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dSATIE, ENS-Cachan, Université Paris-Saclay, 61 avenue du Président Wilson, 94230 Cachan CEDEX, France

eDepartement MMC, EDF R&D, EDF Lab Les Renardieres, 77818 Moret-sur-Loing, France

Abstract

Flaw characterization in eddy current testing usually requires to solve a non-linear inverse prob-
lem. Due to high computational cost, Markov Chain Monte Carlo (MCMC) methods are hardly
employed since often needing many forward evaluations. However, they have good potential in
dealing with complicated forward models and they do not reduce to only providing the parame-
ters sought. Here, we introduce a computationally-cheap surrogate forward model into a MCMC
algorithm for eddy current flaw characterization. Due to the use of a database trained off-line,
we benefit from the MCMC algorithm for getting more information and we do not suffer from
the computational burden. Numerous experiments are carried out to validate the approach. The
results include not only the estimated parameters, but also standard deviations, marginal densities
and correlation coefficients between two parameters of interest.

Keywords: Inversion, MCMC, eddy-current, metamodel, Bayesian.

1. Introduction

In eddy current flaw characterization, the aim is to extract information about defects possibly
found within the inspected part. This information can usually be characterized by several pa-
rameters. As an example, a volume crack can be described by length, depth and opening width.
Recovering them from observations is an inverse problem with a limited set of unknown param-
eters, here three. According to the state of art, analytical and statistical solution methods are
proposed.

Analytical ones [4, 44] address the analytical relation between parameters and measurements
and try to inverse it analytically. Yet, they are limited to special cases wherein this relation
is simple enough so that analytical inversion is suitable. Furthermore, most are very sensitive
to noise, and work only for high Signal-to-Noise Ratio (SNR) situations. Statistical ones are
popular in parameter inversion because of high inversion accuracy and robustness vs. noise. Yet,
what is of the most interest to us here is their ability of managing complicated models. As in
the example above, flaw characterization in Eddy Current Testing (ECT) is an inverse problem
usually involving a limited number of unknowns [10, 16]. However, the problem is still difficult
to solve due to the complexity of the forward model which describes the relation between flaw
parameters and measurements, nonlinear in most situations.

Statistical methods are usually transformed into an optimization problem solved by a numerical
optimization algorithm, as in [1, 14, 16, 37, 47]. Due to the complexity of the problem, statistical
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methods usually need to overcome two hurdles: high computational cost due to many evaluations
of the forward model, non-convex objective function due to nonlinear parameter dependence.
Gradient-based algorithms are widely used [1, 14, 16, 37, 47]. Yet, to calculate or approximate
the gradient subject to the unknown parameters might not always be feasible. Furthermore, they
cannot solve the non-convex problem, meaning to be blocked in a local minimum once in it.

Markov Chain Monte Carlo (MCMC) methods [24, 31, 45] have been used in ECT for Bayesian
analysis [19, 36]. However, they are not widely used for solving ECT inversion problems because
of high computational cost. Though developments have been made in the last two decades to
accelerate MCMC algorithms [12, 17, 23, 25], the computational burden remains heavy if willing
to apply them directly in ECT.

We propose a surrogate model based MCMC approach to solve the ECT inverse problem. In
this approach, a data-fitting surrogate forward model is introduced into a classical MCMC method
where only interpolations are performed to approximate the forward evaluations during a MCMC
process, then helping to reduce the computational cost. Since the employed MCMC algorithm is
gradient-free and able to leave local minima, this makes it possible to solve non-convex problems.
More importantly, by performing Bayesian analysis on MCMC results, it offers more information
than the estimated parameters, like variances of estimates, correlation coefficients, and marginal
posterior distributions. We describe the forward metamodel in § 2, the MCMC inversion algorithm
in § 3, and we provide experimental validations in § 4 and § 5. An Appendix devoted to the forward
solever and meatmodel generation follows.

2. Data-fitting metamodel

A general forward model with additive Gaussian noise can be described by

y = f(x) + ǫ, ǫ ∼ N (0, σ2
y), (1)

where x ∈ R
N , y ∈ C

M and ǫ are unknown parameters, observations and noise, resp. N is the
number of unknown parameters while M is the total number of measurement points. σ2

y is the
noise variance of the same size as y. f(x) is the function that yields the physical relation between
x and y. Depending upon the configuration of inspection, different methods can be used to get
f(x). The Method of Moments (MoM) [9, 39] is one of the most used.

