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A linearized robust model predictive control applied to bioprocess

S.E. Benattia, S. Tebbani, D. Dumur

Abstract— This work deals with the problem of tra-
jectory tracking for a nonlinear system with unknown
but bounded model parameters uncertainties. First, this
work focuses on the design of classical robust nonlinear
model predictive control (RNMPC) law subject to model
parameters uncertainties implying solving min-max opti-
mization problem. Secondly, a new approach is proposed,
consisting in approaching the basic min-max problem into
a more tractable optimization problem based on the use
of linearization techniques, to ensure a good trade-off
between tracking accuracy and computation time. The
robust stability of the closed-loop system is addressed.
The developed strategy is applied in simulation to a
simplified macroscopic continuous photobioreactor model
and is compared to the RNMPC controller. Its efficiency
is illustrated through numerical results and robustness
against parameter uncertainties.

Index Terms— Robust MPC, Min-max optimization, Ro-
bust stability, Uncertain systems, Bioprocesses, Microalgae.

I. INTRODUCTION

The aim of this paper is to design a robust controller
that would be able to elaborate an adequate control
strategy in order to guarantee that the process will yield
the setpoint under model parameter uncertainties. This
requires the application of advanced optimal control
strategies to ensure the process efficiency, among them
predictive control is a good candidate. This work is
focused on Nonlinear Model Predictive Control (NMPC)
strategy [1]. The major advantage of the MPC law is
that it allows the current control input to be determined,
while taking into account the future system behavior
and constraints on the system. This is achieved by
optimizing the control profile over a finite time horizon,
but applying only the current control input. However, the
performances of the NMPC law usually decrease when
the true plant evolution deviates significantly from the
one predicted by the model. Robust variants of NMPC
(RNMPC) [2], [3] are able to take into account set
bounded disturbance, formulated as a nonlinear min-
max optimization problem which leads to important
calculation time and thus untractable online algorithms.
Therefore, the paper transforms the standard RNMPC
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into a more tractable optimization problem, approaching
the criterion using a model linearization technique (first
order Taylor series expansion) at each sampling time
along the nominal trajectory which is defined based on
the nominal parameter values and the optimal control se-
quence obtained at the previous iteration (called hereafter
Linearized Robust MPC, LRMPC). The main advantage
of LRMPC is to be computationally tractable in calculat-
ing the optimal control, reducing the computation load.
Stability properties of the robust model predictive control
strategy taking into account bounded uncertainties have
been analyzed in [4], [5], [6]. In this study, based on
work developped by [3], [5] and taking the objective
function as the Lyapunov candidate function, the robust
stability of the closed-loop system while applying the
LRMPC law is established under some assumptions.
The paper is organized as follows. In Section II, some
notations used through the paper are introduced. Section
III presents the class of nonlinear systems that will
be considered and Section IV the robust predictive
control strategy, based on linearization techniques. Some
definitions and results in robust stability are presented,
followed by stability analysis of the proposed control
law. An application to the control of the biomass con-
centration in a continuous photobioreactor is presented
in Section V. Numerical results are provided in order to
demonstrate the effectiveness of the proposed strategy
in case of model mismatch. Finally, conclusion and
perspectives are stated in Section VI.

II. NOTATIONS

Matrix norm ||A|| is given by ||A|| =
√

σ̄(A∗A) with
σ̄(A) the maximum eigenvalue of A. The notation A∗

denotes the conjugate transpose of A. ||z||2P = z>Pz is
the Euclidean norm weighted by P. The notation A†

denotes the pseudo inverse of A. A function J(x) is said
to be locally lipschitz with respect to its argument x if
there exists a positive Lipschitz constant LJ such that
||J(x1)−J(x2)|| ≤ LJ ||x1−x2|| for all x1 and x2 in a given
region of x. A function φ is said to be positive definite
if φ(s)> 0 for all s > 0. A function f : R−→ R is said
to be C n function with n ∈ Z≥0, if the first n derivatives
f
′
(.), f

′′
(.), . . . , f (n)(.) all exist and are continuous with

respect to their argument. A function α: R≥0 −→ R≥0
is a K -function (or of class K ) if it is continuous,
positive definite, strictly increasing and α(0) = 0. A
function β : R≥0 −→ R≥0 is a K∞-function if it is a K -



function and also β (s)−→ ∞ as s−→ ∞. A function γ:
R≥0×Z≥0 −→ R≥0 is of class K L if, for each fixed
t ≥ 0, γ(., t) is of class K , for each fixed s ≥ 0, is
decreasing and γ(s, t)−→ 0 as t −→ ∞.

