(
1− 1

(1+‖x‖2)α

)
.
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Consider the candidate Lyapunov function given by

V (x) := xT Px+K
(
(1+‖x‖2)α+1−1

)
,

with K :=
4(‖bT P‖β )2

α+1 . The derivative of V along trajectories of (??) is then given
by

V̇ (x) =xT (PAβ +AT
β

P)x+2β

(
1− 1

(1+‖x‖2)α

)
xT PbbT x

− K(α +1)
2

(bT x)2.

Using that
∣∣xT Pb

∣∣≤ ‖x‖‖Pb‖ and(
1− 1

(1+‖x‖2)α

)∣∣xT PbbT x
∣∣≤ ‖x‖2

2
+β ‖Pb‖2 (bT x)2,

we get from (??) that

V̇ (x)≤−‖x‖
2

2
.

Therefore the origin of the closed-loop system (??) is globally asymptotically
stable.

3.2.2 Step 2

We first give and prove two lemmas which give explicit formula of the successive
derivatives of the trajectories and of the control signal.

Lemma 3. Given any β > 0 and α ≥ 1/2, each trajectory x : R≥0→ Rn of the
closed-loop system (??) is C∞ and satisfies, for any k ∈ N≥1,

x(k)(t) = Akx(t)+
k−1

∑
j=0

A jbU (k− j+1)(t), ∀t ≥ 0, (43)

where U(·) := ν(x(·)).

Proof of Assertion ??. The right hand side of (??) is C∞ and globally Lipschitz.
Therefore system (??) is forward complete and its trajectories are of class C∞(R≥0,Rn).
In particular, the successive derivatives of U(·) and x(·) are well defined. Equation
(??) then follows by a trivial induction argument using differentiation of (??) at
any order.
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Lemma 4. Given β > 0 and α ≥ 1/2, let x : R≥0→ Rn be any trajectory of the
closed-loop system (??) and let G(·) := 1+ ‖x(·)‖2. Then, for any k ∈ N≥1 and
all t ∈ R≥0, it holds that

G(k)(t) =
k

∑
m=0

(
k
m

) n

∑
i=1

x(m)
i (t)x(k−m)

i (t), (44)

and

U (k)(t) = −β

( bT x(k)(t)

(1+‖x(t)‖2)α

+
k

∑
l=1

(
k
l

) l

∑
a=1

da
Bl,a(G(1)(t), . . . ,G(l−a+1)(t))bT x(k−l)(t)

(1+‖x(t)‖2)α+a

)
, (45)

where da := (−1)a
a
∏
i=0

(α + i) and Bl,a are the Bell polynomials introduced in (7).

Proof of Assertion ??. Expression (??) is readily obtained from the general Leib-
niz rule. In order to establish (??), let f : R>0→ R>0 be defined as f (z) := 1

zα .
The feedback law can then be rewritten as

U(t) =−βbT x(t) f
(
G(t)

)
.

Using the general Leibniz rule we get that, for any k ∈ N≥1 and any t ∈ R≥0,

U (k)(t) =−βbT x(k)(t) f
(
G(t)

)
+

k

∑
l=1

(
k
l

)
dl

dt l [ f
(
G(t)

)
]bT x(k−l)(t). (46)

Thanks to Faà Di Bruno’s formula (Lemma 1), we obtain that, for each l ∈ J1,kK
and each t ∈ R≥0,

dl

dt l f
(
G(t)

)
=

l

∑
a=1

f (a)(G(t))Bl,a

(
G(1)(t), . . . ,G(l−a+1)(t)

)
. (47)

Since f (a)(z) = (−1)a
a
∏
i=0

(α + i)z−(a+α) for all a ∈ J1,kK, Assertion ?? is proven.

We now proceed with Step 2. Let p ∈ N, α ≥ 1/2 and (R j)0≤ j≤p be a family
of positive constants. Let R := min

{
R0, . . . ,Rp

}
. We now prove by induction on

j ∈ J0, pK that there exist β j > 0 such that, for any β ≤ β j, each trajectory of the
closed-loop system (??) satisfies

sup
t≥0

{∣∣∣U ( j1)(t)
∣∣∣}≤ R, ∀ j1 ∈ J1, jK.
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Note that this in turn ensures that the feedback law (5) is a j-bounded feedback
law by (R j1)0≤ j1≤ j.

