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The magnetostatic harmonic fields scattered by a near-surface air inclusion of arbitrary shape, embedded in a
conductive ferromagnetic medium and illu-minated by a current-carrying coil, are investigated. The scattering
domain is separated into homogeneous subdomains under the assumption of a suitable truncation at a long
distance from the incident source, whereas a perfect mag-netic boundary condition is implied. The introduced
methodology addresses the full coupling between the two interfaces, ie, the plane that distinguishes the half-space
ferromagnetic material from the open air and the arbitrary surface among the inclusion and the ferromagnetic
region. Therein, continuity condi-tions are applied in a rigorous way, while the expected behavior of the fields,
either as ascending or as descending, are taken into account. The potentials associated with the half-space are
expanded via cylindrical harmonic eigen-functions, while those related with the inclusion's arbitrary geometry
admit generalized-type formalism. However, since the transmission conditions involve potentials with different
eigenexpansions, we are obliged to rewrite cylindri-cal to generalized functions and vice versa, obtaining handy
relationships in terms of easy-to-handle integrals, where orthogonality then is feasible. Once done, the calculation
of the exact solutions leads to infinite linear algebraic sys-tems, manipulated through standard cut-off techniques.
Thus, we obtain the implicated fields in a general analytical and compact fashion, independent of the inclusion's
geometry. We demonstrate the efficiency of the analytical model approach, assuming the degenerate case of a
spherical inclusion, whereas the air-cored coil simulation via a numerical procedure validates our method. The
calculation is very fast, rendering it suitable for use with parametric inversion algorithms.
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1 - INTRODUCTION

Maxwell's electromagnetic theory for the scattering interaction of arbitrarily shaped targets, embedded within different

media and illuminated by a variety of primary sources, operating at several frequencies, has always been in the frontline of

the scientific research. Indeed, practical applications range widely, eg, from eddy current testing of conducting materials
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to light scattering from particles in optics and orebody detection in geophysics. By deciphering the implicated fields,

information about main parameters like orientations, sizes, shapes, magnetic, and electric properties of the anomalies

brings insight to the field behavior. However, this is not an easy task, since the inverse problem cannot be tackled in robust

fashion unless proper models of the field interaction and efficient mathematical tools are available.

General principles of electromagnetism,1 combined with scattering theory2 and the multidisciplinary effect of useful

mathematical methods,3 provide the environment for making available the elementary bricks of an inversion scheme.4

The motivation of this study comes from interesting applications within the field, indicatively referring to detection of

inclusions in two-phase composites,5,6 Earth's subsurface electromagnetic probing formineral exploration,7 identification

of cavities,8 or other underground detections such as unexploded ordnance9,10 and buried objects,11 and even scattering

by chiral material either in chiral or nonchiral environments.12-15 Besides, two of the authors have been involved the last

decade with several cases related to the retrieval of metallic objects of different shapes and sizes with magnetic dipolar

excitation.16-23

On the other hand, near surface phenomena are of theoretical interest and practical importance, particularly, in the

domain of optics. The first successful attempt of deriving a general solution for the electromagnetic scattering of a pla-

nar monochromatic wave by a homogeneous sphere in a homogeneous infinite medium is in the classical paper of Mie.24

Thereafter, numerous researchers studied the area, like in the work of Bobbert and Vlieger,25 where the authors con-

structed an analytical solution for the problem of light scattering by a sphere in a nonabsorbing medium placed on a

plane substrate. Almost the same problem was treated in the work of Videen26 with the difference of assuming that

the implicated scattered fields emanating from the sphere, impinge upon the substrate along the normal direction of

propagation.

Similar to the optical scattering handling, one could refer to thework of Theodoulidis et al,27where the eddy current flow

in a conducting sphere induced by an arbitrary current source in the air has been calculated based on the second-order

vector potential formulation, while operating at low frequencies still offers encouraging perspective to this direction. The

low-frequency electromagnetic scattering problem of a near-surface hollow spherical inclusion is as an example, solved

by means of a modal approach.28 Therein, the authors considered the field negligible at a reasonably long distance from

the region of scattering activity and truncated the solution domain using a Dirichlet's boundary condition. This finds

application to a number of important induction problems. For instance, we mention the eddy current probe interaction

with corner discontinuities,29 and boreholes, such as the impedance of an induction coil at the opening of a borehole in

a conductor30 and the solution to the eddy current induction problem in a conducting half-space with either a vertical

cylindrical borehole31 or a cylindrical hole parallel to the surface.32However, the addition of a second boundary of different

geometry, such as the planar surface of a half-space, complicates the problem substantially.

Inductive electromagnetic means within the area of magnetostatics, currently employed in the exploration of defects in

ferromagnetic materials, often calls for an intensive use, at the modeling stage and at the inversion stage, of analytically

demanding tools of field calculation. Hence, the already ample library of scattering by simple shapes using analytical

methods is open to accept new analytical results. This paper describes how to build a versatile set of mathematical tools

to infer information about a hollow inclusion of arbitrary shape, position, and orientation, embedded near the surface

of a ferromagnetic medium. The primary source is an air-cored coil set above the specimen's plane interface. The direct

scattering problem is then composed with respect to the divergence-free magnetostatic fields, written in terms of scalar

harmonic potentials.
Based on the truncated region eigenfunction expansion technique,28 we confine the solution domain by a cylindrical

half-space area, where its bottom and the surrounding surface is considered to be far away from the inclusion, and the

interface between the ferromagnetic material and the open air, so as the magnetostatic field be negligible therein. For

modeling purposes, the domain of interest is separated into homogeneous subdomains, whereas standard continuity con-

ditions yield the coupling between the two interfaces. Perfect magnetic conditions secure the vanishing of the magnetic

field on the cylindrical walls, while the behavior of the involved potentials as we move either upwards or downwards is

inherited to the corresponding forms of the expansions. The scattering problem is solved by means of a modal approach,

where the potentials associated with the half-space are expanded into cylindrical harmonic eigenfunctions,33,34 while

those related with the inclusion's arbitrary geometry imply general eigenexpansions, depending on the type of the fit-

ted coordinate system of each case. Although, this alternative behavior is conveyed to the transmission conditions and

their ostensibly trivial manipulation becomes impossible unless we apply conversion relations between cylindrical and

generalized eigenfunctions. The key point is the exploitation of the common translational axis between any orthogonal

clockwise coordinate system (eg, spherical, spheroidal, or ellipsoidal are the common cases) and the cylindrical one used

for the treatment of the planar and the arbitrary interface, respectively. However, this method results into expressions
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that include integrals, which must be evaluated, either numerically or through hybrid elaboration or even in a pure ana-

lytical fashion, once a particular geometry for the inclusion is assumed. When done, the conditions are handled via the

enforcement of proper orthogonality rules to obtain infinite linear algebraic systems, solved via well-known cut-off tech-

niques. The presented approach is rigorous, in the sense that no approximation is made apart from the vanishing fields

at far distances. Consequently, we obtain the potential fields, hence the corresponding magnetostatic vectors, in terms of

closed-form solutions, independently of the air inclusion's shape. Such a general confrontation is extremely useful, since

the shape of cracks is arbitrary in most cases; thus, the corresponding modeling requires the proper coordinate system

that fits the geometry of the inclusion.

The analytical part of this paper is supplemented with the application of our implicit technique to the case of a com-

plete isotropic inclusion under the aim to reproduce the spherical case as an example of the generalized results. The

corresponding integrals are calculated in an analytical-like manner with the aid of complicated formulae35,36 that inter-

connects cylindrical and spherical eigenfunctions,33,34 while the final expressions are validated via a numerical procedure

of air-cored coil simulation. Nevertheless, the difficulty from the spherical to the spheroidal system and then to the much

complicated ellipsoidal one, which represents the complete anisotropy of the three-dimensional (3-D) space, is increas-

ing due to the more elaborating harmonic eigenfunctions related to each applied geometry; therefore, the introduction of

the general methodology is imperative.

The rest of this contribution is organized as follows. In Section 2, a detailed physical development and the theoretical

basis via an analytical mathematical formulation is sketched. The problem itself is set in terms of the cylindrical configu-

ration of the surrounding domain, incorporating the general attributes of an inclusion of arbitrary shape, orientation, and

location. Then, the generalized solution technique at hand is explained step-by-step in Section 3, where themagnetostatic

fields are provided through compact closed-form formulae of the corresponding harmonic potentials. Section 4 is devoted

to an example of a spherical-type air inclusion, whereas the relative analysis is recovered by the introduced methodology

and some interesting special cases are discussed, while further manipulation of the spherical modes for field illustration

is also available. The main article closes with Section 5, which contains a validation of the depicted results with a numer-

ical simulation. Finally, a brief conclusion containing an outline of our work and future steps follows in Section 6, while

an updated reference list is presented immediately after.

2 - PHYSICAL  AND  MATHEMATICAL  DEVELOPMENT

The configuration of the problem is sketched in Figure 1. A general arbitrarily shaped void inclusion of air permeability

𝜇0 is embedded in an otherwise ferromagnetic half-space with permeability 𝜇 > 𝜇0, obtaining the relative permeability as

𝜇r =
𝜇

𝜇0
> 1. (1)

Wemention that only the linear case is considered in this study, whilewe assume that the inclusion is entirely contained

in the half-space. A static magnetic field is exerted upon the medium under consideration either by means of a current

coil or a permanent magnet. These are the two of the most common ways for magnetizing the specimen in magnetic flux

FIGURE 1 Arbitrarily shaped air inclusion embedded within a conducting half-space, illuminated by a cylindrical coil. Lateral view with

the cylindrical coordinate system of the truncated domain, using a perfect magnetic conductor (PMC) condition
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leakage and magnetic particle nondestructive applications. Among the two frequently used methods, we only consider

the excitation technique via the current coil.

Our application is involved with smooth and 3-D environments Ω
(
R3

) ≡Ω, which could be either bounded with sur-

rounding boundary surface 𝜕Ω
(
R3

) ≡ S or unbounded, taking as S→ +∞, when the case might be. For the treatment

of the reflection terms emerging from the interaction with the inclusion, and the field inside the air void, it is much more

convenient to work with the local coordinate system conformal with the geometry of the inclusion's surface. Henceforth,

since the proceeding method is independent of the 3-D geometry of the inclusion, then every field related to it can be

written in terms of the spatial position vector r = x1x̂1 + x2x̂2 + x3x̂3, expressed via the Cartesian basis x̂𝑗 for j = 1, 2, 3

in Cartesian coordinates (x1, x2, x3), where this dependence is sometimes omitted for writing convenience. On the other

hand, to proceed to the development of the solution, we fix a global reference frame, whose origin coincides with the cen-

ter of symmetry of the inclusion. Given the rotational symmetry of the configuration, it is meaningful enough to work

in circular cylindrical coordinates (𝜌,𝜑, z) as far as the global reference frame is concerned and the fields associated with

that. This dependence will be designated for any involved function via

r ≡
3∑
i=1

xix̂i = zx̂1 + 𝜌 cos𝜑x̂2 + 𝜌 sin𝜑x̂3 for 𝜌 ∈ [0,+∞) , 𝜑 ∈ [0, 2𝜋) and z ∈ (−∞,+∞) , (2)

where the z-axis of symmetry is normal to the half-space interface and the other two axes are located properly so as to

obtain the dextral system (2).