For statistical parameter inversion, thousands of forward evaluations could be required, hence,
in effect overwhelming the algorithm if we employ MoM directly within the inversion. To overcome
this problem, data-fitting surrogate models, also called metamodels [7, 21, 22, 30, 40], are proposed.

A metamodel includes a database trained off-line, independently from the inversion, and an
on-line interpolator, called upon only when a forward evaluation is needed. Once the database
is trained, it can be applied onto all problems which are involving the same forward modeling,
helping to significantly save cost whether repetitive use.

In our situation, the database is adaptively trained using the CIVA software where a MoM
simulator [32, 33] is employed in order to perform the forward evaluation during the said training.

Denoting D =
{

{xj, f̄(xj)}, j = 1, 2, · · · , J
}

as the metamodel database, f̄(xj) is the MoM

simulator and J is the total number of database pairs. Details on this adaptive database training

are found in [7, 21]. In brief, a global approximation is achieved, |f(xj) − f̄(xj)

f̄(xj)
| ≤ ǫ for all

xj ∈ D, by sequentially refining the parameter space where ǫ is the relative tolerance for the
adaptive database training, set to 10−2 in our situation.

For a given problem, J depends upon the smoothness of f̄(x). Fortunately, f̄(x) is a smooth
function in most ECT applications due to the use of low frequencies and the high conductivity
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of the media under inspection. Thus, the global approximation accuracy required in the adaptive
database training can be achieved with a limit number of pairs.

As for the interpolation, multi-linear [5], kriging [8] or sparse-grid [6] methods have been
proposed in our previous work. Multi-linear interpolation is fast in terms of computation for
a small number of unknowns, kriging is more accurate but requires the pre-estimation of the
covariance matrix while sparse-grid is more suitable to high dimensional problems. In terms of
time spared compared with a MoM simulator, it can be several orders of magnitude. Let us take
the two examples discussed in § 4 and § 5, a MoM simulator needs seconds to perform one forward
simulation while a multi-linear interpolation only needs milliseconds (on a 3.4 GHz PC). In the
inversion, the time saving will be multiplied by the number of iterations, which is often more than
thousands for a MCMC method.

3. MCMC parameter inversion

3.1. Posterior mean

Least Square (LS) and Weighted Least Square (WLS) are the most used inversion criteria
in ECT. For well-posed problems, LS solution yields a good estimator for x. Yet ECT is often
ill-posed, and for noisy data and problems with many unknown parameters, multiple solutions
might exist. To handle multi-solution and local minima, we propose the Posterior Mean (PM)
inversion approach [11, 27]

x̂ = E[p(x|y, σ2
y , θ)] = E[p(y|x, σ2

y) p(x|θ)] (2)

to be tackled by a MCMC simulation algorithm. In Eq. (2), p(x|y, σ2
y , θ), p(y|x, σ2

y) and p(x|θ)
respectively denote posterior probability, likelihood, and prior. θ is the hyper-parameter associated
with the prior model. For the uniform one here (given in Eq. (3)), it corresponds to the parameter
ranges.

The likelihood can be obtained from the Gaussian noise model in Eq. (1). The prior p(x|θ)
corresponds with the information known about x. E.g., if x represents the dimension parameters
of a 3-D volume flaw, all non-negative and within a certain range. Thus, an uniform prior model
can be used:

p(x|M) =
χU(x)

volume(U)
, U = [a1, b1] × · · · × [aN , bN ] (3)

where U is the uniform parameter space with N denoting the number of unknown parameters.
χU(x) is the indicator function on U . All values of our interest for the i-th parameter xi in the
vector x should be included in the corresponding range between ai and bi.

This uniform model is a general choice without further prior information. A different prior
model can be employed according to available information for parameters of interest, e.g. a log-
normal distribution can be used for lift-off. However, this will not change too much the inversion
result when the measurements are informative enough, which is the case for the two examples
discussed in § 4 and § 5.

3.2. MCMC sampling

From Eq. (2), we see that PM estimation corresponds with the expectation of the posterior
distribution. Due to the multi-dimensionality and the complexity of the posterior distribution,
it is still hard to calculate its expectation even with a given Gaussian likelihood and an uniform
prior. So, we follow an alternative path, a MCMC simulation method, to approximate this value.