III. PROBLEM STATEMENT

Consider a system described by an uncertain discrete-
time nonlinear model:{

xk+1 = f (xk,uk,θ),k ≥ 0, x0 = x̄
yk = Hxk

(1)

where xk ∈X⊆Rnx is the state vector with X the compact
set of admissible states and x̄ the initial state, yk ∈ Y⊆
Rny is the measured output with Y the compact set of
admissible outputs, uk ∈ U ⊂ Rnu represents the control
input with U the compact set of admissible controls and
θ ∈ Rnθ is the vector of uncertain parameters that are
assumed to lie in the admissible region Θ = [θ−,θ+].
The mapping f : Rnx ×Rnu ×Rnθ −→ Rnx , assumed of
class C 2 with respect to all its arguments, represents the
nonlinear process dynamics. The measurement matrix is
given by H ∈ Rny×nx . X, Y and U contain the origin.

Exogenous inputs can act on system (1). They are
omitted to simplify notation (but are applied to the
system). The control input u is parametrized using
a piecewise-constant approximation (u(τ) = u(tk), τ ∈
[tk, tk+1[) over a time interval [tk, tk+1], [kTs,(k+1)Ts)]
considering a constant sampling time Ts.

Let us define the discrete state trajectory g, at time tk+1
with initial state x0, and with utk

t0 the control sequence
from the initial time instant t0 to the time instant tk:{

xk+1 = g(t0, tk+1, x̄,u
tk
t0 ,θ = θnom +δθ)

yk = Hxk
(2)

where θnom = (θ++θ−)/2 are the nominal parameters
and δθ are the parameters uncertainties. It can be easily
shown that:

f (xk,uk,θ)≡ g(tk, tk+1,xk,utk ,θ) (3)

IV. CONTROLLER DESIGN

In this paper, a new robust predictive control law is de-
signed such that the output signal yk tracks the reference
signal yr

k while ensuring good closed-loop behaviour and
tracking accuracy, despite the model uncertainties. The
predictive controller predicts the plant future evolution
over a finite receding horizon of length NpTs, using
a nonlinear dynamic model. At each time instant tk,
the future control sequence is computed by minimizing
a quadratic cost function based on the future tracking
errors, while ensuring that all constraints are respected.
The first control in the optimal sequence is applied to the
system until the next time step, when the measurement
becomes available. The optimization problem is solved
again at the next sampling time according to the well-
known receding horizon principle.

A. Min-max optimization problem

Since the predictive controller is model-based, it is
very sensitive to model uncertainties, and more specifi-
cally to the model parameters values. In our case, we
will assume that the parameter vector θ is uncertain
and belongs to the known compact set Θ. In this case,
a robust predictive control strategy (RNMPC) implying
a min-max optimization problem [2] can be used and
defined as follows (at time index k):

?
u

k+Np−1
k = arg min

u
k+Np−1
k ∈U

max
δθ∈Θδ

ΠR(xk,u
k+Np−1
k ,δθ)

(4)
where the cost function is defined as

ΠR(xk,u
k+Np−1
k ,δθ), ||δuk+Np−1

k ||2V +||ŷk+Np
k − ȳk+Np

k ||2W
(5)

with

δuk+Np−1
k =


uk−

?
uk−1
...

uk+ j−uk+ j−1
...

uk+Np−1−uk+Np−2

 =



δuk
...

δuk+ j
...

δuk+Np−1

 the

control increments,
?
uk−1 the control input applied at

time index k−1,

ŷk+Np
k+1 =



Hg(tk, tk+1,xk,uk,θ)
...