For modeling purposes and since we deal with a magnetostatic problem, we separate the domain of interest into homo-

geneous subdomains, whereas the solution can be derived in a truncated region along the direction of 𝜌 at a distance

equal to 𝜌L. For simplicity, we consider a perfect magnetic boundary condition at truncation limit 𝜌 = 𝜌L, the choice of

this condition being arbitrary, since the field is negligible there. We also assume that the distance of the half-space free

surface from the origin is equal to z0, while the bottom boundary of our system is located at z= − zb. The aforementioned

restrictions confine the cylindrical area of field activity Ω to 𝜌 ∈ [0, 𝜌L), 𝜑 ∈ [0, 2𝜋), and z ∈ (−zb, +∞). However, here,

we are obliged to remark that as for now we deal with the case of a ferromagnetic half-space, which means that the bot-

tom is considered to be far away from both the inclusion and the interface, ie, zb ≫ 0 and zb ≫ z0, respectively, leading

to −zb → − ∞, an assumption that coincides with physical reality. On the other hand, the known source is comprised

by a current coil of inner and outer radius, rin and rout, respectively, and thickness 2d, which is set at (𝜌c,𝜑, zc) for every

𝜑 ∈ [0, 2𝜋). To this end, since we are merely interested in the solution just above the half-space interface, we restrict our

analysis to the source-free region between the coil and the interface, ie, z < zc − d. In the same manner, the lower infinite

limit of the z-variable is not of physical, hence mathematical, interest; therefore, we need to know the field distribution

just above the void inclusion for z > 0. Recapitulating, the domain of field activity Ω yields 𝜌 ∈ [0, 𝜌L), 𝜑 ∈ [0, 2𝜋) and

z ∈ (0, zc − d), where the restrictions to the intervals have been made without loss of generality, while this area, for the

purposes of the analysis, is furtherly distinguished to different regions. In details, the air half-space will be referred to as

region

Ω1 =
{
(𝜌, 𝜑, z) ,∈ R

3 ∶ 𝜌 ∈ [0, 𝜌L), 𝜑 ∈ [0, 2𝜋), z ∈ (z0, zc − d )
}
⊂ Ω, (3)

while the ferromagnetic half-space will be addressed as

Ω2 =
{
(𝜌, 𝜑, z) ,∈ R

3 ∶ 𝜌 ∈ [0, 𝜌L), 𝜑 ∈ [0, 2𝜋), z ∈ (0, z0)
}
− Ωv ⊂ Ω, (4)

whereas their common boundary is defined as 𝜕Ω1, 2 ≡ S1, 2 with outward unit normal vector n̂1,2 ≡ ẑ, ẑ being the coor-

dinate vector in the direction of the axis of symmetry of the cylindrical system. The bounded domain Ωv stands for the

arbitrary void with a closed surrounding surface 𝜕Ωv ≡ Sv, which is specified by the outward unit normal vector n̂v ≡ n̂.

Let us presume that, with respect to the origin of the implied coordinate system, the air volume Ωv occupies a space of

a surface characteristic variable Rv, as conveniently referred, which is introduced as a helpful geometric parameter to

our generalized mathematical technique, and it is actually the so-called “radial” featured component, running on Sv, ie,

Rv ≡ Rv(Sv). As a matter of fact, the nature of this domain and its surface characteristic variable depends upon the partic-

ular geometry of the inclusion. Note that a simply connected 3-D inclusion can be adequately approximated by sphere, in

the simplest case, by either a prolate or oblate spheroid, increasing the complexity and by an ellipsoid with three different

axes, tilted with respect to the normal to the half-space interface. The latter is considered to be general, incorporating both

physical and mathematical tools. Nevertheless, since the spherical geometry occurs frequently within solutions of such-

like problems, it is interesting to treat also this problem in the framework of the current analysis, to use it as a limiting

case for controlling the solution of the spheroidal and the ellipsoidal inclusion. However, our main purpose is to provide
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general formulae for any geometrical shape matching the inclusion and demonstrate the theoretical technique with an

application, where the inclusion is considered to retain spherical structure.

The magnetostatic vector fields can be expressed in the source-free regions in terms of the corresponding magnetic

scalar potentials via

Bk (r) = −∇Φk (r) with ∇ · Bk (r) = 0 ⇒ ΔΦk (r) = 0 for r ∈ Ω and k = s, a, 𝑓 , c, v, (5)

identifying the potentials as functions that satisfy Laplace's equation. Specifically, in region Ω1, the fields can be decom-

posed into two terms, one for the known source contribution Φs and one from the reflection from the interface to the air

Φa, providing in view of the constitutive equations (5)

Φ1 (r) = Φs (r) + Φa (r) or B1 (r) = Bs (r) + Ba (r) for r ∈ Ω1, (6)

while region Ω2 involves two boundaries, the one of the half-space and the inclusion's boundary. Hence, two terms

are needed, each one being associated with each boundary. Letting Φf signify the transmitted term associated with the

half-space interface and Φc be the reflection from the inclusion, the total fields, given within (5), can be decomposed as

Φ2 (r) = Φ𝑓 (r) + Φc (r) or B2 (r) = Bc (r) + B𝑓 (r) for r ∈ Ω2. (7)

Finally, we denote Φv the potential inside the inclusion Ωv, which generates the corresponding magnetic field

Bv = − ∇Φv. Once the harmonic potentialsΦk are calculated, then the magnetostatic fields Bk are evaluated through (5)

for any k= s, a, f, c, v, where the gradient and the Laplacian differential operators are being interrelated with the potential

fields in both their invariant and cylindrical form, ie,

∇ ≡
3∑
i=1

x̂i
𝜕

𝜕xi
= �̂�

𝜕

𝜕𝜌
+

�̂�

𝜌

𝜕

𝜕𝜑
+ ẑ

𝜕

𝜕z
and Δ ≡

3∑
i=1

𝜕2

𝜕x2
i

=
1

𝜌

𝜕

𝜕𝜌

(
𝜌
𝜕

𝜕𝜌

)
+

1

𝜌2
𝜕2

𝜕𝜑2
+

𝜕2

𝜕z2
(8)

for every 𝜌 ∈ [0, 𝜌L), 𝜑 ∈ [0, 2𝜋) and z ∈ (0, zc − d). Definitions (8) yield expressions via the Cartesian basis x̂𝑗 for j = 1, 2, 3

and in terms of the coordinate vectors of the circular cylindrical coordinate system, those being

�̂� = −
𝜕�̂�

𝜕𝜑
= cos𝜑x̂2 + sin𝜑x̂3, �̂� =

𝜕�̂�

𝜕𝜑
= − sin𝜑x̂2 + cos𝜑x̂3 and ẑ = x̂1, (9)

completing our analysis with regard to the magnetostatic and potential fields.

The aforementioned partial differential equations are supplemented by the appropriate boundary, continuity and lim-

iting conditions. The only boundary conditions refer to the imposition of the perfectly magnetic conductor property at

the truncation surface 𝜌 = 𝜌L and regularity of the fields on the axis of symmetry of the specimen for 𝜌 = 0, which imply

Bk (𝜌L, 𝜑, z) = 𝟎 for every 𝜑 ∈ [0, 2𝜋) and z ∈ (0, zc − d ) with k = s, a, 𝑓 (10)

and

Bk (0, 𝜑, z) = f k (𝜑, z) for every 𝜑 ∈ [0, 2𝜋) and z ∈ (0, zc − d) with k = s, a, 𝑓 , (11)

respectively, for the fields associatedwith the planar interface, fk for k= s, a, f being vector continuous and regular known

functions. On the other hand, the limiting conditions involve all the fields in the sense that, with respect to the air void,

Φc must be regular at infinity as an exterior field, when Φv owes to be bounded at the origin as an interior field, ie,

lim|r|→+∞
Φc (r) = 0 for r ∈ Ω2 and lim|r|→0

Φv (r) = 0 for r ∈ Ωv, (12)

respectively, while the behavior of the potentials Φs, Φa, and Φf, as we move upwards (in the case when hypothetically

zc − d→ +∞) or downwards (wishing the lower limit at z = 0 to extend at infinity as z→ −∞) along the z-axis, admits

lim
z→−∞

Φs (r) = 0 and lim
z→+∞

Φa (r) = 0 for r ∈ Ω1,while lim
z→−∞

Φ𝑓 (r) = 0 for r ∈ Ω2. (13)

Conditions (12) and (13) are supplemented by the continuity restrictions for the total fields on every separable surface,

ie, S1, 2, going with n̂1,2 ≡ ẑ and Sv, accompanied by n̂. Therein, on the interface boundary, continuity of the tangential

components of magnetic fields imply

ẑ ×H1 (r) = ẑ ×H2 (r) ,whereH1 (r) =
1

𝜇0
B1 (r) andH2 (r) =

1

𝜇
B2 (r) for r ∈ S1,2, (14)
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while continuity of the normal component of the magnetostatic field provides

ẑ · B1 (r) = ẑ · B2 (r) for r ∈ S1,2. (15)

Proceeding to the other arbitrary interface between the air cavity and the ferromagnetic medium, we similarly obtain

n̂ ×H2 (r) = n̂ ×Hv (r) ,whereH2 (r) =
1

𝜇
B2 (r) andHv (r) =

1

𝜇0
Bv (r) for r ∈ Sv, (16)

concerning the tangential components of the magnetic fields, while

n̂ · B2 (r) = n̂ · Bv (r) for r ∈ Sv, (17)

in regard to the normal component of the magnetostatic fields.

In summary, we completed the physical and mathematical definition of a well-posed boundary value problem with

respect to the identification of arbitrarily shaped inclusions embeddedwithin ferromagneticmaterial. The problemwill be

solved for the magnetostatic fields, which satisfy (5) with (6) and (7), accompanied by the appropriately chosen boundary

(10) and (11), limiting (12) and (13) and continuity (14) to (17) conditions.