MCMC is a family of numerical sampling methods enabling to generate samples following a
given distribution. We use the algorithm Random Walk Metropolis-within-Gibbs (RW-MWG)
proposed by Tierney [45] based on the classical Metropolis-Hasting method [29, 31]. The author
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adopted Gibbs sampler in the Metropolis-Hasting method in order to accelerate the sampling for
independent prior distributions. Fig. 1 illustrates its implementation in our situation. The forward
evaluation f(x) is called in the decision of acceptance, where it corresponds to an interpolation
based on the pre-trained database instead of a MoM simulator f̄(x).

Largest-likelihood initialization

x(0) = argmax
x∈D

{

p(y|x, σ2
y)
}

RW-MWG new sample generation

x(p) ∼ p(x|θ)
Acceptance ratio α = min

{

1,
p(y|x(p),σ2

y)

p(y|x(k−1),σ2
y)

}

Sample appending

x(k) = x(p)

Stop criterion

k < K

END

No

Yes

k
+
+

Figure 1: Implementation of metamodel-based MCMC algorithm for inversion.

The main discrepancy between our implementation and the classical RW-MWG method is the
initialization. Instead of a random sample, we use the sample corresponding with the largest likeli-
hood value among all samples within the metamodel database as our initialization. As illustrated
in Fig. 2, this can help to reduce the warm-up iterations, which are time-consuming and introduce
a bias on the parameter estimation. When the posterior is distributed only on a small part of
the entire prior volume, problems of warm-ups are also more crucial. Unfortunately, most of the
problems which we are dealing with here are as such. Since the sample with largest likelihood is
never too far away from the true parameters, a much smaller number of warm-ups will be needed
when we simply initialize from this sample.

3.3. Results from a MCMC algorithm

Compared with other parameter inversion algorithms, like LS and Maximum Likelihood (ML)
(with help of numerical optimization), an advantage of the MCMC algorithm is to provide more
than just flaw parameters.

• Parameter estimation

Upon running a MCMC algorithm, a series of samples {x(1),x(2), · · · ,x(K)} is available, K is
the total number of iterations in Fig. 1. Since they follow the posterior distribution p(x|y),
we get parameter estimates. PM estimators in Eq. (2) can be approximated by averaging:

x̂i ≈
1

K

K
∑

k=1

x
(k)
i , i = 1, 2, · · · , N. (4)

• Parameter estimation variance

Estimation variances follow at no additional cost:

σ2
i =

1

K(K − 1)

K
∑

k=1

(

x
(k)
i − x̂i

)2
, i = 1, 2, · · · , N, (5)
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(a) random initialization far away from true parameters,
long tail of warm-ups
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(b) largest-likelihood initialization

Figure 2: Comparison between random and largest-likelihood initialization; the true parameters are located within
the concave bottom of the negative-log likelihood mesh.

quantifying estimation uncertainty, x̂i estimated parameter in Eq. (4).

• Marginal posterior distributions

From MCMC samples, we get the posterior distribution by calculating their histograms.
However, for a large number of unknowns (N > 3), it is difficult to visualize this distribution.
We are more keen to marginal distributions along each parameter (1D marginal) or within
planes of two parameters (2D marginal). Taking 1D distributions as examples, the latter
are approximated by

p(xi|y) ≈ histogram
(

{x(1)
i , x

(2)
i , · · · , x(K)

i }
)

, i = 1, · · · , N. (6)

For 2D ones, we calculate the 2D histograms on the MCMC samples.

• Correlation coefficient

Correlation coefficient ρ(xi, xj) between two parameters xi and xj follows as well, helping to
understand the difficulty in parameter inversion and relative bias if extra noise:

ρ(xi, xj) =

∑K

k=1(x
(k)
i − x̄i)(x

(k)
j − x̂j)

σiσj

, i 6= j; i, j = 1, · · · , N. (7)

x̂i, x̂i are the estimated parameters in Eq. 4; σi, σj are the corresponding standard deviations
obtained in Eq. (5). ρ(xi, xj) is between −1 and 1. The closer to zero, the less correlation
between xi and xj . Strong correlation indicates that the parameters are difficult to estimate.
A small misestimate of one can lead to a large misestimate of the other, and weak noise can
cause large errors on both. Yet, low correlation does not mean easy estimation, since this
depends on the form of the posterior distribution. The topic will be discussed later in § 4
and § 5.