Hg(tk, tk+ j,xk,u
k+ j−1
k ,θ)

...
Hg(tk, tk+Np ,xk,u

k+Np−1
k ,θ)


the predicted out-

(6)
put, and ȳk+Np

k+1 = [yr>
k+1, . . . ,y

r>
k+Np

]> the setpoint values.
Θδ is a compact set that contains the origin, defined
as follows: Θδ = [−δθmax,δθmax] with δθmax = (θ+−
θ−)/2. U, [ul ,uu] (lower and upper bounds). V ≥ 0 and
W > 0 are tuning diagonal weighting matrices.

The optimal control sequence
?
u

k+Np−1
k is determined to

minimize the tracking error by considering all trajecto-
ries over all possible data scenarii.

B. Linearization techniques

Since the min-max optimization problem is time con-
suming, it will be transformed further by converting
the min-max optimization problem into an approximated
minimization one. From (2), the predicted state for
time tk+ j, starting from state at tk, is linearized around
the reference trajectory given by the control sequence
ūk+Np−1

k (defined later) and for the nominal parameters.
A first order Taylor series (local) expansion of (2) for



j = 1,Np is used:

g(tk, tk+ j,xk,u
k+ j−1
k ,θ)≈gnom(tk+ j)+∇θ g(tk+ j)δθ+

∇ug(tk+ j)(u
k+ j−1
k − ūk+ j−1

k )
(7)

with

gnom(tk+ j) = g(tk, tk+ j,xk, ū
k+ j−1
k ,θnom) (8)

∇θ g(tk+ j) =
∂g(tk, tk+ j,xk,u

k+ j−1
k ,θ)

∂θ

∣∣∣∣∣∣∣∣ uk+ j−1
k = ūk+ j−1

k
θ = θnom

(9)

∇ug(tk+ j) =
∂g(tk, tk+ j,xk,u

k+ j−1
k ,θ)

∂uk+ j−1
k

∣∣∣∣∣∣∣∣ uk+ j−1
k = ūk+ j−1

k
θ = θnom

(10)

The control sequence used for the linearization

ūk+Np−1
k =

?
u

k+Np−2
k−1 , is defined as the optimal control

sequence of the optimization problem (4) obtained at
the previous sampling time (at time index k− 1). The
dynamics of sensitivity function with respect to θ , de-
fined in (9), can be computed for time t ∈ [tk, tk+Np ] as
detailed in [7]. On the other side, in order to simplify
the calculation of the gradient ∇ug, finite differences are
used to approximate numerically the derivative ∇ug(tk+ j)
for each control u j, j ∈ [k,k+Np−1]. From (6) and (7),
it comes:

ŷk+Np
k+1 =Gk+Np

nom,k+1 +Gk+Np
θ ,k+1δθ+

Gk+Np−1
u,k (Ξ

k+Np−1
k +TNpδuk+Np−1

k )
(11)

where
Ξ

k+Np−1
k =


?
uk−1

...
?
uk−1

−


?
uk−1

...
?
uk+Np−2

 (12)

TNp ∈ RNp×Np : unitary lower triangular matrix

with
(Gk+Np

nom,k+1)
> = [gnom(tk+1)

>H>, . . . ,gnom(tk+Np)
>H>],

the vector containing the predicted output for the
nominal case.
(Gk+Np

θ ,k+1)
> = [∇θ g(tk+1)

>H>, . . . ,∇θ g(tk+Np)
>H>], the

vector of Jacobian matrices related to the parameters.
(Gk+Np−1

u,k )> = [∇ug(tk)>H>, . . . ,∇ug(tk+Np−1)
>H>],

the Jacobian matrices related to the control sequence.
Assuming that the uncertain parameters are uncorrelated,
the bounded parametric error δθ can be expressed by:

δθ = γδθmax with ||γ|| ≤ 1 (13)

The initial objective function ΠR (5) is substituted by a
cost function using the equation (11). The result is given

by the following expression:

ΠR(xk,u
k+Np−1
k ,δθ)≈ ||uk+Np−1

k − ūk+Np−1
k ||2V + ||Gk+Np

nom,k+1

− yr,k+Np
k+1 +Gk+Np

θ ,k+1δθ +Gk+Np−1
u,k (uk+Np−1

k − ūk+Np−1
k )||2W

, Π(xk,u
k+Np−1
k ,δθ)

(14)

The new optimization problem is given by:

?
u

k+Np−1
k = arg min

u
k+Np−1
k

max
δθ

Π(xk,u
k+Np−1
k ,δθ) (15)

subject to δθ ∈Θδ , x ∈ X, u ∈ U and (13).

