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Summary

This paper presents a control algorithm for seismic mixed base isolation, combining

passive isolators and semi‐active viscous dampers. The objective is to limit base

displacement while avoiding undesirable amplification of the response of the non‐

isolated modes. To this end, the proposed algorithm takes into account the constraints

on the damping coefficient of the semi‐active damper and information on the excita-

tion. It is based on the approximate iterative solution, at each control time step, of a

nonlinear inhomogeneous constrained optimal control problem. An autoregressive

model is used to obtain, at each control time step, a prediction of the upcoming

excitation in a short time interval ahead. Numerical simulation results demonstrate

the efficacy of the above method, especially in improving floor response spectra,

and its superiority with respect to clipped‐optimal algorithms.
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1 | INTRODUCTION

Seismic base isolation is one of the most efficacious seismic mitigation methods. The development and application of this

method have grown considerably during the last decades. However, most of the work done on seismic isolation focuses mainly

on the impact of the seismic isolation on the main structure itself and much less on the behavior of equipment or components.

An outline of previous work on the response of equipment mounted on base isolated structures may be found.[1–4] In the case of

industrial and power generation facilities (e.g., nuclear plants), one desirable feature of seismic isolation is to protect sensitive

equipment. Actually, floor response spectra corresponding to horizontal excitation will exhibit a local amplification in the vicin-

ity of the isolation frequency, but spectral values for higher frequencies will be on a horizontal plateau. The value of this plateau

is approximately the maximum acceleration corresponding to a rigid body mounted on the isolation bearings. This particular

shape of floor response spectra is very attractive because it significantly reduces the equipment forces for frequencies higher

than about 2 times the isolation frequency and simplifies the analysis and design of equipment. Though the aforementioned

ideal floor response spectrum is a good approximation of actual floor spectra for many real seismically isolated structures, in

some cases, an amplification of higher modes' response arises that changes this ideal picture and considerably reduces the

expected benefit from seismic isolation. The main sources of such an amplification of higher modes response are (a) high base

energy dissipation (linear or nonlinear viscous dampers, elastoplastic, or friction dissipative devices),[1–6] as it is often used to

reduce base displacement, and (b) rocking induced excitation due to horizontally propagating waves or to the scattered motion

in the case of embedded foundation.[7–9] Hence, it would be helpful to find a means to increase base damping avoiding

significant amplification of the response of higher modes. As shown in Politopoulos and Pham,[10] a remedy to the above

problem could be mixed base isolation, combining passive and active or semi‐active devices.[11–14]
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In recent years, active structural control strategies have been investigated by numerous researchers because of their

performance. However, this is done at the price of high external required power for the actuators to produce the necessary force.

An alternative to the full control is the semi‐active control (SAC) techniques, which operate with very low supplied power.

Much work has been done in the field of semi‐active control of structures in general and of base‐isolated structures in particular.

A family of semi‐active control algorithm may be directly obtained by means of Lyapunov's stability theory. The approach

requires the use of a Lyapunov function, which must be a positive definite function of the states of the system. The goal of this

kind of algorithms is to reduce the responses by minimizing the rate of the Lyapunov function. Several Lyapunov functions may

be selected, which may result in a variety of control laws (e.g., bang‐bang control,[15] decentralized bang‐bang control and its

variation—maximum energy dissipation algorithm[16]). Another common way to establish a semi‐active control is to extrapolate

active control algorithms.[10–14] In a first step, a prediction of the desired control force, up, is obtained by an active control

algorithm. Then, the characteristics of the semi‐active device are adjusted so as to apply a control force, u, that is as close as

possible to the predicted force, up.

There are many methods available in the literature for designing active controllers. The very popular linear quadratic

regulator (LQR)[17,18] determines the control action for a linear system such that a chosen quadratic performance index is

minimized. Because the ground acceleration is not known a priori, most applications of LQR have been done using the

Riccati closed‐loop control, which is, theoretically, valid only when there is no excitation or if the excitation is a white noise

random process.[19–21] Of course, earthquake excitations do not meet these conditions. Therefore, in order to improve perfor-

mance further, the need to take into account the excitation for the controller design arises. However, the earthquake excitation

is unknown a priori, yet it may be measured in real time. Possibly, the first attempt to utilize excitation information was made

by Yang et al.[22] It is referred to as the instantaneous optimal control algorithms in which a time‐dependent performance

index is minimized at every time instant. Suhardjo et al.[23] proposed a control algorithm considering a model of the ground

acceleration, which consists in filtering a Gaussian white noise process with a Kanai‐Tajimi filter. Then, an augmented model

composed of the structure's and the excitation's model is considered. This augmented model, excited by a Gaussian white

noise disturbance, satisfies the optimality conditions of the Riccati closed‐loop control. Then, the optimal control force is

obtained as a linear combination of the states of the structure's response and of the excitation model. In particular, the states

corresponding to the excitation model may be estimated through an observer where the measured quantity is the ground

acceleration. Numerical results based on the above method indicate that its performance is superior to those of Riccati

closed‐loop control and instantaneous optimal control algorithms. However, in practice, the determination of a reliable exci-

tation model, in advance, is not possible even if geological and seismological data are available. To remedy this inconvenient,

Yamada and Kobori[24] and Mei et al.[25] proposed a real‐time autoregressive (AR) model of the excitation representing the

ground acceleration at each time instant as a linear combination of its previous values. A discrete time controller based on

schemes such as the predictive control[26] or the LQR[27] may be applied to the augmented model to determine the control

forces. The obtained results confirm that these control algorithms may attenuate the response of structures subjected to seis-

mic excitations.

The main objective of this paper is to propose a semi‐active control algorithm for mixed base isolation, combining passive

bearings and semi‐active dampers, which accounts for the earthquake excitation and avoids amplification of the floor spectral

acceleration in the vicinity of the frequencies of the non‐isolated modes (i.e., modes other that the modes with small superstruc-

ture's deformation at the isolation frequency). At each time step, the ground acceleration is estimated for a short interval ahead

by an AR model. Then a damper coefficient is determined by solving the nonlinear inhomogeneous‐constrained optimal control

problem for this short time interval. Because the control variable is the damper coefficient, the problem is nonlinear (bilinear)

even if the passive bearings and the superstructure are considered to be linear. Analytical results give evidence that the proposed

method offers advantages over closed loop clipped‐optimal control algorithms such as that proposed in another study[10] in

improving further the floor response spectra under earthquake excitations.