3.4. Discussion on MCMC parameter inversion

The sampling number K needs to ensure the convergence of the MCMC process. [18] presents
different ways of determining the MCMC convergence. However, most of them are post-analysis
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Table 1: WFNDE 2008 eddy current benchmarks.

Flaw flaw parameters

depth d length l width w

40I 0.62 (from top) 20 0.11
80I 1.24 (from top) 20 0.14
40E 0.62 (from back) 20 0.11
80E 1.24 (from back) 20 0.14

methods. We follow a more practical strategy where K is chosen to be of sufficient large value,
guaranteeing the convergence according to experience, e.g., K = 104 for the 3-parameter case in
§ 4, K = 105 for the 5-parameter case in § 5.

The RW-MWG method used in this work is a classical MCMC algorithm, it is gradient-free
and it can be applied to all kinds of ECT inversion problems regardless of the forward complexity
and the chosen prior model. One of its shortcomings is that the required sampling number K

ensuring the convergence of the MCMC process increases rapidly with the number of unknown
parameters. Thus, it is not suitable for solving large-dimensional problems.

Recent works in MCMC have led to many advanced algorithms, like adaptive MCMC [3, 26],
particle MCMC [2, 20] and hybrid MCMC [35, 38]. With proper extension, these algorithms can
also be employed here to accelerate the algorithm. However, these improvements in MCMC often
require further information. For example, the adaptive MCMC requires to estimate the covariance
matrix of the unknowns; hybrid MCMC needs to refer to gradient or even Hessian information of
the objective distribution. In our case, such information is not always easy to obtain. This is also
the reason why we propose to use a classical MCMC method, RW-MWG discussed in § 3.2.

4. Benchmark experimental validation

4.1. Benchmark set-up & measurements

To validate our metamodel-based MCMC parameter inversion, we first apply it to slab inspec-
tion in the 2008 ECT benchmark of World Federation of Nondestructive Evaluation (WFNDE)
centers [43], sketched in Fig. 3. We aim at retrieving flaw dimensions from surface scans of
impedance variations.

Coil

l

w
O

x

y

z

y-z profile

flaw

d

y

zcoil
lift-off

Inspected inconel plate

thickness: 1.55 mm
conductivity: 106 S/m
relative permeability: 1

Coil

internal diameter: 2 mm
external diameter: 3.25 mm
height: 2 mm
turns: 328

Inspection

frequency: 300 kHz
lift-off: 0.303 mm
steps: 0.5 × 0.5 mm2

number of steps: 41 × 57

Figure 3: Sketch of slab flaw inspection problem in 2008 WFNDE eddy current benchmark.

Four different flaws are considered, two open at the top surface of the slab, two at its bottom
surface, referred as 40I, 80I, 40E and 80E, resp. Tab. 1 provides depths d, lengths l, and widths
w.
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Fig. 4 displays maps of amplitudes. Those for flaws opening at the bottom surface are generally
smaller than for those opening at the top surface. And the one for 40E is so small that SNR is
only about 9 dB. So, one question is whether the approach correctly yields the flaw parameters.

(a) 40I, SNR ≈ 25 dB (b) 80I, SNR ≈ 20 dB (c) 40E, SNR ≈ 9 dB (d) 80E, SNR≈ 25 dB

Figure 4: Amplitude maps of measurements and approximated SNRs.

4.2. Metamodel database training

For the benchmark test case, we first trained two databases, one for top-surface flaws, the other
for back-surface flaws. Three flaw characteristics, depth, length and width, are taken as unknown.
An adaptive training procedure [21] based on a multi-linear interpolator [5] is employed. Therein,
we initialize with a certain number of random points, samples being added iteratively at positions
where interpolation uncertainty is large. The process stops when maximal uncertainty is smaller
than a threshold. For all input points, outputs are simulated by MoM [33] in aforementioned
CIVA.

Table 2: WFNDE2008 tests - metamodel parameter bounds and total number of samples.