C. Stability analysis

In this section, the robust stability of the closed-loop
system (1) with (13)-(15) is analysed by adapting the
results obtained in [6], [5], [3]. In the following, some
preliminary definitions are introduced.

1) Preliminaries: Consider a discrete-time nonlinear
system given by

xk+1 = l(xk,wk), k ≥ 0, x0 = x̄ (16)

where xk ∈X is the state of the system, wk ∈W is the
disturbance vector (s.t. W is a compact set that contains
the origin).

Definition 1: A set Φ ⊂ Rn is a robust positively
invariant set for the system (16), if l(xk,wk)∈Φ, ∀xk ∈Φ

and ∀wk ∈W .
Definition 2: The system (16) is robust stable if ∃ a

K L -function β and a K -function δ s.t

||xk|| ≤ β (||x̄||,k)+δ (η), ∀||wk|| ≤ γ(||xk||)+η (17)

where γ is a K -function and η a modelled bound of
uncertainties.

Definition 3: A function Vl : Rn −→ R≥0 is called a
robust Lyapunov function if ∃ K∞-functions α1,α2,α3
and σ , and a K -function ζ s.t

α1(||x||)≤Vl(x)≤ α2(||x||)+σ(η)
Vl( f (x,w))−Vl(x)≤−α3(||x||)+ζ (η)

(18)

with the uncertainties vector wk bounded as in (17).
Theorem 1: If system (16) admits a robust Lyapunov

function, then it is robustly stable.
Proof: see [3].

Assumption 1: The state of the plant xk is measured
at each sampling time.



2) Bound on prediction error: In this subsection, an
upper bound on the prediction error provided by the
linearization step is derived. Consider the real system
for time tk+1, starting from state xk at time tk:

xk+1 = f (xk,uk,θnom +δθ
s) (19)

where θnom is the nominal parameters vector and δθ s

the real parameter values mismatch.
Using Taylor developments (around θnom and ūk), the
system dynamics can be rewritten as follows:

xk+1 = f (xk, ūk,θnom)+∇u f (ūk,θnom).(uk− ūk)

+∇θ f (ūk,θnom).δθ
s +ϑ(|uk− ūk|2)+ϑ(|δθ

s|2)
(20)

where ϑ(|.|2) is the remainder term of the Taylor series
expansion limited to the first order.

Assumption 2: The error with respect to the first order
Taylor expansion, wp, defined as:

wp , ϑ(|uk− ūk|2)+ϑ(|δθ
s|2) (21)

is assumed to be bounded as follows:

∃η1 ∈ R+, such that |wp| ≤ η1 (22)
Consider the prediction model (Taylor series expansion)
for time tk+1, starting from state xk at time tk:

x̂k+1|k = fp(xk,uk,θnom +δθ), f (xk, ūk,θnom)+

∇u f (ūk,θnom).(uk− ūk)+∇θ f (ūk,θnom).δθ
(23)

with
|δθ | ≤ |δθmax| (24)

with fp the prediction model (given in this case by
function g linearized as in (7), and using relation (3),
with the fact that g≡ f when considering the evolution
between k and k + 1) and δθ the predicted parameter
values mismatch.