We start by j = 0. Since sup
x∈Rn
{|ν(x)|} ≤ β , the base case follows by choosing

β0 = R.
Now assume that, for a given j ∈ J0, p− 1K, there exists β j > 0 such that for

any β ≤ β j the feedback law (5) is a j-bounded feedback law by (R j1)0≤ j1≤ j.
Using Lemma ??, we get that for each β ≤ β j there exists for each i ∈ J1,nK
and k ∈ J1, j+1K a multivariate polynomial Pi,k : Rn→ R of degree 1 (which not
depend on β ) such that∣∣∣x(k)i (t)

∣∣∣≤ Pi,k(|x1(t)| , . . . , |x2(t)|), ∀t ≥ 0. (48)

From (??) and (??) it follows that, for each k ∈ J1, j+1K, there exists a multivari-
ate polynomial Pk : Rn→ R of degree 2, which not depend on β , such that∣∣∣G(k)(t)

∣∣∣≤ Pk(|x1(t)| , . . . , |x2(t)|), ∀t ≥ 0. (49)

In view of Remark 4, (??), and (??), we conclude that, for each l ∈ J1, j + 1K
and each a ∈ J1, lK, there exists a multivariate polynomial Pl,a : Rn→R of degree
2a+1, which does not depend on β , such that∣∣∣Bl,a(G(1)(t), . . . ,G(l−a+1)bT x(k−l)(t)

∣∣∣≤ Pl,a(|x1(t)| , . . . , |x2(t)|), ∀t ≥ 0. (50)

Since P̄l,a and Pi, j+1 are respectively of degree 2a+ 1 and 1 and recalling that
α ≥ 1/2, we conclude that, for each l ∈ J1, j+1K and each a ∈ J1, lK, there exists
a positive constant Ml,a, j such that

sup
x∈Rn

{∣∣∣∣∣ Pl,a(x)

(1+‖x‖2)α+a

∣∣∣∣∣
}
≤Ml,a, j, (51)

and, for each i ∈ J1,nK, there exists a positive constant Qi, j such that

sup
x∈Rn

{∣∣∣∣∣ Pi, j+1(x)

(1+‖x‖2)α

∣∣∣∣∣
}
≤ Qi, j. (52)

Let β j and x(·) be a trajectory of the closed-loop system (??). Thanks to
Assertion ?? (with k = j+1), we get that, for all t ∈ R≥0,

∣∣∣U ( j+1)(t)
∣∣∣ ≤ β

( ∣∣∣bT x( j+1)(t)
∣∣∣

(1+‖x(t)‖2)α

+
j+1

∑
l=1

(
j+1

l

) l

∑
a=1

da

∣∣∣Bl,a(G(1)(t), . . . ,G(l−a+1)(t))bT x( j+1−l)(t)
∣∣∣

(1+‖x(t)‖2)α+a

)
.
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Therefore a straightforward computation using (??), (??), (??), (??), and (??)
leads to the existence of a positive constant M j such that∣∣∣U ( j+1)(t)

∣∣∣≤ βM j, ∀t ≥ 0. (53)

Thus for all β ≤ min 0≤ j≤p{β j,R/M j}, it follows that sup
t≥0

{∣∣∣U ( j+1)(t)
∣∣∣} ≤ R.

This ends the induction on j and concludes the proof of Theorem 2.

4 Numerical examples

4.1 The triple integrator
In this subsection, we illustrate the applicability and the performance of the feed-
back law proposed for Case 1 on a particular example. We use the procedure
described in Section 3.1.3 in order to compute a 2-bounded feedback law by
(2,20,18) for the multiple integrator of length three. Our set of saturation func-
tions is σ1 = σ2 = σ3 = σ , where σ is an S (2) saturation function with constants
(2,1,2,1) given by

σ(r) :=


r if |r| ≤ 1,
h1(r) if 1≤ |r| ≤ 1.5,
h2(r) if 1.5≤ |r| ≤ 2,
2sign(r) otherwise,

where h1 and h2 were picked in order to ensure sufficient smoothness for σ :

h1(r) := sign(r)(−4+15 |r|−18r2 +10 |r|3−2r4),

h2(r) := 2sign(r)(25−60 |r|+54r2−21 |r|3 +3r4).