3 - ANALYTICAL  FIELD  CALCULATION

We develop now the solution for the potentials Φk for k = s, a, f, c, v in basis of eigensolutions of the Laplace's equation,

since they satisfy (5). Therefore, for the terms associated with the planar interface, we expand them in terms of cylindrical

eigenfunctions as

Φs (r) =
+∞∑

n=−∞

ein𝜑
+∞∑
m=1

C(s)
n∕m

Jn

(
rmn

𝜌

𝜌L

)
e
rmn

z−z0
𝜌L for r ∈ Ω1, (18)

which is the known source field of the current coil, meaning that C(s)
n∕m

for n ∈ N and m ∈ N
∗
+ defines a set of imposed

well-known constants, while

Φa (r) =
+∞∑

n=−∞

ein𝜑
+∞∑
m=1

C(a)
n∕m

Jn

(
rmn

𝜌

𝜌L

)
e
−rmn

z−z0
𝜌L for r ∈ Ω1 (19)

and

Φ𝑓 (r) =
+∞∑

n=−∞

ein𝜑
+∞∑
m=1

C(𝑓 )

n∕m
Jn

(
rmn

𝜌

𝜌L

)
e
rmn

z−z0
𝜌L for r ∈ Ω2, (20)

defining as r = (𝜌,𝜑, z), whereas C(a)
n∕m

and C(𝑓 )

n∕m
for n ∈ N andm ∈ N

∗
+ are the first set of unknown constant coefficients.

The harmonic potential fields (18) to (20) are written in terms of the Bessel functions of the first kind Jn of order n ∈ N,

which are orthogonal as

𝜌L

∫
0

Jn

(
rmn

𝜌

𝜌L

)
Jn

(
rmn

𝜌

𝜌L

)
𝜌d𝜌 = 𝛿mm

𝜌2
L

2

[
Jn+1

(
rmn

)]2
for n ∈ N andm,m ≥ 1, (21)

in view of the delta function 𝛿mm withm,m ≥ 1 and bearing in mind that J−n = (−1)nJn for every n ∈ N. Moreover, their

argument is chosen appropriately to automatically satisfy relation (10) with the aid of definitions (5), since we introduce

the parameter rmn ∈ R as the m-root (m ≥ 1) of order n ∈ N of the Bessel functions of the first kind, ie, Jn
(
rmn

)
= 0.

In addition, this situation of an internal problem, as far as potentials (18) to (20) is concerned and by virtue of (11),

requires the use of the Bessel functions Jn for n ≥ 0, which are regular solutions on the axis of symmetry of the circular

cylinder; hence, the second set of theNeumann special functionsmust be excluded, since they become infinitewhen 𝜌= 0.

Specifically, on the z-axis of symmetry, potentials (18) to (20) vanish, except for the case for n = 0, whereas J0(0) = 1 and

f k (𝜑, z) = −∇Φk (0, 𝜑, z) =

+∞∑
m=1

C(𝑓 )

0∕m
e
sgn(k)rm0

z−z0
𝜌L for every 𝜑 ∈ [0, 2𝜋) and z ∈ (0, zc − d) , (22)

where sgn(k) = + 1 if k = s, f and sgn(k) = − 1 if k = a. In addition, concerning the z-variable of the aforementioned

potentials, the sign of each exponential varies for each case whether they are directed upwards or downwards, meaning

that the positive exponent is used for the source field (k = s) and the downwards evanescent solution (k = f ), while the

negative one is for the reflection from the interface (k = a), so as conditions (13) are immediately fulfilled. Of course, by
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setting the argument of the z-variable as z − z0, we simplify our calculations on the planar interface boundary for z = z0,

as it will be seen later. Finally, for reasons of clarity, we mention that the 𝜑-dependence of the eigenfunctions involved

within (18) to (20), include exponentials with complex variables, which satisfy the orthogonality relationship

2𝜋

∫
0

ein𝜑e−in𝜑d𝜑 = 2𝜋𝛿nn =

{
2𝜋, n = n

0, n ≠ n
for every n,n ∈ N, (23)

where e±in𝜑 = cos n𝜑 ± i sin n𝜑 for any 𝜑 ∈ [0, 2𝜋) with n ∈ N and in terms of the imaginary unit i =
√
−1.

The remaining harmonic potentialsΦc andΦv are associatedwith the inclusion, and since the primary goal of this article

is to choose a convenient notation to keep the analysis in the most compact and general form, the aforementioned fields

may assume internal and external general expansions, according to regularity argumentation described earlier, giving

Φc (r) =
∑
n′

∑
m′

C(c)
n′∕m′U

(ex)
n′∕m′ (r) with ΔU (ex)

n′∕m′ (r) = 0 for r ∈ Ω2 with∀
(
n′,m′

)
(24)

and

Φv (r) =
∑
n′

∑
m′

C(v)
n′∕m′U

(in)
n′∕m′ (r) with ΔU (in)

n′∕m′ (r) = 0 for r ∈ Ωv with∀
(
n′,m′

)
. (25)

The generalized formalism (24) and (25) is in accordance with the basic harmonic analysis, introduced for the main

geometries that could describe an inclusion, ie, for the spherical, the spheroidal, or the ellipsoidal case,where separation of

variables in theLaplace's equation admits eigenexpansions of the form (24) and (25).However, each case provides different

intervals for the summation indexes n′ and m′; hence, we have chosen the symbolism “
∑

n′
∑

m′ · · ·” and “∀
(
n′,m′

)
” to

declare this kind of arbitrariness to our work. On the other hand, the harmonic functions U (in)
n′∕m′ and U

(ex)
n′∕m′ for ∀

(
n′,m′

)
represent any interior and exterior solution of the Laplace's equation, respectively, written independently of the applied

geometry. Under the aim to keep consistency with our generalized technique, we recall the definition of the surface

characteristic variable Rv, following any point on Sv and we separate the so-called “radial” part, either interior G
(in)
n′∕m′ (R)

or exterior G(ex)
n′∕m′ (R), from the “angular” part gn′∕m′ (r̂) for ∀

(
n′,m′

)
of the implicated harmonic eigenfunctions via

U (in)
n′∕m′ (r) = G(in)

n′∕m′ (R) gn′∕m′ (r̂) for r ∈ Ωv with ∀
(
n′,m′

)
(26)

and

U (ex)
n′∕m′ (r) = G(ex)

n′∕m′ (R) gn′∕m′ (r̂) for r ∈ Ω2 with ∀
(
n′,m′

)
, (27)

denoting as r = (R, r̂), where the spatial characteristic variable R, as representatively referred, extends from zero to Rv
(pointing inside the inclusion) and thereafter from Rv to RL (pointing outside the inclusion), RL being the characteristic

variable that corresponds to the cylindrical specimen's opening for 𝜌 = 𝜌L, while r̂ includes the other two variables. Cer-

tainly, when R = Rv, we move along any point on the interface Sv between the inclusion and the ferromagnetic medium,

which is identified by the external unit normal vector n̂ ≡ R̂, aswe nowdesignate it. Since the functions gn′∕m′ for∀
(
n′,m′

)
comprise the analogous of the surface harmonics in any coordinate system, then we can assume that, for the systems of

our interest, they are orthogonal with respect to the general integral

∫∫
Sv

h (r̂) gn′∕m′ (r̂) gn′∕m′ (r̂) dS (r̂) = dn′∕m′𝛿n′n′𝛿m′m
′ for ∀

(
n′,m′

)
and ∀

(
n
′
,m

′)
, (28)

where h is a classic weighting function of each system, dn′∕m′ are the corresponding orthonormalization constants, gn′∕m′

is the orthogonal form of gn′∕m′ in (28), and 𝛿n′n′ and 𝛿mm′ for ∀
(
n′,m′

)
and ∀

(
n
′
,m

′)
stand for typical Kronecker's deltas.

Herein, we are also obliged to introduce the differential operators in terms of the generalized variables R and r̂ through a

symbolic form as well to match the main orthogonal dextral coordinate systems, that is configured by

∇′ ≡
3∑
i=1

x̂i
𝜕

𝜕xi
= Q (R; r̂) R̂

𝜕

𝜕R
+D (r̂;R) and Δ′ ≡

3∑
i=1

𝜕2

𝜕x2
i

= ∇′ · ∇′, (29)

where Q (R; r̂) R̂ 𝜕

𝜕R
and D (r̂;R) coincides with the “radial” and the “angular” part of the gradient operator, respectively.

Furthermore, the behavior of the potentialsΦc from (24) andΦv from (25) impose the exterior and the interior character,

respectively, so as the remaining limiting condition (12) to be readily satisfied. Concluding, the second set of the unknown

constant coefficients C(c)
n′∕m′ and C

(v)
n′∕m′ for ∀

(
n′,m′

)
that appear within (24) and (25) are to be evaluated accordingly.
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We proceed now to the calculation of the undetermined constant coefficients C(a)
n∕m

and C(𝑓 )

n∕m
for n ∈ N and m ∈ N

∗
+,

and C(c)
n′∕m′ and C

(v)
n′∕m′ for ∀

(
n′,m′

)
, provided the constants C(s)

n∕m
for n ∈ N andm ∈ N

∗
+ of the excitation field. In order to

accomplish that, we have to use the remaining conditions (14) to (17), which by virtue of (1), (6), and (7), imply

ẑ × ∇
{
𝜇r [Φs (𝜌, 𝜑, z0) + Φa (𝜌, 𝜑, z0)] − Φ𝑓 (𝜌, 𝜑, z0)

}
= ẑ × ∇Φc (R, r̂)|z=z0 (30)

and

ẑ · ∇
[
Φs (𝜌, 𝜑, z0) + Φa (𝜌, 𝜑, z0) − Φ𝑓 (𝜌, 𝜑, z0)

]
= ẑ · ∇Φc (R, r̂)|z=z0 (31)

for every 𝜌 ∈ [0, 𝜌L) and 𝜑 ∈ [0, 2𝜋) on the interface between the open air and the ferromagnetic material, the gradient

provided by the cylindrical analogous in relation (8); while taking into account that n̂ ≡ R̂, we obtain

R̂ × ∇′Φ𝑓 (𝜌, 𝜑, z)
|||R=Rv = R̂ × ∇′

[
−Φc (Rv, r̂) + 𝜇rΦv (Rv, r̂)

]
(32)

and

R̂ · ∇′Φ𝑓 (𝜌, 𝜑, z)
|||R=Rv = R̂ · ∇′

[
−Φc (Rv, r̂) + Φv (Rv, r̂)

]
(33)

for every r̂ ∈ Sv on the arbitrary interface between the air cavity and the ferromagnetic medium, the gradient provided

now by the invariant formula (29). Even though the continuity equations (30) to (33) seem to be trivial to provide a result,

the crucial problem that appears in all of them is that, within each one of these relationships, there always exist potentials

with expansions via different kind of eigenfunctions; consequently, the application of orthogonality properties to obtain

the constant coefficients is impossible at this stage. Indeed, observing the first double set of conditions (30) and (31),

which are written in cylindrical coordinates, it is obvious that, while the potentials on the left-hand side of them admit

cylindrical eigenexpansions, the potential on the right-hand side Φc is constructed for a general system of coordinates

with the gradient ∇ from (8), acting on it. Similarly, the second double set of conditions (32) and (33), which refer to any

kind of arbitrary geometry, it is again obvious that, while the potentials on the right-hand side of them are expanded in a

generalized coordinate system, the potentialΦf on the left-hand side assume cylindrical eigenexpansionwith the gradient