Assumption 3: The uncertainty on δθ ∈ Θδ , is such
that ∃ η2 ∈ R+, a modelled bound of uncertainties, so
that

max(|δθ |, |δθ
s|)≤ η2 (25)

Let us define η ∈ R+ by:

η = max(η1,η2) (26)

From (20) and (23), the prediction error at time index
k+1 for uk =

?
uk is given by:

xk+1− x̂k+1|k = ∇θ f (ūk,θnom).(δθ
s−δθ)+wp (27)

Thanks to the triangle inequality and using the As-
sumption 3, we obtain:

|xk+1− x̂k+1|k| ≤ |∇θ f (ūk,θnom)|.(|δθ
s|+ |δθ |)+ |wp|

(28)

From f being C 2, we have:

∃α ∈ R+,∀x,∀u,∀θ , |∇θ f | ≤ α (29)

Thanks to Assumptions 2-3, (26) and (29), it comes

|xk+1− x̂k+1|k| ≤ 2α.η2 +η1 ≤ (2α +1)η , Λ(η)
(30)

where Λ is a K∞-function.
3) Upper and lower bounds on the optimal cost: In

the sequel, for manipulation purposes, the optimal cost
function (14) is rewritten as follows:

Π(xk,
?
u

k+Np−1
k ,δ

?
θ),

k+Np−1

∑
t=k

ψ(x̂t|k,
?
ut)+Tf (x̂k+Np|k)

(31)
with

x̂t|k = fp(x̂t−1|k,
?
ut−1,θnom +δ

?
θ), t = k+1,k+Np

x̂k|k = xk

ψ(xt ,ut) = ũ>t vũt + ỹ>t wỹt , t = k,k+Np−1
Tf (x̂k+Np|k) = ỹ>k+Np

wỹk+Np , ũ = u− ū, ỹ = Hx̂− yr

(32)
The stage cost ψ(x,u) is definite positive, while the
terminal cost is denoted by Tf (x) : Rnx −→ R≥0.
Without any lack of generality, the weighting matrices V
and W are chosen in diagonal form V = vI and W = wI
to simplify mathematical developments hereafter.

Remark 1: The terminal stage Tf is a K∞-function.
Assumption 4: Let assume the existence of a terminal

set Φ, an admissible robust positively invariant set for
the system (19) which is controlled by the control law
uk = π(xk)∈U s.t. the origin is in its interior. Let assume
that Tf is an associated robust Lyapunov function s.t. for
all xk ∈Φ and for all δθ satisfying (25), we have that:

αt(|xk|)≤ Tf (xk)≤ βt(|xk|)+ϕ(η)

Tf ( f (xk,uk,θnom +δθ))−Tf (xk)≤−ψ(xk,uk)+χ(η)
(33)

where αt , βt , and χ are K∞-functions and ϕ is a K -
function.

Lemma 1: Let us consider the system (19) and sup-
pose that the uncertainty on θ is modelled by |δθ | ≤
γ(|x|)+η (γ is a K −function). Let Φ and Tf (x) satisfy
Assumption 4, then ∀x ∈Φ we have that

Π(xk,
?
u,δ

?
θ)≤ Tf (xk)+Npχ(η) (34)

Proof. see Lemma 3 of section 5 in [3].
Assumption 5: The stage cost (non-negative) is such

that
ψ(x,u)≥ αψ(|x|) (35)

where αψ is a K∞-function.
From (31), (34) and Assumption 4, it comes:

αψ(|xk|)≤Π(xk,
?
u,δ

?
θ)≤ βt(|xk|)+ϕ(η)+Npχ(η)

(36)
Thus, the optimal cost is bounded as given by (36).



4) Robust stability:
Theorem 2: Consider system (16) and suppose that

uncertainties are modelled by |wk| ≤ γ(|xk|)+η . Then,
the uncertain system controlled by the controller uk =
π(xk) is robust stable for any initial x0 ∈XNp(Φ). XNp(Φ)
is the set of admissible states at time k+Np. Further-
more, the optimal cost is a robust Lyapunov function.
Proof. see [3].