2 | OPTIMAL CONTROL FOR EARTHQUAKE ‐EXCITED STRUCTURES

2.1 | Model of the structure

Real base isolated structures are multi‐DOF systems. In the case of a stiff superstructure, there are two distinct families of

eigenmodes. The first family is that of the isolated eigenmodes at very low frequency, the isolation frequency, with very small

deformation in the superstructure. The remaining modes, at higher frequencies, are the non‐isolated modes with significant

deformation in the superstructure. The simplest model of such a structure, retaining its essential dynamic features, is the two
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DOF model in Figure 1. The upper oscillator represents the first eigenmode of the superstructure if fixed at its base with effec-

tive mass ms, circular frequencyωs ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ks=ms

p
and critical damping ratio ξs ¼ cs= 2

ffiffiffiffiffiffiffiffiffi
ksms

p� �
. Mass mb stands for the mass of the

second base mat and the residual effective mass corresponding to the higher modes of the superstructure. The spring kb ¼
ω2
b mb þ msð Þ and the damper cb=2ξbkb/ωb represent the stiffness and damping of isolation devices such as low damping rubber

bearings (LDRB). In an effort to reduce the base (mass mb) displacement without significant amplification of the response of the

non‐isolated mode, in addition to the LDRB, a linear viscous damper with adaptive damping coefficient c(t) is also considered

at the isolation level.

The motion of the structure subjected to one‐directional earthquake ground acceleration w tð Þ ¼ €zg tð Þ, is governed by the

following state equation:

_x tð Þ ¼ Ax tð Þ þ Bu tð Þ þ Ew tð Þ; x t0ð Þ ¼ x0; x tð Þ ¼
v tð Þ
_v tð Þ

� �
; (1)

where v(t)= [zb− zg , zs− zg]
T is the vector of relative displacements with respect to the ground; x(t) is the state vector, and u(t)

is the control force generated by the semi‐active viscous damper. The matrices A, B, and E read

A ¼
02×2 I2×2

−M−1K −M−1C

� �
;B ¼

02×2

M−1G

� �
;E ¼

02×1

M−1H

� �
; (2)

where M ,K, and C are the (2×2) mass, stiffness, and damping matrices, respectively, G= [1 0]T is the matrix denoting the

location of the semi‐active viscous damper and H= [−1 − 1]T is the earthquake excitation input vector, describing the direct

influence of the ground acceleration on the structure.

When an idealized semi‐active device is assumed (i.e., symmetric response, zero time delay, no force, and displacement

limits), the control force is u tð Þ ¼ −c tð Þ _vb tð Þ and the state Equation 1 can be rewritten as

_x tð Þ ¼ A−c tð ÞBb½ �x tð Þ þ Ew tð Þ; (3)

where c(t) is the damping coefficient of the semi‐active viscous damper, and b= [0 0 1 0] is the matrix, which denote the

location of velocity _vb tð Þ ¼ _zb−_zg in the state vector.

2.2 | Linear quadratic inhomogeneous active optimal control problem

As already mentioned, the Riccati closed‐loop control (solution of LQR), obtained by neglecting the ground acceleration or by

considering it as a white noise random process, does not correspond to the optimal control for earthquake‐excited structures.

FIGURE 1 Two DOF model of a mixed base isolated structure
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Therefore, in this subsection, we show, following the general procedure described in Bryson and Ho,[18] how the optimal control

for the earthquake‐excited structure is computed. Of course, in principle, this requires the knowledge of the entire earthquake

acceleration history. Let us consider the linear quadratic optimal control problem of the seismically excited system governed

by Equation 1:

Minimize J ¼ ∫
tf

t0

xTQxþ uTRu
� �

dt þ xT tf
� �

Sx tf
� �

;

_x tð Þ ¼ Ax tð Þ þ Bu tð Þ þ Ew tð Þ; x t0ð Þ ¼ x0;

(4)

where tf is the final time and S, Q, and R are weighting matrices. S and Q have to be at least positive semidefinite and R positive

definite.

The performance index or the so‐called cost functional J is a scalar integral function of the state and control variables over

the control interval [t0, tf]. It is minimized with respect to the control force, u(t), while satisfying the constraints specified by the

equations of motion of the structure. As shown in other studies,[18,22] the linear quadratic inhomogeneous (LQI) optimal control

problem can be analytically solved as follows:

u ¼ −R−1BT P tð Þxþ g tð Þ½ �; (5)

where the matrix P(t) and vector g(t) are determined backward from the terminal time tf by the following expressions:

− _P tð Þ ¼ P tð ÞAþ ATP tð Þ−P tð ÞBR−1BTP tð Þ þ Q; P tf
� �

¼ S; (6)

− _g tð Þ ¼ AT−P tð ÞBR−1BT
� �

g tð Þ þ P tð ÞEw; g tf
� �

¼ 0: (7)

If the control interval [t0, tf] is long enough, the time dependent solution P(t) of the differential Riccati Equation 6 may be

approximated by the time‐independent solution, P, of the algebraic Riccati equation[20]:

0 ¼ PAþ ATP−PBR−1BTPþ Q: (8)

Of course, for any control interval, if the choice S ¼ P is made for the weighting coefficient matrix of the terminal term,

there is no transient phase and P tð Þ ¼ P.

The Riccati closed‐loop control is only a special case of this problem when the excitation, w, in Equation 7 is set to zero. In

the general case, Equation 7 should be solved backward from the terminal time tf and requires the knowledge of the excitation,

w, on the entire time interval [t0, tf]. Consequently, because the earthquake excitation is unknown, the optimal control is not

achievable. However, the authors observed that when the control at a sampling instant tk, u(tk) is determined by using the actual

excitation signal over only a short future time interval of m steps [tk, tk+m], though the control is no longer, strictly speaking,

optimal it, still, maintains a very satisfactory performance as shown in the results presented hereafter. Hence, because the actual

signal is not known a priori, the idea of a control based on a real time prediction of the excitation over a short interval ahead

arises.

To illustrate the optimal control for the earthquake‐excited structure, some numerical examples are presented. The two DOF

model in Figure 1 is considered with the following parameters:

f b ¼ 0:5Hz; f s ¼ 6Hz; ms= mb þ msð Þ ¼ 0:8;

where fb and fs are the isolation frequency and the frequency of the superstructure, respectively. These frequencies are

similar to those commonly met in seismically isolated nuclear plants' buildings. The superstructure's and isolation critical

damping ratios are assumed to be equal to 0.05 (ξb= ξs=0.05). The control objective is to obtain a first mode (isolated

mode) response similar to that in the case of additional passive damping while avoiding the undesirable amplification of
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the non‐isolated modes response. Therefore, the active control force, u(t), is determined by minimizing the cost

functional:

J ¼ ∫
tf

t0

ω2
1m1q

2
1 þ αm2 _q

2
2 þ Ru2

� �
dt; (9)

where q1 , 2 and m1 , 2 are the generalized coordinates and masses of the two modes of the structure, ω1 is the circular

frequency of the first mode, and α and R are penalty coefficients. In order to make a comparison with the LQR solution,

the same cost functional as that used in a previous study[10] is considered. To reduce the contribution of the second

eigenmode mode to the floor acceleration, a high penalty coefficient α is applied to the kinetic energy of this mode.

The penalty coefficient of the control force, R, is tuned so that the first peak of the frequency response of the Riccati

close‐loop control (peak of the isolated mode) is the same as in the case of a base additional passive damping of 20%.