Parameter bounds
number

of points
d (% plate thickness) l (mm) w (mm)

inf. sup. inf. sup. inf. sup.
25 85 13 23 0.08 0.22 2000

Tab. 2 summarizes these two metamodels (identical for top-surface flaw model and back-
surface flaw model). The bounds for each parameter are chosen according to the range of flaw
dimensions of our interest. In terms of computational cost, there are 2000 input-output pairs in
each metamodel. So we need to run 2000 simulations by using the method in [33]. However, those
can be performed off-line. Once the database available, it can be used for all measurements with
the same modeling. The bounds on the parameters can also be extended in order to include more
flaw dimensions.
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Table 3: Estimated flaw parameters for WFNDE 2008 benchmark measurements, relative errors larger than 10%
in bold.

Flaw estimated parameters x̂± σ (mm)
d l w

40I
0.62 20 0.11

0.488±0.001 19.828±0.022 0.225±0.002

80I
1.24 20 0.14

1.129±0.001 19.937±0.007 0.219±0.001

40E
0.62 20 0.11

0.607±0.003 19.231±0.097 0.244±0.007

80E
1.24 20 0.14

1.228±0.001 19.924±0.008 0.156±0.002

(a) experimental (b) simulated at
estimated parameters

(c) simulated at
reference parameters

(d) |(b)-(a)|,
RMSRE= 2.56%

(e) |(c)-(a)|,
RMSRE= 1.42%

∗ RMSRE: Root Mean Squared Relative Error.

Figure 5: Amplitudes of simulated noise-free data at estimated flaw parameters (l̂, ŵ, d̂) = (0.49, 19.83, 0.23) mm
and at reference flaw parameters (l, w, d) = (0.62, 20, 0.11) mm in comparison with experimental measurements for
flaw 40I in WFNDE 2008 benchmarks.

4.3. MCMC parameter estimation results

By applying the metamodel-based MCMC algorithm, we obtain the results displayed in Tab. 3,
reference parameters being in gray. Flaw lengths are very well estimated with relative errors less
than 1% whereas depths and widths are not, especially widths. Except for 80E, the estimated ones
are close to 0.25 mm while reference values are 0.11 mm and 0.14 mm. Such a small flaw width
appears out of the inversion ability based on current inspection configuration. The measurement
error is larger than the difference introduced between flaws with widths of 0.11 mm and 0.25 mm.
To illustrate the topic further, we give in Fig. 5 the simulated noise-free impedance variations at
estimated and reference sizes compared with experimental measurements for the worst case flaw,
40I. From the differences of amplitudes in Figs. 5d and 5e, simulated data at estimated parameters
appear closer to the experimental ones than the simulated data at reference parameters.

As discussed in § 3.3, the MCMC algorithm more than estimated parameters and variances.
We show in Fig. 6 the evolution of MCMC samples vs. iterations for the best case of parameter
inversion, flaw 80E. The algorithm converges fast, after a short period of warm-up (around 400
iterations). Compared with the total number of iterations (K = 104), warm-up iterations are
few. This is due to the use of the largest-likelihood initialization. We imagine that it could be
far away from the true value if we were to randomly initialize, so many warm-up iterations would
be necessary. In consequence, the parameter inversion results should be more biased because of
those.
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Figure 6: MCMC samples versus iterations for flaw 80E.

From Fig. 6, we also see that the likelihood remains nearly the same after warming-up. If a
square error based criterion is used for inversion, the algorithm could be stopped at any of the
values after warm-ups. In contrast, the proposed PM inversion is always able to provide an unique
solution even for complicated problems where the likelihood distribution has a flat top or when
multiple least-square solutions exist.

From Fig. 7, we see that estimating the sizes of a single flaw is simple, and the estimated 1D
marginal distributions are close to Gaussian ones. We also see that flaw depth and width are
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highly correlated, with ρ(w, d) = −0.97.

5. Experimental validation in industry context

In § 4, we applied the metamodel-based MCMC inversion method on benchmarks. The results
showed sufficient accuracy for practical use. But nuisance parameters, like lift-off, plate thickness,
material homogeneity, cannot be exactly known. Next, we show how it works in such situations.