Now, we consider Π(xk,
?
u,δ

?
θ) as our candidate robust

Lyapunov function. Then, the optimal cost function at
time index k+1 is defined as follows:

Π(xk+1, ŭ
k+Np
k+1 ,δ

?
θ),

k+Np

∑
t=k+1

ψ(x̆t|k+1, ŭt)+Tf (x̆k+Np+1|k+1)

(37)

with

{
x̆t|k+1 = fp(x̆t−1|k+1, ŭt−1,θnom +δ

?
θ)

x̆k+1|k+1 = xk+1, t = k+2,k+Np +1
(38)

where x̆t|k+1 denotes the state obtained applying the input
sequence ŭt−1

k+1 to the prediction model with the initial
condition xk+1. ŭk+Np

k+1 denotes an admissible solution of
the optimization problem at time index k + 1. In the
proposed algorithm, it is based on the optimal solution

at time index k: ŭk+Np
k+1 = [

?
u

k+Np−1
k+1 ,

?
uk+Np−1]

Assumption 6: The parameters uncertainties are as-
sumed to be constant throughout the prediction horizon.

Assumption 7: The function fp is Lipschitz with re-
spect to x with Lipschitz constant L f x.

Proposition 1: Let us define the following residual at
time index l:

εx(l), x̆l|k+1− x̂l|k, l = k+1,k+Np−1 (39)

Then, with Assumption 7,

|εx(l)| ≤ Ll−k−1
f x Λ(η) (40)

It is easy to check the result by recurrence.
Proof. Using the result obtained in (30) and Assumption
7, we get that (reminding that ŭl =

?
ul for l ∈ [k+1,k+

Np−1] and x̆k+1|k+1 = xk+1)

|εx(k+1)| = |x̆k+1|k+1− x̂k+1|k| ≤ Λ(η)
|εx(k+2)| ≤ L f x|x̆k+1|k+1− x̂k+1|k| ≤ L f xΛ(η)

...
|εx(l)| ≤ Ll−k−1

f x Λ(η)
(41)

We assume that the proposition holds for l, let us prove
that it is also the case for l +1 (from (41)):

|εx(l +1)| ≤ L f x|εx(l)| ≤ Ll−k
f x Λ(η) (42)

Which completes the proof by recurrence.
Let define the difference ∆Π? as

∆Π
? , Π(xk+1, ŭ,δ

?
θ)−Π(xk,

?
u,δ

?
θ)

=
k+Np−1

∑
t=k+1

(ψ(x̆t|k+1, ŭt)−ψ(x̂t|k,
?
ut))

+ψ(x̆k+Np|k+1, ŭk+Np)−ψ(xk,
?
uk)

+Tf (x̆k+Np+1|k+1)−Tf (x̂k+Np|k)

(43)

Assumption 8: The stage cost ψ is Lipschitz with
respect to x with Lipschitz constant Lψx.
Using the Assumptions 7-8, and from (40) we have that

|ψ(x̆t|k+1, ŭt)−ψ(x̂t|k,
?
ut)| ≤ Lψx|x̆t|k+1− x̂t|k|
≤ LψxLt−k−1

f x Λ(η)
(44)

and

|
k+Np−1

∑
t=k+1

(ψ(x̆t|k+1, ŭt)−ψ(x̂t|k,
?
ut))| ≤ Lψx

Np−2

∑
j=0

L j
f xΛ(η)

(45)

Assumption 9: The terminal function Tf is Lipschitz
with respect to x with Lipschitz constant Ltx.
Under Assumption 9, and from Proposition 1 we have

|Tf (x̆k+Np|k+1)−Tf (x̂k+Np|k)| ≤ Ltx|εx(k+Np)|

≤ LtxLNp−1
f x Λ(η)

(46)

If the Assumption 4 holds, it comes

Tf (x̆k+Np+1|k+1)−Tf (x̆k+Np|k+1)≤−ψ(x̆k+Np|k+1, ŭk+Np)

+χ(η)
(47)

Thanks to (47) and considering the fact that for any
scalar ν ∈ R, ν ≤ |ν |, we have that

Tf (x̆k+Np+1|k+1)−Tf (x̂k+Np|k)≤−ψ(x̆k+Np|k+1, ŭk+Np)

+χ(η)+LtxLNp−1
f x Λ(η)

(48)