∇
′

from (29), acting on it. Consequently, the continuity relationships become useless in their current form, and thismakes

mandatory the elaboration of the aforementioned conditions to recover muchmore handy expressions for them. To do so,

we are obliged to expand cylindrical eigenexpansions to general eigensolutions and vice versa, where orthogonality then

would be feasible. Initially, examining the cylindrical-type conditions (30) and (31), we notice that potential Φc, given in

(24), contains only the general exterior harmonics U (ex)
n′∕m′ for ∀

(
n′,m′

)
from (27), concluding to the fact that only these

solutions are needed to be expanded to the corresponding interior cylindrical basis. In that sense,

U (ex)
n′∕m′ (r) ≡ G(ex)

n′∕m′ (R) gn′∕m′ (r̂) =
+∞∑

n=−∞

ein𝜑
+∞∑
m=1

A
n′∕m′

n∕m
Jn

(
rmn

𝜌

𝜌L

)
e
−rmn

z−z0
𝜌L for r ∈ Ω2 (34)

and ∀
(
n′,m′

)
, where the sign in the exponent of the z-variable provides the desirable ascendant behavior of the poten-

tial field Φc, as we suppose that it is directed upwards for the purposes of this work. Consequently, we multiply (34)

by 𝜌Jn
(
rmn

𝜌

𝜌L

)
e−in𝜑𝑦n∕m (z) for r ∈ Ω2, integrating in the sequel over the main intervals of the variables and using the

orthogonality relations (21) and (23), to recover the constants

A
n′∕m′

n∕m
=

z0∫
0

2𝜋∫
0

𝜌L∫
0

[
U (ex)
n′∕m′ (R, r̂)

]
Jn

(
rmn

𝜌

𝜌L

)
e−in𝜑𝑦n∕m (z) 𝜌d𝜌d𝜑dz

𝜋𝜌2
L

[
Jn+1

(
rmn

)]2{z0∫
0

𝑦n∕m (z) e
−rmn

z−z0
𝜌L dz

} , (35)

where n∈N,m ∈ N
∗
+, and ∀

(
n′,m′

)
, while yn/m is a convenient function, actually being an arbitraryweighting function of

integration over z-variable, appropriately chosen for simplifying integrals in (35) with respect to the inclusion's geometry.

Although, the last difficulty to overcome is to adjust r ≡ (R, r̂) inside (35) to the cylindrical coordinate system. Then, upon

the use of a standard geometry for which the exterior eigenfunctions (27) attain a particular structure, the constants (35)

can be computed. Once done, the corresponding potential Φc yields the complicated, yet similar to potential expressions

(18) to (20), cylindrical expansion

Φc (r) =
+∞∑

n=−∞

ein𝜑
+∞∑
m=1

[∑
n′

∑
m′

A
n′∕m′

n∕m
C(c)
n′∕m′

]
Jn

(
rmn

𝜌

𝜌L

)
e
−rmn

z−z0
𝜌L for r ∈ Ω2, (36)
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in terms of the known constants A
n′∕m′

n∕m
and the constant coefficients under evaluation C(c)

n′∕m′ for every n ∈ N, m ∈ N
∗
+,

and ∀
(
n′,m′

)
. Continuing to the general-type conditions (32) and (33), we observe that potential Φf, provided by (20), is

involved only with the cylindrical interior harmonics Jn
(
rmn

𝜌

𝜌L

)
ein𝜑e

rmn
z−z0
𝜌L for n ∈N andm ∈ N

∗
+, which are the solutions

that must be expanded to the corresponding interior general basis. Therein,

Jn

(
rmn

𝜌

𝜌L

)
ein𝜑e

rmn
z−z0
𝜌L =

∑
n′

∑
m′

B
n∕m

n′∕m′U
(in)
n′∕m′ (r) ≡ ∑

n′

∑
m′

B
n∕m

n′∕m′G
(in)
n′∕m′ (R) gn′∕m′ (r̂) for r ∈ Ω2 (37)

and for n∈N andm ∈ N
∗
+, where the choice of the interior general eigenfunctions coincides with the demanding descen-

dant behavior of the potential field Φf, as we presume that it is directed downwards in this study. Therefore, we may

multiply (37) by xn′∕m′ (R) h (r̂) gn′∕m′ (r̂) for every r ∈ Ω2 and afterwards integrate over the main intervals of the variables,

where utilizing the orthogonality relation (28), we reach to the constants

B
n∕m

n′∕m′ =

RL∫
Rv

∫∫
Sv

[
Jn

(
rmn

𝜌

𝜌L

)
ein𝜑e

rmn
z−z0
𝜌L

]
xn′∕m′ (R) h (r̂) gn′∕m′ (r̂) dS (r̂) dR

dn′∕m′

{
RL∫
Rv

G(in)
n′∕m′ (R) xn′∕m′ (R) dR

} , (38)

where ∀
(
n′,m′

)
with n∈N andm ∈ N

∗
+, while xn′,m′ is a function of practical interest, being in fact an arbitrary weighting

function for integration overR-variable, conveniently chosen for simplifying integrals within (38)with respect to a specific

geometry of the inclusion. Nevertheless, the final difficultness to exceed is to write the position vector r ≡ (𝜌,𝜑, z) into

(38) for a particular implied geometry, whereas the interior eigenfunctions (26) have a standard form and the constants

(38) can be calculated. Eventually, the corresponding potentialΦf yields the complicated, yet similar to (24) and (25) with

(26) and (27), general expansion

Φ𝑓 (r) =
∑
n′

∑
m′

[
+∞∑

n=−∞

+∞∑
m=1

B
n∕m

n′∕m′C
(𝑓 )

n∕m

]
G(in)
n′∕m′ (R) gn′∕m′ (r̂) for r ∈ Ω2 (39)

in view of the known constants B
n∕m

n′∕m′ and the constant coefficients under evaluation C
(𝑓 )

n∕m
for ∀

(
n′,m′

)
with n ∈ N and

m ∈ N
∗
+.

The aforementioned procedure is the key to our analytical method, which is based on producing integral representa-

tions of ready-to-use formulae in terms of well-known eigenfuctions. Thus, the harmonic potentials, which are involved

with the continuity conditions (30) to (33), are properly configured to fit both their cylindrical and general aspect in the

weak sense. In the sequel, we proceed as follows. We primarily substitute the potential functions (18) to (20) and the

cylindrical-type one from (36) into the first set of conditions on the plane interface for z = z0, ie, (30) and (31), where

applying orthogonality rules based on (21) and (23), we obtain the corresponding first set of equations for the unknown

constant coefficients, ie,
∑
n′

∑
m′

A
n′∕m′

n∕m
C(c)
n′∕m′ + C(𝑓 )

n∕m
− 𝜇rC

(a)
n∕m

= 𝜇rC
(s)
n∕m

for every n ∈ N andm ∈ N
∗
+, (40)

while ∑
n′

∑
m′

A
n′∕m′

n∕m
C(c)
n′∕m′ − C(𝑓 )

n∕m
− C(a)

n∕m
= −C(s)

n∕m
for every n ∈ N andm ∈ N

∗
+, (41)

where (40) and (41) are linear algebraic equations. In the second place, we substitute the potential functions (24) and

(25), along with the general-type one from (39) into the second set of conditions on the arbitrary interface between the

inclusion and the ferromagnetic medium at R = Rv, ie, (32) and (33), where applying orthogonality rules with regard to

(28), we conclude to the corresponding second set of equations for the constant coefficients, given by

+∞∑
n=−∞

+∞∑
m=1

B
n∕m

n′∕m′C
(𝑓 )

n∕m
+
G(ex)
n′∕m′ (Rv)

G(in)
n′∕m′ (Rv)

C(c)
n′∕m′ − 𝜇rC

(v)
n′∕m′ = 0 for every ∀

(
n′,m′

)
(42)

and
+∞∑

n=−∞

+∞∑
m=1

B
n∕m

n′∕m′C
(𝑓 )

n∕m
+
G(ex)′

n′∕m′ (Rv)

G(in)′

n′∕m′ (Rv)
C(c)
n′∕m′ − C(v)

n′∕m′ = 0 for every ∀
(
n′,m′

)
, (43)
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where (42) and (43) are linear algebraic equations aswell, while the prime denotes differentiationwith respect to the argu-

ment. Relationships (40) to (43) can be manipulated further, and after some algebra, we reach the following closed-type

and ready-to-use form relations

C(a)
n∕m

=
1

𝜇r − 1

[
2C(𝑓 )

n∕m
− (𝜇r + 1)C(s)

n∕m

]
for every n ∈ N andm ∈ N

∗
+ (44)

and

C(v)
n′∕m′ =

1

𝜇r − 1

⎡
⎢⎢⎣
G(ex)
n′∕m′ (Rv)

G(in)
n′∕m′ (Rv)

−
G(ex)′

n′∕m′ (Rv)

G(in)′

n′∕m′ (Rv)

⎤
⎥⎥⎦
C(c)
n′∕m′ for every ∀

(
n′,m′

)
, (45)

providing in an analytical fashion C(a)
n∕m

and C(v)
n′∕m′ , once C

(𝑓 )

n∕m
and C(c)

n′∕m′ are evaluated, respectively, since C
(s)
n∕m

is the

acquainted coefficient that corresponds to the current coil for n ∈ N, m ∈ N
∗
+ and ∀

(
n′,m′

)
. Those are the unknown

constant coefficients that are combined with the transmitted term from the plane interface and the reflection from the

inclusion, satisfying

C(𝑓 )

n∕m
=

1

𝜇r + 1

[
2𝜇rC

(s)
n∕m

+ (𝜇r − 1)
∑
n′

∑
m′

A
n′∕m′

n∕m
C(c)
n′∕m′

]
for every n ∈ N andm ∈ N

∗
+ (46)

and

C(c)
n′∕m′ = (𝜇r − 1)

⎡
⎢⎢⎣
G(ex)
n′∕m′ (Rv)

G(in)
n′∕m′ (Rv)

− 𝜇r

G(ex)′

n′∕m′ (Rv)

G(in)′

n′∕m′ (Rv)

⎤
⎥⎥⎦

−1
+∞∑

n=−∞

+∞∑
m=1

B
n∕m

n′∕m′C
(𝑓 )

n∕m
for every ∀

(
n′,m′

)
, (47)

respectively. Relationships (46) and (47) comprise a set of intertwined equations with respect to C(𝑓 )

n∕m
and C(c)

n′∕m′ , since

C(s)
n∕m

is well known, while the constants A
n′∕m′

n∕m
and B

n∕m

n′∕m′ come from (35) and (38), respectively, all for every n ∈ N,

m ∈ N
∗
+, and ∀

(
n′,m′

)
. In fact, they are standard systems of linear algebraic equations and they can be solved with cut-off

techniques so as to obtain the aforementioned unknown constant coefficients via an easy computational technique for

the solution of the linear systems. Although, one could proceed one step further and substitute (47) into (46), leading to