In accordance with (34) and (35), we choose µmax
2 = 2/5, Lµ2 = 1/5, µmax

1 = 1/12,
and Lµ1 = 1/24. Following the procedure, we obtain that the two first time deriva-

tives of the control signal U(·)=ϒ(y(·))=ϒ(Hx(·)), with H =

1/λ 2 2/λ 1
0 1/λ 1
0 0 1

,

satisfies

sup
t≥0

{∣∣∣u(1)(t)∣∣∣} ≤ (7.91+4.35λ )/λ
2,

sup
t≥0

{∣∣∣u(2)(t)∣∣∣} ≤ 26.2λ 3 +396λ 2 +1147.2λ +125.2
λ 4 .
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Choosing λ = 6.5, we obtain that sup
t≥0

{∣∣∣U (1)(t)
∣∣∣} ≤ 0.9, and sup

t≥0

{∣∣∣U (2)(t)
∣∣∣} ≤

18. Observing that the amplitude of U is below 2 by construction, this confirms
the fact that this is a 2-bounded feedback by (2,20,18). The desired feedback is
then given by

ν(x) =−σ

( 1
6.5

(
x3 +

1
5

σ
(
5(x2/6.5+ x3

+
1

24
σ
(
24(x3 +2x2/6.5+ x1/6.52))

))))
.

This feedback law is tested in simulations and the results are presented in Fig-
ure ??. Trajectories of triple integrator with the above feedback are plotted in grey
for several initial conditions. The corresponding values of the control law and its
time derivatives up to order 2 are shown in Figure ??. These grey curves validate
the fact that asymptotic stability is reached and that the control feedback magni-
tude, and two first derivatives, never overpass the prescribed values (2,20,18). In
order to illustrate the behavior of one particular trajectory, the specific simulation
obtained for initial condition x10 = 446.7937, x20 = −69.875 and x30 = 11.05 is
highlighted in bold black.

It can be seen from Figure ?? that our procedure shows some conservativeness
as the amplitude of the second derivative of the feedback never exceeds the value
2, although maximum value of 18 was tolerated.

4.2 The harmonic oscillator
We finally test the performance of the control law proposed for Case 2 through
example of a 1-bounded feedback law by (1,1) for an harmonic oscillator. We
consider the following system{

ẋ1 = 10x2,
ẋ2 = −10x1 +u.

In accordance with Theorem 2, we take u(x1,x2) = −βx2/
√

1+ x2
1 + x2

2 with

β = (−10+
√

108)/4. The behavior of the resulting closed-loop system is pre-
sented in Figure ?? for initial conditions x10 = 1 and x20 =−1. The corresponding
values of the feedback and its first time derivative are shown in Figure ??, where
it can be seen that these values stay below 1.

5 Conclusion
In this paper, we have shown that any LTI system admitting either only zero eigen-
values or simple eigenvalues with zero real part can be globally asymptotically sta-
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Figure 2: Evolution of the states for a set of initial conditions.
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Figure 5: Evolution of the control and its first derivative for the same initial con-
ditions.
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bilized by a static feedback whose amplitude and p first time derivatives along any
trajectory of the closed-loop system can be bounded arbitrary prescribed values.
We have shown that the former case boils down to studying chains of integrators,
while the latter one sums up to LTI systems with skew-symmetric internal dynam-
ics and single input. For integrator chains, the design of this feedback relies on the
technique of nested saturations first introduced in [?]. We also showed that this
strategy does not work in general for the case of skew-symmetric systems. For
this second case, we have proposed an alternative control law. The applicability
of the design procedure and the performance of the resulting closed-loop system
was tested on two particular examples: the triple integrator and the harmonic os-
cillator.

The first natural issue to address next is designing p-bounded feedback laws
without restrictions on the spectrum of A, namely to just assume that all the eigen-
values of A have non positive real parts. The second problem that one may con-
sider is to relax the requirement of the order p of considered successive deriva-
tives, that is, to design (if possible) a smooth bounded feedback law such that
the feedback itself and all its successive derivatives along any trajectory of the
closed-loop system are bounded arbitrary prescribed values.
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