By substituting the equations (45) and (48) in (43), and
using the Assumption 5, we get that

∆Π
? ≤

k+Np−1

∑
t=k+1

(ψ(x̆t|k+1, ŭt)−ψ(x̂t|k,
?
ut))−ψ(xk,

?
uk)

+χ(η)+LtxLNp−1
f x Λ(η)≤−αψ(|x|)+ χ̄(η)

(49)

with χ̄ a K∞-function:

χ̄(η) = χ(η)+

(
LtxLNp−1

f x +Lψx

Np−2

∑
j=0

L j
f x

)
Λ(η) (50)

According to the results obtained in (36) (bounds on
the optimal cost) and (49) (evolution of the optimal



cost), the optimal cost (31) is a robust Lyapunov function
(according to Definition 3).
Finally, based on the Theorem 2, the system (19) con-
trolled by π(x) =

?
uk is robustly stable in Φ for any

uncertainty θ ∈ Θ and for the considered linearized
prediction model.

D. Calculation of the control sequence

The constrained optimization problem (13)-(15) is
solved by considering the Lagrangian dual problem of
the maximization subproblem (i.e. the maximization of
the error over all possible values of model parameters),
following a similar approach as in [8]. Introducing the
Lagrange multiplier λ associated to the constraint on δθ ,
the problem (13)-(15) becomes equivalent to:

min
λ≥||C>WC||

min
zl≤z≤zu

z>V z+ ||Az−b||2W (λ )+λ ||Eb||2

(51)

with


z = δuk+Np−1

k ,A = Gk+Np−1
u,k TNp ,

b = ȳk+Np
k+1 −Gk+Np

nom,k+1−Gk+Np−1
u,k Ξ

k+Np−1
k ,

C = Gk+Np
θ ,k+1,Eb =−δθmax

(52)
The modified weighting matrix W (λ ) is obtained from
W via:

W (λ ) =W +WC(λ I−C>WC)†C>W (53)

where z is the solution of the following quadratic pro-
gramming optimization problem:

z(λ ) = arg min
zl≤z≤zu

1
2 z>H z+F>z (54)

with
{

H = 2
(
V +A>W (λ )A

)
F =−2A>W (λ )b

(55)

The nonnegative scalar parameter λ ? ∈ R+ solution of
(51), is computed from the following unidimensional
minimization problem:

λ
? = arg min

λ≥||C>WC||
||z(λ )||2V +λ ||Eb||2 + ||Az(λ )−b||2W (λ )

(56)

Finally, the problem has a unique global minimum z?

given by (54) for λ = λ ? and the control input is derived
from:

?
u

k+Np−1
k = [

?
u
>
k−1, . . . ,

?
u
>
k−1]

>+TNpz(λ ?) (57)

The solution of (51) is obtained by solving online a
bilevel optimization problem instead of solving min-max
problem (4-5): an unidimensional optimization problem
(56) in the upper level, and a quadratic programming
problem (54) in the lower level.

In the sequel, this predictive control law will be re-
ferred to as linearized robust model predictive controller
(LRMPC). The derived optimization problem is convex

leading to better convergence properties than the original
min-max problem.

V. APPLICATION TO A BIOPROCESS

In order to demonstrate the efficiency of the proposed
approach, we consider a continuous photobioreactor
(medium withdrawal flow rate equals its supply one,
leading to a constant effective volume), without any
additional biomass in the feed, and neglecting the effect
of gas exchanges. Thus, the dynamical nonlinear model
is represented in the state-space formalism [9]:

ẋ =


µ̄

1−KQ/Q
I+KsI+I2/KiI

X−DX

ρm
S

S+Ks
− µ̄

1−KQ/Q
I+KsI+I2/KiI

Q

(Sin−S)D−ρm
S

S+Ks
X

 , x =

X
Q
S

 , u = D,

θ =
[
ρm Ks µ̄ KQ KsI KiI

]>
, y = X

(58)
where D represents the dilution rate (d−1, d: day), X
the biomass concentration (in µm3 L−1), Q the internal
quota (in µmol µm−3) and S the substrate concentration
(in µmol L−1). I (in µE m−2 s−1) is the light intensity,
set constant and equal to its optimal value Iopt (see Table
I). The exogenous inputs are Sin and I.