For this study, the chosen values of the penalty parameters are α=5×105 and R = 0.0081.

Using the transformation between generalized coordinates and relative displacements,

qi ¼
φT
i Mv

mi

i ¼ 1; 2; (10)

where φi is eigenvector i, the cost functional can be expressed in terms of the state variables, x tð Þ ¼ v tð Þ _v tð Þ½ �T �, as follows:

J ¼ ∫
tf

t0

xTQxþ Ru2
� �

dt; (11)

where

Q ¼
Q1ð Þ2×2 02×2

02×2 Q2ð Þ2×2

" #
;Q1 ¼ MT φ1φ

T
1ω1

m1

	 

M;Q2 ¼ MT α×

φ1φ
T
2

m2

	 

M: (12)

In the rest of the paper, this expression of Q will be considered.

For the first example, we assume that the earthquake excitation is known a priori. One of the Naghan horizontal records of

the 1977 Ardal, Iran, earthquake is considered. Its time history and response spectrum normalized with respect to the peak

ground acceleration (PGA) are presented in Figure 2. This signal has significant energy in the frequency band where the second

eigenfrequency of the structure is located (13.4 Hz). Hence, as confirmed in Figure 3a, a considerable amplification of the

response of the second mode will occur if the base passive damping is increased. The control time interval [t0, tf] is the whole

duration of the considered signal. We compare the performances of LQI and LQR through their respective floor response

spectra in Figure 3b,c.

The second example aims at evaluating the control performance when the actual excitation is known only in a short time

interval ahead. At each sampling instant tk, the control force, u(tk), is determined solving a LQI problem in a time interval

[tk, tk +m]. To examine the influence of the duration of the time interval, over which the excitation is known, on the control

FIGURE 2 Ardal record. (a) Time history and (b) normalized pseudoacceleration response spectrum for 2% damping
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efficiency, three different durations, 0.05, 0.1, and 0.3 s, have been considered. To reduce the computational cost, the terminal

penalty xTPx
��
t¼tkþm

has been added to the cost functional. Hence, as already mentioned, the stationary solution P tð Þ ¼ P can be

used even if, now, the control interval is short.

In addition, we will show that the use of this final term at each time interval is important to maintain the global control

performance when the actual excitation is known only in a short time interval ahead. Actually, the cost functional 11 of the

LQI problem reads

J ¼ ∫
tf

t0

xTQxþ Ru2
� �

dt ¼ ∫
tk

t0

xTQxþ Ru2
� �

dt þ ∫
tkþm

tk

xTQxþ Ru2
� �

dt þ ∫
tf

tkþm

xTQxþ Ru2
� �

dt: (13)

If we assume that up to the current instant tk the trajectory is optimal, to minimize J one should minimize

J tk ¼ ∫
tkþm

tk

xTQxþ Ru2
� �

dt þ ∫
tf

tkþm

xTQxþ Ru2
� �

dt. However, the minimization of J tk is not achievable because the excitation is

not known in the whole interval [tk, tf] but only in the interval [tk, tk +m]. A local minimization of only the second term in the

right hand side (rhs.) of Equation 13 gives poor performance and does not correspond to the minimum of J. Therefore, we

approximate the third term on the rhs of Equation 13 with a term depending on the state at tk+m. It turns out that such an

approximation is xTPx
��
t¼tkþm

. In fact, because P is the solution of the algebraic Riccati Equation 8,

d

dt
xTPx
� �

¼ _xTPxþ xTP _x ¼ Axþ Buþ Ewð ÞTPxþ xTP Axþ Buþ Ewð Þ;

¼ xT ATPþ PA
� �

xþ 2xTPBuþ 2xTPEw;

¼ xT PBR−1BTP−Q
� �

xþ 2xTPBuþ 2xTPEw;

(14)

FIGURE 3 Normalized floor response spectrum at the base for the Ardal earthquake for 2% damping. (a) base passive damping; (b) active control;

and (c) zoom in on the range of lower pseudoacceleration values of b. LQI = linear quadratic inhomogeneous; LQR = linear quadratic regulator;

PGA = peak ground acceleration
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and thus

∫
tf

tkþm

xTQxþ Ru2
� �

dt ¼ ∫
tf

tkþm

−
d

dt
xTPx
� �

þ xTPBR−1BTPxþ 2xTPBuþ Ru2
� �

þ 2xTPEw

� �
dt;

¼ xTPx
� ���

t¼tkþm
− xTPx
� ���

t¼tf
þ ∫

tf

tkþm

R uþ R−1BTPx
� �2 þ 2xTPEw

h i
dt;

≈ xTPx
� ���

t¼tkþm
:

(15)

Consequently, the functional to minimize between tk and tf reads

J tk≈ ∫
tkþm

tk

xTQxþ Ru2
� �

dt þ xTPx
� ���

t¼tkþm
: (16)

To examine the influence of the final term on the results, a LQI solution for a time window ahead of 0.3 s, without terminal

penalty, which corresponds to the local minimization of only the second term in the rhs of Equation 13, is also considered.

The floor response spectra in Figure 3b,c confirm the beneficial effect of LQI with respect to the enhanced passive damping

case shown in Figure 3a. LQI attenuates both the first and second modes' response whose frequencies are 0.5 and 13.4 Hz, respec-

tively. When the excitation is completely known a priori, LQI has a better performance than LQR as shown in Figure 3b,c. It can be

noticed that the larger the duration of the excitation known ahead is the better the control performance is (i.e., lower floor spectral

values).When the excitation is known over 0.3 s ahead, the achieved performance is almost the same as when entire excitation dura-

tion is known. It can be seen in Equation 5 that the effect of the duration of the time interval ahead over which the excitation is

known depends on the decay rate of g(t). Hence, it depends, through Equation 7, on the eigenvalues of the matrix

[AT−P(t)BR−1BT]. In other words, it depends on the characteristics of the system and on the weighting matrices in the cost

functional. In the same figures, it can be seen that the terminal penalty has an important influence on the control efficiency. In fact,

without terminal penalty, LQI for an excitation prediction duration of 0.3 s exhibits a considerably poorer performance.

2.3 | Non‐LQI constrained optimal control problem

The aim of this subsection is to present a nonlinear optimal control problem that determines directly the damping coefficient c(t)

in Equation 3 and no longer the force u, in the hope of achieving a better control algorithm in the case of bounded values of c(t).

In fact, it is the damping coefficient that is the natural control variable of an active damper. Therefore, the general nonlinear

Equation 3 will be used. We consider an idealized linear viscous damper (i.e., symmetric response, zero time delay, no force,

and displacement limits) with adjustable damping coefficient c, varying from a minimum value cmin to a maximum value cmax.