5.1. Industry test example

The test data are of a surface scan with an array probe [34] on an Inconel 600 plate of thickness
1.27 mm (standard thickness for steam generator tube in nuclear power plants). Several flaws of
different sizes are present at the top surface, see Fig. 8. Because of fabrication and manual
inspection, lift-off and plate thickness are known only approximately. In the forward modeling,
a single-flaw model is used, so measurements corresponding to the flaw of interest are extracted
from the whole scan.

l1mm l2mm l3mm l4mm l5mm

l10mm

w02mm

d30

d70

l6mm l7mm

l8mm l9mm l11mm l12mm

w01mm w03mm w04mm w05mm

d10 d20 d40 d50

d60 d80 d90 d100

 

 

Amplitude of impedance variation (mV)

1 2 3 4 5

Figure 8: Measurements with an array probe, only flaws l5mm, l10mm, w01mm, w02mm, d30 and d70 (in box) are
discussed.

To avoid mis-quantification of flaw sizes from uncertain lift-off and plate thickness, we take
them as unknown in the characterization. As in the above, we first train a database for a single-
flaw model where flaw dimensions (depth, length, width), lift-off and plate thickness are unknown
parameters. Bounds are chosen from prior information. Then, we apply the metamodel-based
MCMC inversion approach in § 3 individually upon extracted measurements with only one flaw
within the field of view.
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Table 4: Estimated parameter results using 105 MCMC samples from array probe experimental data. Reference
values are in gray, results with bias larger than 15% in bold.

Flaw
estimated parameters x̂± σe (mm)

lo l w d h

l5mm
1 5 0.2 0.508 1.27

0.89±0.10 4.91±0.24 0.17±0.12 0.425±0.063 1.21±0.03

l10mm
1 10 0.2 0.508 1.27

1.00±0.13 10.06±0.27 0.24±0.09 0.484±0.074 1.27±0.03

w01mm
1 9 0.1 0.508 1.27

0.98±0.16 9.04±0.32 0.27±0.09 0.449±0.087 1.28±0.03

w02mm
1 9 0.2 0.508 1.27

1.00±0.15 9.03±0.37 0.22±0.09 0.499±0.081 1.28±0.04

d30
1 9 0.2 0.381 1.27

1.08±0.21 9.12±0.32 0.22±0.10 0.365±0.073 1.26±0.05

d70
1 9 0.2 0.889 1.27

0.95±0.05 9.20±0.11 0.29±0.04 0.788±0.031 1.21±0.02

5.2. MCMC results

We discuss six typical flaws: l5mm, l10mm, w01mm, w02mm, d30 and d70, with reference
sizes in Tab. 4 in gray. Inversion results with corresponding bias larger than 10% are in bold.
The flaw width appears still hard to estimate because of small value and high correlation with
others. Furthermore, for most cases, w is over-estimated, d under-estimated, confirming the inverse
correlation relation in § 4.

For an inversion with five unknowns, it is not easy to exhibit the posterior distribution. We
display in Fig. 9 the 2D and 1D marginal distributions for flaw l10mm. The posterior distribution
is more complicated than Gaussian. The correlation coefficient ρ(xi, xj) cannot fully describe
the correlation, e.g., between w and lo, we have complicated correlation from the 2D marginal
distribution yet ρ(w, lo) is −0.09.

Due to lo and h being unknown parameters, this 5-parameter inversion is far more difficult
to solve than the 3-parameter one in § 4. From the 2D marginal distributions, we observe that
multiple local or even global maxima occur (multiple peaks on 2D marginal distributions in Fig. 9).
So a gradient-based inversion could be blocked in any of these local maxima. This is also one main
interest of the MCMC-based inversion approach, to manage problems with local minima and yield
marginal distributions in addition.

6. Conclusions

We have presented a general framework of metamodel-based MCMC parameter inversion.
Due to a pre-trained database, a MCMC method becomes usable in terms of computational cost.
Thousands of forward evaluations are replaced by cheap interpolations. We have discussed how a
classical MCMC method can be applied to flaw characterization in eddy current testing. We have
shown that variances of the estimation, correlation coefficients and marginal posterior distributions
can be obtained from MCMC results also. The approach has been tested on experimental data:
one with flaw sizes as unknown parameters, one with lift-off and plate thickness unknown as
well. The analysis has been run on eddy-current cases, but applies to other testings, ultrasound,
infrared, radio-frequency, etc. The main limit is that the number of unknown parameters be not
too large.
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Figure 9: 2D and 1D marginal distributions estimated from histograms of MCMC samples for flaw l10mm, corre-
lation coefficients are in boxed text at top of the 2D marginal posterior images and the corresponding negative-log
likelihoods and parameter values versus MCMC iterations (on top-right).
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A. Appendix: forward solver and metamodel generation