TABLE I
MODEL PARAMETERS [10].

Parameter Value Unit
µ̄: maximal specific growth rate 2 d−1

ρm: maximal specific uptake rate 9.3 µmol µm−3 d−1

KQ: minimal cell quota 1.8 µmol µm−3

Ks: substrate half saturation constant 0.105 µmol L−1

KsI : light saturation constant 150 µE m−2 s−1

KiI : light inhibition constant 2000 µE m−2 s−1

Sin: inlet substrate concentration 100 µmol L−1

Iopt =
√

KsIKiI : optimal light intensity 547 µE m−2 s−1

The main objective of the control is to regulate the
biomass concentration X to a reference value X re f .

Now, the efficiency of the proposed control strat-
egy is validated in simulation. The performances of
the above mentioned algorithms are compared in a
worst uncertain parameters case. The parameters values
of the system are chosen on the parameter subspace
border (θreal = [ρ+

m ,K−s , µ̄+,K−Q ,K−sI ,K
+
iI ]) [11], where

the uncertain parameters subspace [θ−,θ+] is given
by [0.8θnom,1.2θnom]. The maximal admissible dilution
rate Dmax equals 1.6d−1. The optimization was run
on Microsoft PC (Intel(R) Core(TM) i7− 3770, 3.40
GHz, 8GB Ram). Two predictive control laws will be
tested (Fig. 1): the RNMPC (4) and the proposed one
(LRMPC). The controllers tuning parameters are the
same for both strategies (Ts=20 min, Np = 5 and V =
W = INp ).
It can be noticed the anticipation behavior to a setpoint
change (Fig. 1), due to the prediction of the setpoint
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Fig. 1. Biomass concentration, tracking error and dilution rate
evolution with time for LRMPC and RNMPC strategies.

trajectory future evolution over the moving horizon. On
the other side, the obtained results show that RNMPC
has better performances than the LRMPC controller
under parameter uncertainties. In the case of LRMPC,
the output is not able to track the specified setpoint
in the presence of parameters uncertainties, due to the
approximation of the model through linearization. When
reducing sampling time (see Fig. 1 for results with
Ts= 10 min), the static error is reduced. The steady
state error could be further reduced by adding a PI
controller [12]. In addition, the LRMPC offers a very
significant computational load reduction comparing with
the RNMPC as shown in the Table II. In fact, this can
be explained by the fact that RNMPC is an optimization
problem of dimension Np × Nθ while LRMPC is an
unidimensional optimization problem with a quadratic
programming problem. Consequently, when considering
a more complex model with a greater number of state
variables and parameters, the computation time increases
in the RNMPC strategy.

TABLE II
COMPARISON OF THE PROPOSED ALGORITHMS.

Computation time (s)
`````````Algo.

Perf. indices min mean max

RNMPC 0.764 8.109 39.234
LRMPC 0.577 0.896 1.139

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a new robust MPC
with guaranteed robust stability. Considering a process
model with parameters that are within a given confidence

intervals, the robust MPC is designed in order to take
into account these parameters uncertainties. The min-
max problem is solved in two ways: first, the optimal
control sequence is determined so that the maximum
deviation for all trajectories overall possible data scenarii
is minimized. Secondly, a linearization of the predicted
trajectory is performed to turn the original optimization
problem into a more tractable one. Moreover, the stabil-
ity is analysed. Several simulations were performed in
order to compare the LRMPC strategy to the classical
RNMPC in the case of model parameters uncertainties.
The LRMPC ensures a good trade-off between com-
putational load and tracking trajectory accuracy. Future
research will focus on the impact of the convergence and
feasability of the optimization algorithm on the stability
and performance of the control law. In future work, an
interesting perspective in order to increase the quality
of the linearized model used for prediction, may be
considering a second order expansion rather than the first
order approximation of the nonlinear model. Handling
instructured uncertainties by the controller should be also
investigated.
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