∑
n′

∑
m′

A
n′∕m′

n∕m

⎡
⎢⎢⎣
𝜇r

G(ex)′

n′∕m′ (Rv)

G(in)′

n′∕m′ (Rv)
−
G(ex)
n′∕m′ (Rv)

G(in)
n′∕m′ (Rv)

⎤
⎥⎥⎦

−1
+∞∑

N=−∞

+∞∑
M=1

B
N∕M

n′∕m′C
(𝑓 )

N∕M
+

𝜇r + 1

(𝜇r − 1)2
C(𝑓 )

n∕m

=
2𝜇r

(𝜇r − 1)2
C(s)
n∕m

for every n ∈ N andm ∈ N
∗
+, (48)

after a necessary index interchange; hence, (46) is replaced by (48), whereas it consists of only one set of undetermined

constants, those being the C(𝑓 )

n∕m
for n ∈ N and m ∈ N

∗
+. The idea is, when one of the applicable geometries (sphere,

spheroid, ellipsoid, etc) is chosen to model the flaw into the ferromagnetic material, then all known constants and func-

tions involved in (44) to (46) or (48) and (47) take specific values accordingly to the implied coordinate system. Then, the

four sets of unknown constant coefficientsC(a)
n∕m

andC(𝑓 )

n∕m
for n∈N andm ∈ N

∗
+, andC

(c)
n′∕m′ andC

(v)
n′∕m′ for ∀

(
n′,m′

)
, given

C(s)
n∕m

for n ∈ N andm ∈ N
∗
+ of the applied field, are readily recovered by the four sets of conditions, discussed earlier, as

long as a proper truncation of the infinite series is used to obtain the desired accuracy. Therefore, our problem is solved

in a way, as much general and analytical as possible. Thereafter, the incorporated potentials, ie,Φs,Φa, andΦf via (18) to

(20), and Φc and Φv through (24) and (25) with the aid of (26) and (27), are instantly obtained, while the magnetostatic

vector fields within the different domains of interest read

B1 (r) = −∇
[
Φs (r) + Φa (r)

]
with ∇ · B1 (r) = 0 for r ∈ Ω1 (49)

B2 (r) = −∇
[
Φ𝑓 (r) + Φc (r)

]
with ∇ · B2 (r) = 0 for r ∈ Ω2 (50)

and

Bv (r) = −∇Φv (r) with ∇ · B1 (r) = 0 for r ∈ Ωv, (51)

reaching our final goal. The crucial issue in this method is the evaluation of the integrals that appear within the numer-

ators of (35) and (38) if a well-fitted geometry represents the shape of a possible inclusion. Even though our primary

concern is to push as far as possible the analytical manipulation of these integrals, the imposition of a numerical proce-

dure at some point is inevitable, depending on the complexity of the utilized coordinate system and the eigenfunctions
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associated with it. The efficiency of the analytical tools is to be demonstrated in the forthcoming section, where, as an

application, the inclusion is considered spherical.

4 - ANALYTICAL  APPLICATION  FOR  A  SPHERICAL  INCLUSION

In order to illustrate our semianalytical approach, we address a particular geometrical characteristic of the void inclusion,

resembling a spherical defect. We assume that the center of the reference cylindrical coordinate system coincides with the

center of the sphere at (0, 0, 0), while the orientation does not affect the analysis, since the sphere represents the complete

isotropy of the 3-D space. Herein, the corresponding boundary value problem becomes specific and all the introduced

quantities, interconnected with the inclusion's geometry in the theoretical analysis, are adjusted now in the spherical

coordinate regime. Thus, any connection of variables, vector or scalar functions, and other parameters with the general

case will be designated by referring to the general notation used in the previous section.

At this point, in order to make this work complete and independent, we invoke some useful information relative to the

spherical geometry. Inmore details, we formulate the problemwith respect to a sphere-shaped inclusion of fixed radius rs,

which is the characteristic variable of the inclusion's surface, ie, Rv ≡ rs. The radial spherical variable r ∈ [0, +∞) denotes

the spatial characteristic variable, ie, R ≡ r, pointing either inside for r ∈ [0, rs) or outside for any r ∈ (rs, rL] the sphere, rL
being the characteristic spherical variable that corresponds to the cylindrical area opening for 𝜌 = 𝜌L, appointing RL ≡ rL,

while the angular dependence comes from 𝜁 ≡ cos 𝜃 ∈ [−1, 1] and 𝜙 ∈ [0, 2𝜋) (actually 𝜙 = 𝜑 in our case). In terms of

these variables, we define the implemented to our application spherical coordinate system via

r = (r, 𝜁 , 𝜙) = r𝜁 x̂1 + r
√
1 − 𝜁2 cos𝜙x̂2 + r

√
1 − 𝜁2 sin𝜙x̂3 = rr̂, (52)

in terms of the Cartesian basis, where the unit normal coordinate vectors of this system r̂, �̂� , and �̂�, as written to denote

the (r, 𝜁 ,𝜙) clockwise system, assume the forms

r̂ = 𝜁 x̂1 +
√
1 − 𝜁2 cos𝜙x̂2 +

√
1 − 𝜁2 sin𝜙x̂3 ≡ n̂s, (53)

which matches the outward pointing unit normal vector n̂s on the surface of the spherical inclusion, while

�̂� =
√
1 − 𝜁2x̂1 − 𝜁 cos𝜙x̂2 − 𝜁 sin𝜙x̂3 and �̂� = − sin𝜙x̂2 + cos𝜙x̂3 = �̂�. (54)

In fact, to be consistent with our generalized technique, n̂ ≡ n̂s or R̂ ≡ r̂, while r̂ ≡ (𝜁, 𝜙) for 𝜁 ∈ [−1, 1] and 𝜙 ∈ [0, 2𝜋).

The gradient and the Laplacian operators yield

∇′ = r̂
𝜕

𝜕r
+
1

r
Ds (r̂ ) ,where Ds (r̂ ) = −

√
1 − 𝜁2�̂�

𝜕

𝜕𝜁
+

1√
1 − 𝜁2

�̂�
𝜕

𝜕𝜙
(55)

and

Δ′ =
1

r2
𝜕

𝜕r

(
r2

𝜕

𝜕r

)
+
1

r2
𝜕

𝜕𝜁

((
1 − 𝜁2

) 𝜕

𝜕𝜁

)
+

1

r2
(
1 − 𝜁2

) 𝜕2

𝜕𝜙2
, (56)

respectively, for every r ∈ [0, rs), 𝜁 ∈ [−1, 1] and 𝜙 ∈ [0, 2𝜋), while it is obvious that the matching D (r̂;R) ≡ Ds (r̂ ) and

Q (R; r̂) ≡ 1 certifies (55) from (29). On the other hand, completing this trivial but necessary analysis for the purposes of

reducing the general case to this application, the interior spatial domain of the spherical inclusion admits

Ωs =
{
(r, 𝜁 , 𝜙) ,∈ R

3 ∶ r ∈ [0, rs), 𝜁 ∈ [−1, 1] , 𝜙 ∈ [0, 2𝜋)
}
⊂ Ω, (57)

as a subset of the entire domain Ω, while the spherical-type surface is secured by the simply connected set

Ss =
{
(rs, 𝜁 , 𝜙) ∈ R

3 ∶ 𝜁 ∈ [−1, 1] , 𝜙 ∈ [0, 2𝜋)
}
, (58)

whereas (57) and (58) imply Ωv ≡ Ωs and Sv ≡ Ss. Here, we must clarify that the cylindrical-type domain outside the

spherical inclusion Ω2 remains unaltered. However, special care is needed for the spherical functions associated with

Ω2. Hence, the physical problem that we are about to solve is mathematically adjusted to the aforementioned introduced

spherical geometry.

Aiming now to clarify the passage of the performed analysis from the general arbitrary case to the spherical one, we act

as follows. Any function that belongs to the kernel space of the Laplace's operator (56) is written in terms of the interior

(regular at the origin) and the exterior (regular at infinity) spherical harmonic eigenfunctions

U (in)
n′∕m′ (r) ≡ rn

′

Ym′

n′ (𝜁, 𝜙) for r ∈ Ωs and U
(ex)
n′∕m′ (r) ≡ r−(n

′+1)Ym′

n′ (𝜁, 𝜙) for r ∈ Ω2, (59)

11



respectively, as a function of the surface spherical harmonics Ym′

n′
, where the convenient symbolism “∀

(
n′,m′

)
” is from

now on replaced by the corresponding intervals for our case, ie, n′ ≥ 0 and |m′| ≤ n′, to obtain the required number of

2n′ + 1 spherical eigenfunctions. By virtue of (59) and the general definitions (26) and (27), the radial dependencemerges

G(in)
n′∕m′ (R) ≡ rn

′

for any r < rs and G
(ex)
n′∕m′ (R) ≡ r−(n

′+1) at rs < r < rL, while the common angular dependence reveals that

gn′∕m′ (r̂) ≡ Ym′

n′
(𝜁, 𝜙). The surface spherical harmonics and their conjugate form are defined as

Ym′

n′ (𝜁, 𝜙) = Pm
′

n′ (𝜁 )e
im′𝜙 and Ym′ ∗

n′ (𝜁, 𝜙) = Pm
′

n′ (𝜁 )e
−im′𝜙 ≡ (−1)|m′|Y−|m′|

n′
(𝜁, 𝜙) for (𝜁, 𝜙) ∈ Ss (60)

with n′ ≥ 0 and |m′| ≤ n′, provided as a function of the well-known associated Legendre functions of the first kind

Pm
′

n′ (𝜁 ) =
1

2n′n′!