A.1. The employed forward solver

In this work a Method of Moments (MoM) [28] based solver is employed (CIVA software [13]).
Use of MoM in ECT signal modeling is well established, with origins in NdT by ECT about three
decades ago [42] and before, with seminal works in geophysics [41, 46]. Considering canonical ge-
ometries, MoM does couple well with semi-analytical approaches for which a closed-form definition
of the dyadic Green function is available in the literature [15]. The semi-analytical approach has
been widely applied and validated on many test cases of interest in the NdT community [13] [42].
It enables to express a discontinuity within the inspected medium via a localized secondary source
described with very few unknowns (only the discontinuities are meshed).

Thus, from reciprocity [4] one retrieves the effect of this secondary source on the primary one
with a simple integration on the volume associated to the secondary source. E.g., in the ECT
signal modeling of a planar multi-layered conductive non-ferromagnetic structure inspected with
a coil in absolute mode, the reciprocity theorem reads as

∆Z =
1

I2

S
∑

s=1

∫

Ωs

1

σs

Jinc
s (r) · ps (r) dr, (8)

r ∈ Ωs, s ∈ 1, S.

where Ωs is the volume of the s-th flaw in the piece, Jinc
s the current density induced by the coil

in region Ωs without flaw, ps the electric dipole density associated to the flawed region Ωs, I the
coil driven current, and σs the conductivity associated to the layer where the s-th dipole density is
located. Quantities ps are solutions of a system of S integral equations. In the case of a Volume
Integral Method (VIM) [42] they correspond to second-kind Fredholm equations

Jinc
o (r) = po (r) −

S
∑

s=1

fo (r) k2
o

∫

Ωs

Gos (r, r′)ps (r′) dr′, (9)

r′ ∈ Ωs, r ∈ Ωo, o ∈ [1, ..., S] .

In the case of a Surface Integral Method (SIM) the set of state equations is obtained from first-kind
Fredholm equation [9] [33] as

no · Jinc
o (r) = −

S
∑

s=1

fo (r) k2
o

∫

Ωs

Gnons

os (r, r′) ps (r′) dr′, (10)

r′ ∈ Ωs, r ∈ Ωo, o ∈ [1, ..., S] .

where, for both equations (9) and (10), Ωs is the source volume and Ωo the observation one, in
case of one flaw problem Ωs = Ωo. The system associated to (9) is made of S vector integral
equations, whereas for the system (10), the integral equations are reduced to scalar equations by
projection onto the direction no of the flaw opening. In all these equations, the source point is
at r′ = (x′, y′, z′), while the observation point is at r = (x, y, z), Ωs representing the flaw domain.
The contrast function fo (r), is fo (r) = [σo (r) − σo]/σo where σo (r) and σo are the flaw and the
hosting layer conductivity, resp. The wave number is ko =

√
iωµ0σo and is associated to the layer

hosting the o-th flaw. Subscripts s and o are employed to denote the quantities associated to the
source and the observation, resp. If only one crack occupies the layered structure, then s = o.
In (9) the electric-electric dyadic Green function Gos (r, r′) is used to describe the electric field
at point r due to a vector source located at r′. Its component Gnons

os (r, r′) in (10) describes,
when considering co-ordinate systems adapted to the source and observation flaws, the effects of a
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ns-oriented dipole placed at r′ onto the no-oriented component of the electric field at observation
point r. To solve (9) and (10), flawed regions are uniformly meshed in parallelepiped cells, then
MoM has been employed to build a solvable matrix linear system.

A.2. Evaluation of metamodel accuracy of the experimental problem

In this contribution, we employed metamodels to replace the standard forward solver within
the MCMC-based optimization strategy. Its use should be justified in terms of accuracy in order
to employ it as a ”black-box”. In this subsection we briefly discuss the accuracy of the metamodel
and how it can be assessed.