The following nonlinear quadratic inhomogeneous constrained optimal control problem (NLQI) is considered:

Minimize J ¼ ∫
tf

t0

xTQxdt þ x tf
� �T

Sx tf
� �

;

_x ¼ f x; c; tð Þ ¼ A−c tð ÞBb½ �x tð Þ þ Ew tð Þ; x t0ð Þ ¼ x0;

cmin≤c tð Þ≤cmax:

(17)

We see that, in this problem, the Hamiltonian defined as

H x; c; λ; tð Þ ¼ xTQxþ λT A−cBbð Þxþ Ew½ �; (18)

where λ is the Lagrangian multipliers vector, has a second derivative with respect to the control variable, which is null (Hcc=0)

and that the inequality constraints on the control variable are linear. The optimal control for this problem is of the bang‐bang

form.[28] Here, we propose a different procedure that, though not strictly optimal, it tends to the optimal solution. In many opti-

mal control algorithms, the Hamiltonian is required to be strictly convex globally with respect to the control variable (i.e.,

Hcc>0∀ t∈ [t0, tf]; e.g., the successive sweep method of McReynolds and Bryson[29]) or at least to be strictly convex in the

neighborhood of its minimum (e.g., Jacobson's algorithm[30]). In order to overcome the convexity restriction, bang‐bang control

strategies based on differential dynamic programming (DDP) have been proposed in Jacobson.[28] Nevertheless, with our imple-

mentation of the algorithm of Jacobson,[28] convergence was achieved only for weighting matrices Q2 corresponding to small
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values of α in Equation 12, whereas, as already mentioned, high values of α are needed to reach the control objective. Therefore,

we propose an approximate iterative technique to solve the constrained control problem 17.

Assume that a control variable estimate c tð Þ; c∈ cmin; cmax½ � and the corresponding trajectory x tð Þ are available. We define a

new regularized optimal control problem:

Minimize J1 ¼ ∫
tf

t0

xTQxþ ε c−cð Þ2
h i

dt þ x tf
� �T

Sx tf
� �

;

_x ¼ f x; c; tð Þ ¼ A−c tð ÞBb½ �x tð Þ þ Ew tð Þ; x t0ð Þ ¼ x0;

cmin≤c tð Þ≤cmax:

(19)

where ε>0. If the new control problem 19 has a solution (xε, cε), then J1(xε, cε)≤ J1(x, c)∀ (x, c). Thus,

J1 xε; cεð Þ≤J1 x; cð Þ ¼ ∫
tf

t0

xTQxdt þ x tf
� �T

Sx tf
� �

¼ J x; cð Þ: (20)

On the other hand, because ∫
tf

t0

ε cε−cð Þ2dt≥0, it holds also that

J1 xε; cεð Þ ¼ ∫
tf

t0

xε
TQxε þ ε cε−cð Þ2

h i
dt þ xε tf

� �T
Sxε tf

� �
≥ ∫

tf

t0

xε
TQxεdt þ xε tf

� �T
Sxε tf

� �
¼ J xε; cεð Þ: (21)

From relations 20 and 21, it follows that J xε; cεð Þ≤J x; cð Þ and thus cε(t) is an improved estimate of c tð Þ. Applying this

process iteratively leads to estimates of the time history of the control variable corresponding to smaller values of the cost

function at each iteration and thus to an approximate solution of the original Equations 17.

The choice of the initial guess of the control variable may be tricky in the general framework of optimal control algorithms.

In fact, in a large problem with complicated constraints, the initial guess of the control variable has to be made so that it does not

violate any constraint. This is not the case here, because only one simple constraint is considered. Furthermore, because the

damping coefficient c varies in a rather narrow range (between cmin and cmax), it turns out that the procedure is not very sensitive

to the initial guess of c. Throughout this work, an initial guess c ¼ cmin þ cmaxð Þ=2 has been chosen.

In the following, we briefly present the algorithm used to solve the regularized optimal control problem 19. For the sake of

generality, we consider the following problem:

Minimize J1 ¼ ∫
tf

t0

L x; c; tð Þdt þ ψ x tf
� �

; tf
� �

;

_x ¼ f x; c; tð Þ; x t0ð Þ ¼ x0;

cmin≤c tð Þ≤cmax;

(22)

where L(x, c, t) is a function of x, c, and t, and ψ[x(tf), tf] depend only on the final time tf.

First, the unconstrained optimal control problem is considered. Because of the nonlinearity, the unconstrained control

problem cannot be solved analytically (i.e., it is not possible to obtain a closed form solution as it was the case for Equation 5).

Therefore, we focus on its numerical solution. It has been shown that the necessary optimality conditions for the optimal control

problem without constraints lead to a two‐point boundary value problem.[17,18] This two‐point boundary value problem can be

directly solved by several numerical schemes, but the amount of computation may be too high if the number of variables is big

or if the control interval is long. Actually, for real time control, the computational time at each time step must be very low. An

efficient way to overcome this inconvenient is offered by iterative algorithms in which estimates of the control histories are

improved iteratively so as to come closer to satisfying the necessary optimality conditions. McReynolds and Bryson[29]

proposed the successive sweep method that gives improved estimates of the control variable so that the gradient of the

Hamiltonian becomes smaller at each step. Thus, after a finite number of steps, the gradient of the Hamiltonian can be made

very small, practically zero, as required for optimality.

The solution of optimal control problems becomes, in general, more difficult in the presence of side constraints. Such

constraints are commonly met in practice because of physical limitations of the control devices. A drawback with the

McReynolds and Bryson's method is that it cannot handle directly inequality constraints on control variables. Instead, inequality

constraints have to be approximated by penalty functions.[30] To overcome this drawback, Jacobson[30] developed a method

using the notion of DDP. For the sake of completeness, in the following, the basic steps of the method are presented.
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In DDP, we define a scalar function V of time t (t∈ [t0, tf]) and of the state vector x(t) to be the cost functional considering

that the initial state is x(t)

V x; tð Þ ¼ ∫
tf

t

L x τð Þ; c τð Þ; τ½ �dτ þ ψ x tf
� �

; tf
� �

; (23)

and thus

J1 ¼ ∫
tf

t0

L x; c; tð Þdt þ ψ x tf
� �

; tf
� �

¼ V x0; t0ð Þ: (24)

Assume that xo is the optimal state trajectory corresponding to the optimal control co. It is well known[17,18] that the optimal

cost Vo(x0, t0) satisfies the following Hamilton–Jacobi–Bellman partial differential equation:

−
∂Vo

∂t
xo; tð Þ ¼ min

c∈ cmin;cmax½ �
L xo; c; tð Þ þ Vo

x xo; tð ÞT f xo; c; tð Þ
� �

; (25)

where Vx is the derivate with respect to x of function V(x, t). The Hamiltonian is defined as

H x; c;V x; tð Þ ¼ L x; c; tð Þ þ Vx
T f x; c; tð Þ: (26)

Assuming that the optimal control co(t) exists, is unique and continuous in the interval [t0, tf], the solution of the optimal

control problem with inequality constraints on the control variables (Equations 22) is obtained by Jacobson's method[30] as

follows:

Step 1a. Guess a control history ec tð Þ;ec∈ cmin; cmax½ � ∀t and integrate the system equations _x ¼ f x; c; tð Þ with the specified

initial condition x(t0)= x0 to obtain the corresponding trajectory ex tð Þ and performance index eJ1.
Step 1b. Using the initial conditions

V x tf
� �

¼ ψ x ex tf
� �

; tf
� �

and V xx tf
� �

¼ ψxx ex tf
� �

; tf
� �

; (27)

integrate backwards from tf to t0 the following equations:

− _V x ¼ Hx ex;bc;V x; tð Þ þ V xx f ex;bc; tð Þ−f ex;ec; tð Þ½ �;
− _V xx ¼ Hxx ex;bc;V x; tð Þ þ f x ex;bc; tð Þ½ �TV xx þ V xx f x ex;bc; tð Þ;

(
(28)

while minimizingH ex; c;V x; tð Þwith respect to c, subject to c∈ [cmin, cmax] to obtain Vx(t) Vxx(t), and an improved estimate of the

control variable bc tð Þ. The differential Equation 28 is established by introducing the second‐order expansions of V(x, t) about

ex;bcð Þ into the Hamilton–Jacobi–Bellman equation.[29] To solve, Equation 28 recall thatex tð Þhas been computed in Step 1a. Then,

going back from the final time tf, at each sampling instant tk + 1 the explicit forward Euler's scheme may be used to compute

Vx(tk) and Vxx(tk). Eventually, bc tkð Þ is obtained by the constrained minimization of H ex tkð Þ; c;V x tkð Þ; tk½ � which is a nonlinear

function of c. This constrained minimization is a nonlinear programming problem. For complicated forms of Hamiltonian, with

several constraints, the reader can refer to methods of feasible directions.[31] In the present case (Equations 19), the

corresponding Hamiltonian H ex; c;V x; tð Þ is of second order in c. Therefore, its minimum with respect to c is the minimum

of a quadratic function in the interval [cmin, cmax]. It occurs at one of the two extremities of the segment corresponding to cmin

or cmax unless the vertex of the parabola lies between these two values.

Step 1c. Using bc tð Þ, calculate the corresponding trajectory bx tð Þ, the performance index bJ1, and the improvement index

τ ¼
eJ1−bJ1
eJ1

.

Step 1d. Replace the old ec tð Þ;ex tð Þ;eJ1 with bc tð Þ;bx tð Þ;bJ1 and repeat Steps 1b–d until τ reaches the desired accuracy.

According to Jacobson,[30] if the differential Equations 28 has bounded solutions, the sufficient conditions to reduce the cost

functional with this procedure are

1. H ex;bc;V x; tð Þ<H ex;ec;V x; tð Þ, bc≠ec. This condition is met because bc results from the minimization of H ex; c;V x; tð Þ.
2. Hcc ex;bc;V x; tð Þ is positive definite. This condition is always satisfied for the problem 19 because Hcc(x, c,Vx, t)=2ε>0.
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In the practical implementation of the method, we do not solve entirely problem 19 but we stop at Step 1c. That is, we limit

ourselves to the first only estimate of bc tð Þand bJ1which gives τ > 0. It is reminded that our goal is not to solve exactly problem 19

but to solve the original problem 17 taking benefit from relations 20 and 21. Actually, these relations hold, not only for the

solution (xε, cε) of Equation 19 but also for any set (x, c) such that, with the notations in Equations 19–21, J1 x; cð Þ≤J1 x; cð Þ
(i.e. τ > 0). However, it is not always possible to achieve τ > 0 for any value of ε. In fact, because, in the cost function, ε is

the weighting coefficient of the variation of the control variable with respect to its reference c tð Þ, small values of ε authorize

important changes of c and thus of the state variables x. But, as already mentioned, Equation 28 is valid for small variations

of x with respect to ex. Hence, if τ < 0, ε is increased until τ > 0.

As already shown, applying the above procedure successively leads to successive improved estimates of the control variable

of the initial NLQI problem 17. The method to solve problem 17 is outlined below:

Step 2a. Guess a control history c tð Þ; c∈ cmin; cmax½ � ∀t and integrate the system equations _x ¼ f x; c; tð Þwith the specified initial
condition x(t0) = x0 to obtain the corresponding trajectory x tð Þ and performance index J.

Step 2b. Choose an initial value of ε.

An estimate of the initial value of ε may be obtained so that the second term ε c−cð Þ2 in the cost functional of problem 19 is

much (e.g., one order of magnitude or more) smaller than the first one, xTQx. The latter is always higher than the potential

energy of the isolators, xTQx>ω2
b ms þ mbð Þx2b, and the order of magnitude of the base displacement xb may be given by the static

response approximation €xg=ω
2
b. On the other hand, ε c−cð Þ2≤ε cmax−cminð Þ2. Hence, a good choice is ε<<€x2g= ωb cmax−cminð Þ½ �2.

Throughout this work, we considered as initial value ε0 ¼ 0:01 €x2g

D E
= ωb cmax−cminð Þ½ �2, where €x2g

D E
is the mean square of the

excitation or its prediction (Section 3) in the control interval.

Step 2c. Using the guessed control history c tð Þ, apply Step 1a–c to obtain cε(t) , xε(t) , J(xε, cε). As discussed above, if in Step 1c

τ < 0, ε is increased until τ > 0. Compute the degree of improvement, κ ¼ J−J xε; cεð Þ
J

.

Step 2d. Replace the old c tð Þ; x tð Þ; J x; cð Þwith cε(t) , xε(t) , J(xε, cε) and repeat Step 2c,d using the value of ε of the last iteration
until κ becomes smaller than a convergence tolerance value (e.g., κ<10−5). However, small values of κ may indicate either

convergence or, on the contrary, poor convergence rate. If, at the same time, ε is smaller than a given threshold (e.g., ε< ε0),

convergence is assumed and the solution is c = cε. Otherwise, successive trials with smaller values of ε are made in Step 2c

until ε< ε0 or as far as τ > 0 in Step 1c. If, after these trials, κ remains lower than the convergence tolerance, convergence is

assumed. Otherwise, the iterative process goes on.

Similar to the linear inhomogeneous optimal problem discussed in the previous subsection, the solution of the nonlinear

inhomogeneous optimal control problem requires the excitation w(t) over the entire control interval [t0, tf] to be known a priori.

To illustrate the application of the above algorithm, we consider again the two DOF model in Figure 1 with the same structural

properties and excitation as in subsection 2.2.

The damping coefficient of the semi‐active damper, c(t), will be determined by solving, using the above approximate

method, the following problem:

Minimize J ¼ ∫
tf

t0

xTQxdt:

_x ¼ f x; c; tð Þ ¼ A−c tð ÞBb½ �x tð Þ þ Ew tð Þ; x t0ð Þ ¼ x0;

cmin≤c tð Þ≤cmax:

(29)

A first numerical example is studied assuming that the earthquake excitation is known a priori. The same weighting matrixQ,

described in Equation 12 in subsection 2.2, with a penalty coefficient α=5×105, is chosen. We consider a viscous damper with

an adjustable coefficient, c(t), corresponding to an additional base critical damping ratio, ξaddb ¼ cωb=2kb, varying in the range

0–0.20. Therefore, cmin=0 and cmax=0.20×2kb/ωb. The control time interval [t0, tf] is the duration of the considered signal.