(
1 − 𝜁2

)|m′|∕2 dn′+|m′|
d𝜁n′+|m′|

(
𝜁2 − 1

)n′
for |𝜁 | ≤ 1 with n′ ≥ 0 and ||m′|| ≤ n′, (61)

which are regular when 𝜁 = ± 1. However, functions Ym′

n′
are orthogonal with respect to the surface relation on Ss and on

any spherical surface of constant radius, yielding

2𝜋

∫
0

+1

∫
−1

Ym′

n′ (𝜁, 𝜙)Y
m

′∗

n
′ (𝜁, 𝜙)d𝜁d𝜙 =

4𝜋

2n′ + 1

(n′ + |m′|)!
(n′ − |m′|)!𝛿n′n′𝛿m′m

′ , (62)

in view ofKronecker's deltas. Integral (62) is the analogous of the general orthogonality relationship (28) if we set h (r̂) ≡ 1,

dn′∕m′ ≡ 4𝜋

2n′+1

(n′+|m′|)!
(n′−|m′|)! as aforementioned; since it holds gn′∕m′ (r̂) ≡ Ym′

n′
(𝜁, 𝜙), then gn′∕m′ (r̂) ≡ Ym

′∗

n
′ (𝜁, 𝜙). Therefore,

with respect to the present analysis, the harmonic potentials Φc and Φv, which are associated with the inclusion and

given by the general expansions (24) and (25), respectively, inherit the spherical description of the current application

and provide us with

Φc (r) =
+∞∑
n′=0

n′∑
m′=−n′

C(c)
n′∕m′r

−(n′+1)Ym′

n′ (𝜁, 𝜙) for every r ∈ Ω2 (63)

and

Φv (r) =
+∞∑
n′=0

n′∑
m′=−n′

C(v)
n′∕m′r

n′Ym′

n′ (𝜁, 𝜙) for every r ∈ Ωs, (64)

following the spherical harmonic analysis, whereas for the domain Ω2, we are obliged to convert the variables from the

cylindrical to the spherical coordinates. On the other hand, the potentials associated with the cylindrical domains satisfy

(18) to (20).

In the sequel and under the aim to demonstrate the theoretical analysis, we proceed directly to the results for a general

shaped inclusion and specifically to the calculation of the unknown constant coefficients in between (44) and (48). Sub-

stituting all the transformation relations discussed herein to (44) to (48), those are reduced as follows, ie, (44) remains

unaltered, so as to give

C(a)
n∕m

=
1

𝜇r − 1

[
2C(𝑓 )

n∕m
− (𝜇r + 1)C(s)

n∕m

]
for every n ∈ N andm ∈ N

∗
+, (65)

and (45) becomes

C(v)
n′∕m′ =

2n′ + 1

n′ (𝜇r − 1) r2n
′+1

s

C(c)
n′∕m′ for every n

′ ≥ 0 and ||m′|| ≤ n′, (66)

where the particular case for n′ = m′ = 0 arises also from (66), giving C(c)
0∕0

= 0 and C(v)
0∕0

∈ R is an arbitrarily chosen

constant, which does not contribute at all to the final magnetostatic field, since it corresponds to the constant part of

potential (64) that vanishes under the gradient action. Hence, we may choose C(v)
0∕0

≡ 0, without loss of the consistency

and the generality of our results. Relation (46) is not affected, ie,

C(𝑓 )

n∕m
=

1

𝜇r + 1

[
2𝜇rC

(s)
n∕m

+ (𝜇r − 1)

+∞∑
n′=0

n′∑
m′=−n′

A
n′∕m′

n∕m
C(c)
n′∕m′

]
for every n ∈ N andm ∈ N

∗
+, (67)

while similar argumentation for (47) leads to

C(c)
n′∕m′ =

n′ (𝜇r − 1) r2n
′+1

s

n′ (𝜇r + 1) + 𝜇r

+∞∑
n=−∞

+∞∑
m=1

B
n∕m

n′∕m′C
(𝑓 )

n∕m
for every n′ ≥ 0 and ||m′|| ≤ n′, (68)
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which, by virtue of (67) (see directly (48) for instance), renders

+∞∑
n′=0

n′∑
m′=−n′

A
n′∕m′

n∕m

[
n′r2n

′+1
s

n′ (𝜇r + 1) + 𝜇r

]
+∞∑

N=−∞

+∞∑
M=1

B
N∕M

n′∕m′C
(𝑓 )

N∕M
−

𝜇r + 1

(𝜇r − 1)2
C(𝑓 )

n∕m
= −

2𝜇r

(𝜇r − 1)2
C(s)
n∕m

(69)

for every n∈N andm ∈ N
∗
+, where C

(s)
n∕m

refers to applied source field of the current coil for every n∈N andm ∈ N
∗
+. Our

final task is to convert the known constants A
n′∕m′

n∕m
and B

n∕m

n′∕m′ from (35) and (38), respectively, for any n ∈ N andm ∈ N
∗
+,

as well for any n′ ≥ 0 and |m′| ≤ n′ to the corresponding spherical constants. If we consider that 𝜙 = 𝜑, both belonging to

[0, 2𝜋), thenwith respect to the azimuthal angular orthogonality relation (23), we recover the following handy expressions

in terms of easy-to-handle functions that remain bounded within the integration intervals, ie,

A
n′∕m′

n∕m
=

2𝛿m′n

z0∫
0

𝜌L∫
0

[
r−(n

′+1)Pm
′

n′
(𝜁 )

]
𝜌Jn

(
rmn

𝜌

𝜌L

)
𝑦n∕m (z) d𝜌dz

𝜌2
L

[
Jn+1

(
rmn

)]2{z0∫
0

𝑦n∕m (z) e
−rmn

z−z0
𝜌L dz

} (70)

and

B
n∕m

n′∕m′ =

(
2n′ + 1

) (
n′ − |m′|)!𝛿nm′

rL∫
rs

+1∫
−1

[
Jn

(
rmn

𝜌

𝜌L

)
e
rmn

z−z0
𝜌L

]
xn′∕m′ (r)Pm

′

n′
(𝜁 ) d𝜁dr

2 (n′ + |m′|)!
{

rL∫
rs

rn′xn′∕m′ (r) dr

} , (71)

whereas the quantity r−(n
′+1)Pm

′

n′
(𝜁 ) into (70) must be represented in terms of the cylindrical variables (𝜌, z), while

Jn
(
rmn

𝜌

𝜌L

)
e
rmn

z−z0
𝜌L within (71) should admit spherical behavior under the (r, 𝜁) dependence. This is feasible by means of

the relations 𝜌 = r
√
1 − 𝜁2 and z = r𝜁 , which are the outcome of matching (2) with (52). Let us recall that yn/m(z) for

z ∈ [0, z0] with n ∈ N andm ∈ N
∗
+, and xn′∕m′ (r) for r ∈ [rs, rL] with n′ ≥ 0 and |m′| ≤ n′, provide us with the flexibility in

evaluating (70) and (71).

An interesting result follows after further manipulation of (70) and (71), revealing that, since 𝛿m′n = 𝛿nm′ = 0 when

n ≠m′, then

A
n′∕m′

n∕m
= B

n∕m

n′∕m′ = 0 for n ∈ N,m ∈ N
∗
+ and n

′ ≥ 0, ||m′|| ≤ n′ with n ≠ m′, (72)

forcing the constant coefficients (66) and (68) to vanish, ie,

C(v)
n′∕m′

|||n≠m′
= C(c)

n′∕m′

|||n≠m′
= 0 for every n′ ≥ 0 and ||m′|| ≤ n′, (73)

while the remaining constant coefficients (65) and (67) yield

C(a)
n∕m

|||n≠m′
= −

𝜇r − 1

𝜇r + 1
C(s)
n∕m

and C(𝑓 )

n∕m

|||n≠m′
=

2𝜇r
𝜇r + 1

C(s)
n∕m

for every n ∈ N andm ∈ N
∗
+, (74)

in terms of the exerted field's constant coefficients C(s)
n∕m

for n ∈ N and m ∈ N
∗
+. The results (73) and (74) reflect the

absence of any field either inside the inclusion (see, for instance, (64) to verify Φv|n≠m′ = 0) or reflected by the void (see,

similarly, (63), showing Φc|n≠m′ = 0). On the other hand, the surviving potentials (19) and (20), associatedwith the planar

interface, are written suitably by substitution of (74), as

Φa (r)|n≠m′ = −
𝜇r − 1

𝜇r + 1

+∞∑
n=−∞

ein𝜑
+∞∑
m=1

C(s)
n∕m

Jn

(
rmn

𝜌

𝜌L

)
e
−rmn

z − z0
𝜌L for r ∈ Ω1 (75)

and

Φ𝑓 (r)|n≠m′ =
2𝜇r

𝜇r + 1

+∞∑
n=−∞

ein𝜑
+∞∑
m=1

C(s)
n∕m

Jn

(
rmn

𝜌

𝜌L

)
e
rmn

z−z0
𝜌L for r ∈ Ω2, (76)

once (18) is invoked, while the related magnetostatic fields assume Ba|n≠m′ = −∇Φa|n≠m′ and B𝑓
||n≠m′ = −∇Φ𝑓

||n≠m′ ,

whereas Bs|n≠m′ = −∇Φs|n≠m′ is the prescribed incident magnetostatic field. Obviously, this case resembles the special

physical problem, where there is no inclusion; hence, we actually deal with a simple transmission problem between air
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and ferromagnetic media with current coil excitation. However, the discussed case where n ≠ m′ must not be confused

with the also interesting limiting case, whereas the radius of the spherical inclusion tends to zero (rs → 0), because,

in this particular occasion, the inclusion is not absent but exists as a singularity point without dimensions within the

ferromagnetic medium. Herein, a careful, though trivial, limiting procedure has to be followed for the spherical results,

which is based strictly to the choice of function xn′∕m′ (r) for every r ∈ [rs, rL] with n′ ≥ 0 and |m′| ≤ n′ into (71), since it

will provide us with appropriate dependence upon rs.

Recapitulating the completely analytical elaboration of the spherical inclusion problem, we mention that once the

integrals appearing within (70) and (71) are computed; then, the related expansion constants are calculated and when

they are readily inserted into relationships (65) to (68) (or instead (68), pose (69) alternatively), we end up with systems of

linear algebraic equations. These can be solved with usual cut-off computational techniques so as to obtain the unknown

constant coefficients C(a)
n∕m

and C(𝑓 )

n∕m
for n ∈ N andm ∈ N

∗
+, and C

(c)
n′∕m′ and C

(v)
n′∕m′ for n

′ ≥ 0 and |m′| ≤ n′, given C(s)
n∕m

for

n ∈ N andm ∈ N
∗
+. When accuracy is achieved, the interrelated potentials Φs, Φa, and Φf via (18) to (20), and Φc and Φv

through (24) and (25) with the aid of (26) and (27), are immediately settled, while the magnetostatic vector fields arise

from (49) to (51) for the demonstrated situation, where the domain of the inclusion has been considered spherical.