First, we introduce some useful quantities that enable to evaluate the metamodel predictions.
Since we deal with a functional output we have to define a suitable error metric for comparing
forward solver outputs with the metamodel one. To this end, the Normalized L2 Error (NL2E)
is defined as follows

NL2E (xi) =
‖F {xi} −M{xi}‖2

‖F {xi}‖2
,

where F {xi} stands for the forward solver evaluated on the i-th test set sample and M{xi}
corresponds to the metamodel evaluated on the same sample. The Mean of NL2E (MNL2E)
can thus be defined as

MNL2E =
1

Ntest

Ntest
∑

i=1

NL2E (xi) ,

where Ntest corresponds with the test set size.
In this appendix, we have chosen to assess the prediction performance (e.g., MNL2E) by

employing a representative external test set having Ntest = 500 samples. The test samples have
been generated by employing the CIVA software run on a set of input values generated through
a Latin Hypercube Sampling (LHS) algorithm (Matlab function lhsdesign). It is worthwhile to
mention that MNL2E can be estimated also through cross-validation. To better underline the
robustness of the developed metamodel, we have chosen to avoid cross-validation in our analysis
since employed (with very similar results) in the database and metamodel generation phase.

In Fig. 10 we show the accuracy in prediction by comparing forward solver results with the
metamodel one. A good agreement is found with low dispersion around the nominal gray line
(i.e., the line representing the full agreement). Through the histogram plot shown in Fig. 10 we
quantify the sample distribution versus the associated error NL2E value. On the same plot the
cumulative samples distribution curve in percentage is shown. This curve shows that about 64%
of the test set samples has an error less than 6.06, which corresponds to the MNL2E. Moreover,
we observe that about 85% of the test set samples has less or equal than 10% NL2 error. These
results show that the discrepancy between metamodel and forward model results is fairly low. So,
no particular bias is expected when the metamodel is employed instead of the “true” numerical
solver.

Let us emphasize that in “real-life” experiment, due to conditions of inspection, imperfect
matching between simulated and experimental data is always faced with, no matter the kind of
metamodel or forward solver. So, the accuracy of the metamodel should be assessed by keep-
ing into account simulations results and experimental data together. Unfortunately this kind of
information can be established only a-posteriori upon availability of experimental data.

A.3. Comments and remarks on the employed strategy

In this work, the considered forward solver has been based on a validated semi-analytical
approach which allowed to be, from the computational time point of view, almost independent
with respect to the number of coil position considered. This choice is not mandatory. Accurate
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numerical solvers could be used, e.g., Finite Element Method (FEM), yet their efficiency relies on
the number of measurement points that one needs to simulate.

The analysis performed in this section in commonly carried out in order to build the suitable
metamodel before employing it instead of the standard solver. That is, the metamodel is built and
possibly tuned off-line. Once the quality of predictions is judged “good enough” for the targeted
problem, the metamodel can be considered as proper replacement of the forward solver, i.e., as a
black-box. So, the strategy to generate the suitable database may not be important if “only” the
final prediction accuracy is targeted. In this context, the metamodel used in the on-line phase
should not have an impact on the accuracy of the final inversion results. On the other hand,
one could prefer a certain metamodel strategy if performance in off-line stage, i.e., the number
of samples needed to achieve a certain accuracy level, and/or the on-line phase one in terms of
interpolation time, i.e., the metamodel CPU time efficiency, should be optimized.

7. Acknowledgement

Support is from the French National Research Agency (ANR) project Bayesian Methods for
the diagnosis and Probability of Detection assisted by Simulation (ByPASS).

8. References

[1] Abascal, J.F.P.J., Lambert, M., Lesselier, D., Dorn, O., 2008. 3-d eddy-current imaging
of metal tubes by gradient-based, controlled evolution of level sets. IEEE Transactions on
Magnetics 44, 4721–4729.

[2] Andrieu, C., Doucet, A., Holenstein, R., 2010. Particle Markov chain Monte Carlo methods.
Journal of the Royal Statistical Society: Series B (Statistical Methodology) 72, 269–342.

[3] Andrieu, C., Thoms, J., 2008. A tutorial on adaptive MCMC. Statistics and Computing 18,
343–373.

[4] Auld, B.A., Jefferies, S.R., Moulder, J.C., 1988. Eddy-current signal analysis and inversion
for semielliptical surface cracks. Journal of Nondestructive Evaluation 7, 79–94.

[5] Bilicz, S., 2013. Inversion of eddy-current testing signals using a fast interpolation over an
optimal defect-database. IOS Press Volume 39: Electromagnetic Nondestructive Evaluation
(XVII), 315–322.

[6] Bilicz, S., 2016. Sparse grid surrogate models for electromagnetic problems with many pa-
rameters. IEEE Transactions on Magnetics 52, 1–4.
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