A second example investigates the control performance when the actual excitation is known only over a short time interval

ahead. At each sampling instant, tk, the damping coefficient, c(tk), is determined solving the nonlinear inhomogeneous optimal

control problem 29 in the time interval [tk, tk+m]. To examine the influence of the duration of the time interval on the control

efficiency, three different durations, 0.05, 0.1, and 0.3 s, have been considered. As in subsection 2.2, the final term xTPx
��
t¼tkþm

where P is the solution of the algebraic Riccati Equation 8 is added to the cost functional of each time interval [tk, tk +m]. In fact,
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with the same reasoning (Equations 14–16), it can be shown that this final term at each time interval is important to main-

tain the global control performance for the NLQI problem 28 when the actual excitation is known only in a short time

interval ahead.

The floor response spectra in Figure 4a show that, when the excitation is known a priori, the nonlinear control of the

damping coefficient of the semi‐active damper (NLQI) has a performance comparable to that of LQR in the vicinity of the

second eigen frequency (13.4 Hz). However, it results in a higher peak at the isolation frequency (0.5 Hz). As already men-

tioned in subsection 2.2 and also shown in Figure 4a, LQI has a better performance than LQR. It is also observed that, when

the entire excitation is known, the efficacy of NLQI is inferior to that of LQI. This was expected because NLQI is a semi‐active

control with restrictions on the damping coefficient, which are not taken into account in LQI. The floor response spectra in

Figure 4b show that the performance of NLQI is not degraded significantly when the excitation is known over only a short time

interval ahead (except in the case of a very short interval, 0.05 s). It is worth noting that although LQI needs to know the

excitation ahead at least for 0.3 s to achieve a satisfactory performance (Figure 3b subsection 2.2), NLQI gives satisfactory

results even for a much smaller duration of 0.1 s. Therefore, this duration of the control time window will be considered in

the remaining part of the paper. In the same Figure 4b, it can be seen that, as it was the case for LQI (Figure 3). without terminal

penalty, NLQI exhibits also a considerably poorer performance.

The floor response spectra presented in Figure 4 have been normalized with respect to the PGA. In fact, it can be shown

that, despite the nonlinearity, the control variable solution of the NLQI problem 29, c(t), does not depend on the PGA. Let us

consider the NLQI problem 29 whose solution is the damping coefficient c(t) and the system's state x(t) corresponding to the

minimum of the cost function Jmin. If the excitation is multiplied by a factor μ (i.e., ew ¼ μw), the solution of the NLQI

problem will give a new optimum solution ec tð Þ, ex tð Þ, and eJmin. On the other hand, multiplying Equation 29 by μ shows that

if the control c(t) is applied under the excitation ew ¼ μw, the corresponding state trajectory and cost functions will be μx(t)

and μ
2
Jmin. Because the cost function corresponding to the optimal solution under excitation ew is eJmin , it follows that

μ2Jmin≥eJmin. With the same reasoning, if the control ec tð Þ is applied under excitation w ¼ ew=μ, the corresponding state tra-

jectory and cost functions will be ex tð Þ=μ and eJmin=μ
2≥Jmin. The only possibility to meet both the above inequalities is eJmin ¼

μ2Jmin and thus ex tð Þ ¼ μx tð Þ and ec tð Þ ¼ c tð Þ. Consequently, the optimal damping coefficient is independent of the excitation

multiplier μ.

Last, a third example investigates the influence of the initial conditions. Actually, in most real structural control

implementations, in general, a decision has to be made regarding the start moment of the control procedure. Typically,

the control procedure may start when one or more measures (e.g., base displacement and/or acceleration and/or ground

acceleration in the present case) reach a threshold. Then, for the proposed method, the initial conditions for the equation

of motion 3 will be the state vector at that moment. As shown in Figure 5, simulations with two different initial conditions,

corresponding to the time instants where the excitation acceleration is 0 and 0.02 g, respectively, result in quasi‐identical

control and system's state history.

FIGURE 4 Normalized floor response spectrum at the base for the Ardal earthquake for 2% damping. (a) Comparison between linear and nonlinear

optimal control when the excitation is known over the whole control time duration and (b) nonlinear optimal control when the excitation is known over

a short time interval. LQI = linear quadratic inhomogeneous; LQR = linear quadratic regulator; NLQI = nonlinear quadratic inhomogeneous;

PGA = peak ground acceleration
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2.4 | Nonlinear versus clipped linear semi‐active controls

As already mentioned, the results presented in Figure 4a show that the efficacy of the linear optimal inhomogeneous control is

superior to that of the nonlinear optimal inhomogeneous control at least when the whole excitation signal is assumed to be known.

However, it is reminded that our goal is semi‐active and not active control. To this end, we are interested in clipped‐like

algorithms that determine the damping coefficient of a SAC damper based on the solution of the above LQI active control

problem. We consider the two DOF model in Figure 1 with the same properties and excitation as in subsection 2.2 and a

viscous damper with the same properties as in subsection 2.3. At each sampling instant tk, a desired active control force, up

(tk), is determine solving LQI in the 0.1 s time interval ahead [tk, tk+0.1 s] as it is done in the second example of subsec-

tion 2.2. The excitation in this control time interval is supposed to be known. The semi‐active damping coefficient is then

adjusted so as to apply a control force, u tkð Þ ¼ −c tkð Þ _vb tkð Þ; that is as close as possible to the predicted force, up(tk):

if up _vb<0 and upj j<cmax _vbj j; c tkð Þ ¼ upj j= _vbj j;
if up _vb<0 and upj j≥cmax _vbj j; c(tk)= cmax,

if up _vb≥0; c(tk) = cmin,

where cmin and cmax are, respectively, the minimum and maximum damping coefficients. In the following, this control will be

noted SAC LQI. We consider also the clipped‐optimal control,[11–13] which is realized as above except that the desired control

force, up(tk), is calculated by LQR. This control will be noted SAC LQR.

The results of these clipped controls are compared to those obtained by the nonlinear control algorithm described in the

previous section. The damping coefficient of the semi‐active damper, c(tk), is directly obtained at each instant tk by solving

the NLQI problem in the time interval [tk, tk+0.1 s] as it is done in the second example of the subsection 2.3. Once again,

the upcoming excitation in this control time interval is supposed to be known.