As it was intensively discussed, the crucial threshold of the succession of our method is the evaluation of the integrals

that appear within (70) and (71), since all the information about the inclusion's geometry is embedded in these conver-

sion formulae. Besides, the solution of the system of linear equations (65) to (68) that will yield the sought development

coefficients is an easy task, considering the facility of solving such systems. To this end, we attempt to precede the anal-

ysis a few steps further and seek the conversion relations from exterior spherical functions to cylindrical ones and from

cylindrical to interior spherical modes, namely,

r−(n
′+1)Pm

′

n′ (𝜁 ) =

+∞∑
m=1

A
n′∕m′

m′∕m
Jm′

(
rmm′

𝜌

𝜌L

)
e
−rm

m′

z−z0
𝜌L =

+∞∑
m=1

[
A
n′∕m′

m′∕m
e

(
rm
m′∕𝜌L

)
z0

]
Jm′

(
rmm′

𝜌

𝜌L

)
e
−
(
rm
m′∕𝜌L

)
z

(77)

with n′ ≥ 0 and |m′| ≤ n′, while

Jn

(
rmn

𝜌

𝜌L

)
e
rmn

z−z0
𝜌L =

+∞∑
n′=0

B
n∕m

n′∕n
rn

′

Pnn′ (𝜁 ) or Jn

(
rmn

𝜌

𝜌L

)
e(r

m
n ∕𝜌L)z =

+∞∑
n′=0

[
B
n∕m

n′∕n
e(r

m
n ∕𝜌L)z0

]
rn

′

Pnn′ (𝜁 ) (78)

with n ∈N andm ∈ N
∗
+, both (77) and (78) being valid at r ∈Ω2 and written suitably to refer to the origin, where we have

kept only the terms for n = m′, which give nonzero constants (70) and (71), while the azimuthal dependence is omitted

for reasons of clarity, since both the implied systems are rotational symmetric. Besides, this statement is readily proved,

since the azimuthal angle lacks from the integrals in (70) and (71). As said, we have to determine the coefficients (70) and

(71) to obtain the expansions (77) and (78) for n =m′.

We start with the conversion from the cylindrical to the external spherical eigenfunctions to produce expansion (77).

We consider the identity

+∞

∫
0

e−x cos 𝜃J−q (x sin 𝜃) x
pdx = Γ (p − q + 1)P

q
p (cos 𝜃) for 0 < 𝜃 <

𝜋

2
and Re

[
p − q

]
> −1, (79)

where the Gamma function Γ, given any complex number u with Re u > 0, is provided by

Γ (u) =

+∞

∫
0

e−ttu−1dt = 2

+∞

∫
0

e−t
2

t2u−1dt =

1

∫
0

lnu−1
(
1

t

)
dt with Γ (u + 1) = uΓ (u) and Γ

(
1

2

)
=

√
𝜋. (80)

We make the convenient modifications into (79) by setting 𝜁 = cos 𝜃, changing the integration variable x → 𝜆r, using

the fact that J−q = (−1)qJq, switching to cylindrical coordinates by means of the relations 𝜌 = r
√
1 − 𝜁2 and z = r𝜁 , and

putting together all the proper indexes as p→ n′ and q→m′; thus, since Γ(n′ −m′ + 1) = (n′ −m′)!, we arrive at

r−(n
′+1)Pm

′

n′ (𝜁 ) =
(−1)m

′

(n′ −m′)!

+∞

∫
0

𝜆n
′

e−𝜆zJm′ (𝜆𝜌) d𝜆 for r ∈ Ω2 with n
′ ≥ 0 and ||m′|| ≤ n′, (81)

where the two constrains implied by (79) are fulfilled, noticing that Re[n′ − m′] ≡ n′ − m′ > − 1. Finally, the demand

of zero magnetostatic field at the truncation surface 𝜌 = 𝜌L is interpreted so that the constant 𝜆 to be an eigenvalue and
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obtain discrete rather than continuous values, ie, 𝜆 ≡ 𝜆m
m′ = rm

m′∕𝜌L, where r
m
m′ is the m-root (m ≥ 1) of order m′ (note

|m′| ≤ n′ with n′ ≥ 0) of the Bessel functions of the first kind, meaning Jm′

(
rm
m′

)
= 0. However, the conversion relation

(81) in its continuous version is much trickier in manipulating to obtain the final expression upon summation over the

discrete spectrum. In fact, it can be proved that one has to readapt the normalization coefficients, which are different for

the continuous and the discrete case, yielding the multiplication of (81) by the factor 2
(
𝜌L∕r

m
m′

)
𝜌−2
L
J−2
m′+1

(
rm
m′

)
. This is not

a rigorous mathematical proof though but merely an engineering approximation. A strictly mathematical proof would

require a limiting procedure, yet this is out of the scope of our analysis at this point, whose main purpose is to establish a

handy formula for passing from the discrete to the continuous representation and vice versa. Consequently, the integral

within (81) becomes infinite series with respect to the above statement and form ≥ 1, ie,

r−(n
′+1)Pm

′

n′ (𝜁 ) =
2
(
𝜌L∕r

m
m′

)

𝜌2
L
J2
m′+1

(
rm
m′

)
[

(−1)m
′

(n′ −m′)!𝜌n
′

L

+∞∑
m=1

(
rmm′

)n′
Jm′

(
rmm′

𝜌

𝜌L

)
e
−
(
rm
m′∕𝜌L

)
z

]
for r ∈ Ω2 (82)

with n′ ≥ 0 and |m′| ≤ n′. Direct comparison of (77) and (82) yields the constants

A
n′∕m′

m′∕m
=

2(−1)m
′

(n′ −m′)!

(
rm
m′

)n′−1
𝜌n

′+1
L

J2
m′+1

(
rm
m′

)e−
rm
m′

𝜌L
z0 for every value ofm ≥ 1,n′ ≥ 0 and ||m′|| ≤ n′, (83)

which stands for the desired result that coincides with the result coming from (70) for the surviving constants if n = m′

with |m′| ≤ n′ and n′ ≥ 0. We mention that restriction 𝜃 ∈
(
0, 𝜋

2

)
in (79) is compatible with the bounds of z-variable in

Ω2, since for r > 0, it is z ≡ r cos 𝜃 > 0.

As for the conversion from the internal spherical to the cylindrical eigenfunctions to recover expansion (78), we rewrite

𝜆mn = rmn ∕𝜌L for n ∈ N andm ∈ N
∗
+, we weight both sides of (78) with e

−𝜆mn r for n ∈ N andm ∈ N
∗
+, and we integrate with

respect to the radial distance r to obtain

+∞

∫
0

Jn

(
𝜆mn r

√
1 − 𝜁2

)
e−𝜆

m
n r(1−𝜁 )dr =

+∞∑
n′=0

[
B
n∕m

n′∕n
e𝜆

m
n z0

]
Pnn′ (𝜁 )

+∞

∫
0

rn
′

e−𝜆
m
n rdr for r ∈ Ω2 (84)

with n ∈ N and m ∈ N
∗
+, where, again, we have used the conversion relations 𝜌 = r

√
1 − 𝜁2 and z = r𝜁 to the left-hand

side of relationship (84). The integral on the right-hand side of (84) bears standard treatment as follows:

+∞

∫
0

rn
′

e−𝜆
m
n rdr = (−1)n

′ dn
′

d
(
𝜆mn

)n′
+∞

∫
0

e−𝜆
m
n rdr = (−1)n

′ dn
′

d
(
𝜆mn

)n′
(
1

𝜆mn

)
=

n′!(
𝜆mn

)n′+1 (85)

for n ∈ N and m ∈ N
∗
+, while n

′ ≥ 0. The calculation of the first integral is more tedious and its calculation is based on

the identity
+∞

∫
0

e−𝛼xJp (𝛽x) dx =
𝛽−p

(√
𝛼2 + 𝛽2 − 𝛼

)p
√
𝛼2 + 𝛽2

for Re
[
p
]
> −1 and Re [𝛼 ± i𝛽] > 0. (86)

Setting 𝛼 → 𝜆mn (1 − 𝜁 ) and 𝛽 → 𝜆mn

√
1 − 𝜁2, replacing 𝜁 = cos 𝜃, fixing properly the index p→ n, changing the integration

variable x→ r, and performing some algebraic calculations, and some simplifications of the trigonometric functions, then

(86) converts to
+∞

∫
0

e−𝜆
m
n r(1−𝜁 )Jn

(
𝜆mn r

√
1 − 𝜁2

)
dr =

1

2𝜆mn sin (𝜃∕2)

[
2 sin (𝜃∕2) − 2sin2 (𝜃∕2)

sin 𝜃

]n

=
1

2𝜆mn sin (𝜃∕2)

[
1 − sin (𝜃∕2)

cos (𝜃∕2)

]n
for 0 < 𝜃 < 𝜋

(87)

with n∈N andm ∈ N
∗
+, while the restrictions hold true, since obviously Re[n]≡ n> − 1 and Re

[
𝜆mn

(
1 − 𝜁 ± i

√
1 − 𝜁2

)]

≡ 𝜆mn (1 − 𝜁 ) > 0. Putting all the analytical tools together, we substitute (85) and (87) into (84) for 𝜁 = cos 𝜃, yielding

+∞∑
n′=0

n′!(
𝜆mn

)n′+1
[
B
n∕m

n′∕n
e𝜆

m
n z0

]
Pnn′ (cos 𝜃) =

1

2𝜆mn sin (𝜃∕2)

[
1 − sin (𝜃∕2)

cos (𝜃∕2)

]n
for r ∈ Ω2 (88)
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with n∈N andm ∈ N
∗
+, fromwhich by projection of both sides on the elements of the associated Legendre functions and

using the orthogonality relation

𝜋

∫
0

Pnn′ (cos 𝜃)P
n

n
′ (cos 𝜃) sin 𝜃d𝜃 =

2

2n′ + 1

(
n′ + n

)
!

(n′ − n)!
𝛿n′n′ for n,n

′ ∈ N, (89)

we get

B
n∕m

n′∕n
=
2n′ + 1

4

(
n′ − n

)
!

(n′ + n)!

(
𝜆mn

)n′
n′!

e−𝜆
m
n z0

𝜋

∫
0

sin 𝜃Pn
n′
(cos 𝜃)

sin (𝜃∕2)

[
1 − sin (𝜃∕2)

cos (𝜃∕2)

]n
d𝜃, (90)

or, since sin 𝜃 = 2 sin (𝜃/2) cos (𝜃/2),

B
n∕m

n′∕n
=
2n′ + 1

2

(
n′ − n

)
!

(n′ + n)!

(
𝜆mn

)n′
n′!

e−𝜆
m
n z0

𝜋

∫
0

[1 − sin (𝜃∕2)]n

[cos (𝜃∕2)]n−1
Pnn′ (cos 𝜃) d𝜃, (91)

where n, n′ ∈ N, andm ∈ N
∗
+. Since 𝜆

m
n = rmn ∕𝜌L for n ∈ N andm ∈ N

∗
+, relationship (91) can be written in the compact

form

B
n∕m

n′∕n
=
2n′ + 1

2n′!

(n′ − n)!

(n′ + n)!

(
rmn
𝜌L

)n′

e
−
rmn
𝜌L
z0Inn′ ,where I

n
n′ =

𝜋

∫
0

[1 − sin (𝜃∕2)]n

[cos (𝜃∕2)]n−1
Pnn′ (cos 𝜃) d𝜃, (92)

which is the sought relation that coincides with the result of (71) for the surviving constants if m′ = n with n, n′ ∈ N

and m ∈ N
∗
+. The integral I

n
n′
depends only upon the indices n and n′ but has to be evaluated numerically for each pair.