The results in Figure 6 show that SAC LQI control exhibits a trend that is the opposite of that observed for LQI. As already

shown in Figure 4a, when the entire excitation is known, the efficacy of NLQI is inferior to that of LQI, as far as the attenuation

of both first and second modes' response is concerned. On the other hand, NLQI has a superior performance to that of SAC LQI

when the excitation is supposed to be known only over a short time interval (0.1 s) ahead the current time step. Actually, in

comparison with SAC LQI, NLQI results in the same peak amplitude at the first eigen frequency (0.5 Hz) whereas it performs

considerably better at frequencies higher that 8 Hz. This confirms that the nonlinear optimal control, which permits to determine

directly the damping coefficient while accounting for device's constraints, is more relevant than clipped controls. In the same

figure, it can be seen that, compared to SAC LQR, SAC LQI has also a slight beneficial effect on the attenuation of the response

at frequencies higher that 10 Hz.

All above calculations have a theoretical interest because they allow us to gain a further insight into the efficacy of the

discussed control techniques. However, regarding the inhomogeneous control techniques, in practice, seismic excitation is not

known a priori. Therefore, the need for estimating, in real time, the upcoming excitation, at least over a short time interval arises.

Such a prediction model, to be used in conjunction with the above control techniques, is discussed in the next section.

FIGURE 5 Influence of the initial conditions (a) base displacement and (b) damping coefficient of the semi‐active device
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3 | AR EXCITATION MODEL

3.1 | AR prediction

The success with which a signal can be predicted from its past samples depends on the power spectrum of the signal. In general,

the more correlated or predictable a signal, the more concentrated its power spectrum, and conversely, the more random or

unpredictable a signal, the more spread its power spectrum.[32] Of course, seismic excitations present random characteristics,

and they are not narrow band processes. Nevertheless, in general, their spectrum presents an amplification within a limited

frequency band. Therefore, it may be hoped that they could be predicted to some extent. The aim of this section is to present

and discuss the prediction model and the calculation of the predictor coefficients applied in this work. To this end, we follow

the general theory of AR models presented in Vaseghi.[32]

At a sampling time tk= kΔt, the excitation signal value wk=w(tk) can be written as a linear combination of past p samples

and a residual or error term, ek:

wk ¼ a1wk−1 þ a2wk−2 þ⋯þ apwk−p þ ek ¼ ∑
p

i¼1

aiwk−i þ ek: (30)

Equation 30 represents an AR model of order p. A prediction of wk consistent with the above AR model is given by

bwk ¼ ∑
p

i¼1

aiwk−i; (31)

where {a1,a2, … ,ap} are the prediction coefficients of the AR model. Then, the prediction error reads

ek ¼ wk−bwk ¼ wk− ∑
p

i¼1

aiwk−i: (32)

The prediction given by Equation 31 is also called forward prediction. Similarly, we can define a backward predictor that

predicts a sample wk − p=w(tk− p) from p future samples wk− p+ 1 , … ,wk:

bwk−p ¼ ∑
p

i¼1

ciwk−iþ1: (33)

The corresponding backward prediction error reads

bk ¼ wk−p−bwk−p ¼ wk−p− ∑
p

i¼1

ciwk−iþ1: (34)

The coefficients of the AR model can be derived through least square techniques from a signal block of N samples

{wk − 1,wk − 2, … ,wk − N} (e.g., Yule–Walker method[33] and Burg's method[32]). Burg's method, which is used in this

work, is a recursive order‐update method that computes the coefficients of a predictor of order i, using the coefficients

FIGURE 6 Normalized floor response spectrum at the base for the Ardal earthquake for 2% damping. LQI = linear quadratic inhomogeneous;

LQR = linear quadratic regulator; NLQI = nonlinear quadratic inhomogeneous; PGA = peak ground acceleration; SAC = semi‐active control
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of a predictor of order i − 1. This is done by minimizing the sum of the squared forward and backward prediction

errors of a predictor of order i defined as

E ið Þ ¼ ∑
k−1

n¼k−N
en ið Þ½ �2 þ bn ið Þ½ �2

n o
; 0≤i≤p: (35)

The outcome of this minimization, which permits to compute the predictor coefficients {a1, a2, … ,ap}, reads

en 0ð Þ ¼ bn 0ð Þ ¼ wn ; en ið Þ ¼ en i−1ð Þ−hibn−1 i−1ð Þ ; bn ið Þ ¼ bn−1 i−1ð Þ−hien i−1ð Þ k−N≤n≤k−1ð Þ;

hi ¼ 2 ∑
k−1

n¼k−N
en i−1ð Þbn−1 i−1ð Þ= ∑

k−1

n¼k−N
en i−1ð Þ½ �2 þ bn−1 i−1ð Þ

� �2n o
;

ai ið Þ ¼ hi ; aj ið Þ ¼ aj i−1ð Þ−hiai−j i−1ð Þ 1≤j≤i−1ð Þ;
aj ¼ aj pð Þ 1≤j≤pð Þ:

(36)

In order to obtain a prediction of the seismic excitation in the interval [tk, tk+m], having measured values only up to tk− 1, we

coincide wk ¼ bwk, estimate bwkþ1 by Equation 31 with the same prediction coefficients, and repeat the procedure until tk +m as

illustrated in Figure 7.

3.2 | Parametric study of the AR model

When a signal block of past N samples {wk− N, … ,wk− 2,wk − 1} is available, one procedure to determine the adequate model

order p is to increment the model order and monitor the increment of the squared error E(i), until it levels off.[32] The increment

of the squared error with increasing model order from i − 1 to i reads

ΔE ið Þ ¼ E i−1ð Þ−E ið Þ: (37)

The order p beyond which ΔE(p)/E(0) becomes less than a threshold is taken as the adequate model order. Herein, this pro-

cedure is applied for each control time interval and thus the order of the AR model varies with time. Figure 8a illustrates the

decrease of ΔE(i)/E(0) with increasing model order for the prediction in the interval [5.0 s, 5.1 s] of the Ardal record, using a

FIGURE 7 Prediction procedure of the seismic excitation signal for the interval [tk, tk + m]

FIGURE 8 AR model order for the Ardal record a) decrease of the normalized squared prediction error with increasing model order for the interval

[5.0 s, 5.1 s]. b) determined model order vs time
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block of past 200 and 400 samples (sampling period Δt=0.01 s). Figure 8b shows the AR model order determined by this pro-

cedure at each time instant for the same prediction window duration of 0.1 s.

To examine what could be a reasonable (satisfactory computational cost‐accuracy trade off) number N of past samples to

take into account for the determination of the coefficients of the AR model, we carried out some tests considering several values

of N. To this end, because the control at instant tk depends on the predicted excitation in the interval [tk, tk+m], a local prediction

error index could be defined as the root mean square of the prediction errors for all samples, tk , tk + 1 , … , tk +m, in this interval:

η tkð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

mþ 1
wk−bwkð Þ2 þ wkþ1−bwkþ1ð Þ2 þ⋯þ wkþm−bwkþmð Þ2

h ir
: (38)

The above Ardal record, two of the horizontal acceleration signals recorded during the main event of the Tohoku, Japan,

earthquake on 11/03/2011 and two artificially generated signals compatible with a rock site in south France (Cadarache) are

considered. The sample period is Δt=0.01 s. For each signal, we consider several values of N; we calculate the corresponding

local prediction error index η(t) for each time instant and then its root mean square σ over time normalized with respect to the

PGA. The mean of the normalized prediction errors of the above five signals, σ, is plotted in Figure 9.

As expected, the prediction is, in general, better when we use more past excitation information. However, increasing N

beyond a certain number, around 250 in the present case, does not result in a significant improvement. Consequently, to limit

the computational cost, it may be concluded that N=250 is an appropriate value for practical use. Figure 10 shows the predicted

signal, in the case of the Ardal record, for the time intervals [3.0 s, 3.1 s] and [6.0 s, 6.1 s]. It may be observed that the predicted

signal presents non‐negligible differences with respect to the actual signal. However, as discussed in the following section,

despite this divergence, the final outcome of interest that is the response of the semi‐actively controlled structure is quite

satisfactory.

FIGURE 9 Mean normalized prediction error for the considered five signals

FIGURE 10 Comparison between predicted and actual excitation for Ardal earthquake
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4 | FLOOR RESPONSE SPECTRA

Once a prediction of the excitation in the interval [tk, tk +m] is determined, the semi‐active control algorithm presented in

subsections 2.3 and 2.4, based on the solution of the NLQI problem, may be applied. At instant tk= kΔt, the damping coefficient

is computed as follows:

Step 1. Solve the identification problem of the AR model for the excitation window {wi: i= k−N to k− 1}, to obtain the model

order p, the predictor coefficients {ai: i=1 to p} and estimate the excitation in the interval [tk, tk +m] {bwi: i= k to k+m}.

Step 2. Using the estimated excitation {bwi: i= k to k+m}, solve NLQI in the control interval [tk, tk+m] and get the damping

coefficient c(tk).

Numerical simulations are carried out to demonstrate the efficacy of the proposed semi‐active control algorithmwith respect to

the floor response spectra of base isolated structures. We consider again the two DOFmodel of Figure 1 with the same properties

and excitation as in subsections 2.2 and 2.3. The critical damping ratio of the semi‐active damper varies in the range 0–0.20. An

AR model of adaptive order (subsection 3.2) based on N=250 past samples with a sampling period Δt=0.01 s is used to predict

the earthquake excitation in a forward interval of 0.1 s at each instant.

First, the response to the Ardal record is studied. The results are compared to those obtained with the semi‐active clipped‐

optimal algorithm of a previous work.[10] The semi‐active control algorithm in this previous work is, in essence, the same as that

presented in subsection 2.4 for the linear optimal case, except that it is clipped to the optimal solution of the linear homogeneous

problem. That is, the target control force is determined using LQR. The results presented in Figure 11 confirm the efficacy of

the proposed semi‐active control algorithm. A substantial attenuation of the floor response spectra in the vicinity of the second

eigen frequency (13.4 Hz) is achieved, which is superior to that obtained with the clipped‐optimal control algorithm of

Politopoulos and Pham,[10] whereas the peak amplitude at the first eigen frequency (0.5 Hz) is the same for both methods. This

means that both design objectives (i.e., attenuation of the response of the isolated and non‐isolated modes) are met to a higher

degree when information on the excitation is taken into account as it is the case for the proposed algorithm.

The efficacy of the proposed semi‐active control algorithm is further confirmed for other excitation signals. The additional

four signals used in subsection 3.2, that is, two of the horizontal acceleration signals recorded during the main event of Tohoku

earthquake on 11/03/2011 and two artificially generated signals compatible with Cadarache site in south France are also,

FIGURE 11 Normalized floor response spectrum at the base for Ardal signal for 2% damping. LQR = linear quadratic regulator; PGA = peak

ground acceleration; SAC = semi‐active control

FIGURE 12 Normalized pseudoacceleration response spectra of Tohoku and Cadarache signals for 2% damping. PGA = peak ground acceleration
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considered. Their normalized pseudoacceleration spectra for 2% damping are shown in Figure 12. Both pairs of signals have

considerable energy in the vicinity of the second eigenfrequency of the structure, and the first one gives rise to considerable

displacement of the isolator also. The mean normalized floor response spectra at the base for these signals are shown in

Figure 13. Regarding the base displacement, Table 1 shows that, for the above signals, similar reduction is achieved by the

two semi‐active algorithms, considered in this section, and by enhanced passive damping.

5 | CONCLUSIONS

In this paper, a new semi‐active control algorithm for mixed base isolated structures, combining both passive and semi‐active

devices, is investigated as a means to improve floor response spectra while limiting base displacements. It is hoped that a better

response of the system may be achieved if the controller design accounts for the earthquake excitation and the control variable is

directly the governing parameter of the semi‐active device (e.g., damping constant in the case of a viscous semi‐active damper).

To this end, we propose a semi‐active control algorithm based on an approximate iterative solution of a nonlinear inhomoge-

neous constrained optimal control problem. Because the inhomogeneous control techniques need upcoming excitation informa-

tion, which is not available in real time control situations, an auto‐regressive model is used to predict, at each control time step,

the earthquake excitation over a short time interval ahead. To illustrate its efficacy, this algorithm has been applied to a simple

two DOF base isolated structure equipped with a semi‐active linear viscous damper. The analyses' results show that the pro-

posed algorithm is capable to reduce the base displacement without significant amplification of the response of the non‐isolated

modes. Moreover, comparison with the well‐known clipped‐optimal control algorithm demonstrates the superiority of the new

semi‐active control algorithm.

Though the results presented in this paper are quite encouraging, it must be acknowledged that a lot of work should be

still done before envisaging to apply this method to real structures. For instance, issues such as computation speed up,

observers, measurement noise, time delay, and simultaneous control of several SAC devices should be studied for real‐world

applications. In addition, not all physical constraints of the SAC device have been included in the nonlinear optimal problem

considered here. Actually, though NLQI accounts for the bounds of the damping coefficient, it does not account for the fact

that the damper force cannot exceed a given value (i.e., saturation of the damper force). Another issue, which has to be inves-

tigated, is spillover. In fact, in practice, the design of the controller is based on a reduced model of the real structure whereas

the control action is applied to the real structure, which has much more DOF. Hence, the response of the DOF not retained in

the reduced model may have some undesirable effects and diminish the benefice expected from the proposed control

algorithm.

TABLE 1 Maximum base displacement per peak ground acceleration (m/g)

Control algorithm Ardal Cadarache 1 Cadarache 2 Tohoku 1 Tohoku 2

ξb= 0.25 0.0917 0.0854 0.0891 0.2050 0.2981

Clipped‐optimal SAC 0.1068 0.1165 0.1063 0.2396 0.3531

Proposed SAC algorithm 0.1053 0.1178 0.1062 0.2376 0.3482

Note. SAC = semi‐active control.

FIGURE 13 Mean normalized floor response spectrum at the base for Tohoku and Cadarache signals for 2% damping. LQR = linear quadratic

regulator; PGA = peak ground acceleration; SAC = semi‐active control
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