Notice, however, that the integrand is a well-behaved function inside the integration interval, so the numerical integra-

tion is not to pose any particular problems. Finally, within the integral of (92), we must pay attention to the fact that

Pn
n′
(cos 𝜃) ≡ 0 when n > n′, while again, here, integration over 𝜃 ∈ (0,𝜋) in (92) reflects the positive sign of cos (𝜃/2)

as expected.

For the numerical validation of the conversion relations (77) and (78), by invoking the relative derived expressions for

the coefficients (83) and (92), respectively, we compare for each case the modes, evaluated both directly and via (77) and

(78) for a set of characteristic values of the involved parameters, and we compare the two results. The comparison for

the spherical to cylindrical conversion is shown in Figure 2, whereas the corresponding results for the second conversion

from cylindrical to spherical modes is presented in Figure 3.

There exist numerous of comparisons similar to those demonstrated within the aforementioned diagrams for differ-

ent characteristic parameters; however, we have chosen to expose selectively some representative situations, which are

sufficient for the validation. Observing the behavior of the spherical (see Figure 2) and the cylindrical (see Figure 3)

eigenfunctions is excellent, and the obtained results coincide with the exact computation of these functions.

FIGURE 2 Spherical functions Pm
′

n′
(𝜁) ≡ Pm

′

n′
(cos 𝜃), evaluated in the interval 𝜃 ∈ [0,𝜋/2] for different values (A) n′ = 3/m′ = 0 and

(B) n′ = 15/m′ = 15, as for the order and the degree, respectively [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 3 Cylindrical functions Jn
(
rmn 𝜌∕𝜌L

)
e(r

m
n ∕𝜌L)z ≡ Jn (𝜅𝜌) e

𝜅z, evaluated at z = 0.005 mm and in the interval for 𝜌 ∈ [0, 0.1] mm when

(A) n = 0/𝜅 = 10 mm−1 and (B) n = 5/𝜅 = 80 mm−1, as for the order and the constant of separation of variables, respectively [Colour figure

can be viewed at wileyonlinelibrary.com]

5 - NUMERICAL  IMPLEMENTATION  FOR  THE  SPHERICAL  INCLUSION

The aforementioned perfect validation of the derived expressions by comparison for each case of the modes, evaluated

both directly and via the conversion relations for a set of characteristic values of the parameters, offers the perfect envi-

ronment for the implementation stage to get involved thereafter. In view of this aspect, the corresponding numerical

simulations are performed by the ACDC module of COMSOL Multiphysics software, which is based on a 3-D finite

element method.

The displayed model has been applied to the considered circumstance depicted in Figure 1, where we consider a

spherical inclusion and the ferromagnetic half-space of relative permeability 𝜇r = 100 with respect to the air. Aiming to

effectively mimic the introduced geometrical area and extend it far enough with respect to the observation domain, we

truncate the magnetic activity zone by a cube of 50 mm each side. Hence, the limiting behavior of the theoretical analysis

is consistent in the z-direction, while the cylindrical external boundary is set at 𝜌L = 50.0 mm as a fair approximation to

the perfect magnetic boundary condition. Besides, larger truncation radii have an almost negligible impact to the accu-

racy of the results, and simultaneously, computational consuming time is kept within logical bounds. By definition of the

common center of the cylindrical and spherical coordinate systems, we presume a sphere of radius rs = 4.0 mm, whose

center coincides with the (0, 0, 0) of the introduced geometry, being located 4.2 mm beneath the interface, ie, z0 = 4.2 mm.

On the other hand, the source field has an inner and outer radius of rin = 2.0mmand rout = 4.0mm, respectively; its length

is 2d = 2.0 mm and it is wound with 200 wire turns. The air-cored coil is moved at a fixed lift-off equal to 0.2 mm from

the half-space interface, ie, zc − z0 − d = 0.2 mm, resulting to zc = 5.4 mm, while the forthcoming results are taken for

three different and randomly chosen displacements of the coil with respect to the z-axis of symmetry, ie, for 𝜌c = 0.0 mm

(Figure 4), 𝜌c = 1.0 mm (Figure 5), and 𝜌c = 2.0 mm (Figure 6).

On the other hand, the measurable field in cylindrical geometry is concerned with the radial B𝜌[=]mT and the axial

Bz[=]mT components of the magnetostatic vector

B (r) = B𝜌 (𝜌, z) �̂� + Bz (𝜌, z) ẑ for every r ≡ (𝜌, 𝜑, z) ∈ Ω (93)

with respect to the final formulae (49) to (51) for a spherical inclusion and accordingly to each subset domain of interest

Ω1, Ω2, and Ωv. Otherwise, magnetic induction B is a rotational symmetric field as a fair approximation of the modeling

configuration,meaning that it is independent of the azimuthal angle𝜑∈ [0, 2𝜋), ie, 𝜕B/𝜕𝜑= 0, and that its vector lives on a

meridian plane, ie, �̂�·B = 0. Therein, field (93) is numerically implemented upon an observation line of constant z, parallel

to the plane separating the half-space ferromagnetic material and the open air, situated at a constant depth of 4.9 mm

from the interface, which stands for the observation region that ranges along the x-axis and it is providing measurements

at x ∈ [−30 mm, 30 mm], the two tips of this interval being taken at 𝜑 = 𝜋 and 𝜑 = 0, respectively, for 𝜌 = 30 mm by virtue

of x = 𝜌cos 𝜑 in cylindrical coordinates. Obviously, since the direction of this line coincides with the 𝜌-direction shown
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FIGURE 4 Semianalytical (blue line) versus finite element method (FEM) simulation (orange line) results of the magnetostatic

components (A) B𝜌[=]mT and (B) Bz[=]mT for a spherical inclusion of prescribed radius 4.0 mm and location 4.2 mm beneath the interface,

the green dashed line referring to the case of no inclusion. The air-cored coil source is moved at a fixed lift-off equal to 0.2 mm and its

displacement is 0.0 mm with respect to the z-axis of symmetry [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 Semianalytical (blue line) versus finite element method (FEM) simulation (orange line) results of the magnetostatic

components (A) B𝜌[=]mT and (B) Bz[=]mT for a spherical inclusion of prescribed radius 4.0 mm and location 4.2 mm beneath the interface,

the green dashed line referring to the case of no inclusion. The air-cored coil source is moved at a fixed lift-off equal to 0.2 mm and its

displacement is 1.0 mm with respect to the z-axis of symmetry [Colour figure can be viewed at wileyonlinelibrary.com]

in Figure 1, the x-variable matches the cylindrical component; hence, for reasons of numerical convenience within (93),

we mutually expand the 𝜌-dependence to negative values as well. For a better qualitative understanding of the results,

we provide simultaneously the corresponding response of themagnetostatic field in the absence of the spherical inclusion

and we embody this characteristic situation in the same diagram for each case to demonstrate the direct effect of the

inclusion to the field behavior. As depicted in Figure 4, setting the source's center on the z-axis, just above the spherical

inclusion, we attain a symmetric situation, readily reflected upon the behavior of the field, which is not the case of a

different displacement of the source, as shown in Figures 5 and 6, where we observe that as we move far away from the

axis of symmetry, the field's response deviates from the initial condition, which is logic and agrees with reality.

The respective finite element method calculation time instead is estimated to 1.5 minutes per scan point, both times

being measured using a standard PC workstation. It should be pointed out that the computational effort for the semiana-

lytical solution is independent to the number of scan points because the systemmatrix is independent of the coil position,
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FIGURE 6 Semianalytical (blue line) versus finite element method simulation (orange line) results of the magnetostatic components

(A) B𝜌[=]mT and (B) Bz[=]mT for a spherical inclusion of prescribed radius 4.0 mm and location 4.2 mm beneath the interface, the green

dashed line referring to the case of no inclusion. The air-cored coil source is moved at a fixed lift-off equal to 0.2 mm and its displacement is

2.0 mm with respect to the z-axis of symmetry [Colour figure can be viewed at wileyonlinelibrary.com]

the latter affecting only the right-hand side vector of the linear system. Therefore, using LU variants for the system inver-

sion, the additional computational cost is merely due to the backwards substitution calculations, which is a well-reported

advantage of semianalytical solutions. The reason for the very small calculation times lies also with the rapid convergence

of the solution series, which allowed us to consider few modes. This is not surprising, since the cylindrical and spherical

potential functions bases used for the solution expansion are partial solutions of the given geometry, and thus, they are

already very close to the final solution.

Recapitulating, we should emphasize the fact that the efficiency of the presented general model provides a powerful

tool in producing analytical or semianalytical results. This statement is valid not only formagnetostatic problems as in our

case but also could serve other engineering applications near this field, helping in the achievement of usefully analytical

modes as a reference point for more brute-force numerical codes.

6 - CONCLUSIONS  AND  DISCUSSION

A semianalytical method to the magnetostatic scattering problem for an air inclusion in a conducting ferromagnetic

half-space, excited by an air-cored coil source, has been developed. The general technique for the identification of an arbi-

trarily shaped hollow inclusion is presented based on rigorous, yet versatile mathematical tools. The continuity coupling

between the two interfaces is taken into account via transmission conditions, while the limiting behavior of the fields is

readily secured. The boundary approximation of a vanishing field at sufficiently long distance from the source creates an

error of minor significance, since it can be made arbitrarily small just by fixing the truncation distance. Our generalized

model is demonstrated by an application, where the inclusion is considered spherical and the solution provides adequate

results, almost perfectly fitting numerical simulation. Hence, this comparison validates the efficiency of the proposed

formulation.

Such analytical solutions and formulae in closed forms are always in the front line of scientific research and have

important advantages compared with the pure numerical methods. Indeed, the validity of numerical solutions can be

verified by analytical or semianalytical techniques. On the other hand, bearing in mind that very important physical laws

can be derived from analytical methods, we can understand the necessity of a stable and secure mathematical basis for

starting a numerical procedure. Therefore, even nowadays, there is always room for such kind of methods that coexist

with pure numerical codes and aim to the solution of boundary value problems in physical applications of importance.

Mathematical and computational work is currently in progress and involves research into several directions, such as the

involvement of more intricate geometries for the void inclusion or the creation of time-consuming brute-force inversion

algorithms, taking profit from the simple framework proposed. For example, the general case of a 3-D ellipsoidal air
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inclusion is farmore elaborating than the spherical and the spheroidal one due to two (among others) main reasons. First,

the involved potentials in ellipsoidal geometry are written in terms of elliptic integrals, which can be only manipulated

numerically, and second, only few ellipsoidal harmonics render a fully analytical conformation; therefore, the task of

writing cylindrical to ellipsoidal eigenfunctions and vice versa becomes very difficult.
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