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Abstract— Design criteria of the parallel robots are required
in order to perform the optimal design. This paper aims at
proposing optimal design criteria for a planar parallel robot with
flexible joints. Consequently, dynamic and elastodynamic criteria
are examined with the purpose of analyzing their behavior as a
function of the design variables that are the lengths of the links
of the robot. The dynamic and elastodynamic design criteria are
evaluated numerically.

I. INTRODUCTION

Kinematic design criteria of planar parallel robot have
been extensively studied and well characterized [1], [2], [3],
[4]. However, there are few contributions related to design
criteria based on the dynamic performance of parallel robots
with flexible links and joints. This issue is important for the
mechanical design process and also for the further synthesis
of the motion control algorithms [5].

Several contributions about parallel robots considering flex-
ible links or joints have been addressed to formulate the
elastodynamic model [6], motion control [5], [7] and the
optimization of the mechanical structure [8], [9]. Nevertheless,
this contribution aims at analyzing the behavior of design
criteria based on the dynamic and elastodynamic performance
of the robot as a function of the length of the links that are
considered as the design variables.

In order to evaluate the design criteria, initially, the complete
model of the 2-DOF planar parallel robot is formulated taking
into account the flexible joints. In addition, the mechanism
of the 2-DOF planar parallel robot has been considered
with a symmetric mechanical structure in order to study
its mechanical properties [1]. In addition, the symmetrical
mechanism has been applied in parallel robot prototypes [10],
[11]. Then, the design space is established. The dynamic and
elastodynamic design criteria are further formulated. Finally,
the design criteria are evaluated within the design space by
means of numerical simulation.

II. ROBOT MODELING

The 2-DOF planar parallel robot has two kinematic chains.
Each kinematic chain includes an active or actuated joint,
denoted as Ai, a passive or free joint, denoted as Bi for i =
1, 2, and two rigid links. The geometry of planar parallel robot

is defined according to Fig. 1. The active joints are rotational
and they are located at the Cartesian coordinates (xai , 0)T , for
i = 1, 2. Additionally, the flexibility is considered in active
joint, this flexibility is modeled as an elastic torsional spring
ki which couples the rotors of the motor with the links. In
this contribution the robot is considered as symmetric, thus
the length of the links are defined by r̄1, r̄2. The end effector
of the mechanism is located at p where its position is defined
by the Cartesian coordinates (x̄p, ȳp). Additionally, the fixed
reference frame O is defined in the middle of A1A2. The
gravity acceleration acts perpendicular to the plane xy in
which the mechanism works.

Fig. 1. The 2-DOF Planar Parallel Robot

For the symmetrical parallel mechanism, the link lengths are
stated by r1, r2 and r3 (see Fig. 1). The link lengths are de-
fined between zero and infinite. nevertheless, this dimensional
length is eliminated in order to establish the design space as
was presented in previous contributions [3]. In accordance with
that, it is defined as D = (r1 + r2 + r3)/3, thus, the three
non-dimensional parameters (ri, for i = 1, 2, 3) are defined
by:

r1 = r1/D r2 = r2/D r3 = r3/D (1)

Therefore:
r1 + r2 + r3 = 3 (2)

Moreover, the end effector coordinates are also non-
dimensionalized as follows:

xp = xp/D yp = yp/D (3)



A. Kinematic Model

The position, P , of the end effector with respect to the
fixed reference frame O is defined by the Cartesian vector
p =

[
xp yp

]T
. Additionally, the position of the points Bi

(for i = 1, 2) with respect to the fixed frame O is defined by
the vector b1 =

[
r1 cos(θa1)− r3 r1 sin(θa1)

]T
and b2 =[

r1 cos(θa2) + r3 r1 sin(θa2)
]T

, respectively, with θa1 and
θa2 being the active joint angles. The inverse kinematics is
solved with the aids of the constraint equation |bip| = r2,
therefore:

(xp − r1 cos(θa1) + r3)2 + (yp − r1 sin(θa1))2 = r22 (4)

(xp − r1 cos(θa2)− r3)2 + (yp − r1 sin(θa2))2 = r22 (5)

1) Jacobian Matrix: In order to derive the Jacobian matrix
of the mechanism Eqs. (4) and (5) are differentiated with
respect to time in order to obtain the following expression:

r1(yp cos(θa1)− (xp + r3) sin(θa1))θ̇a1

= (xp + r3 − r1 cos(θa1))ẋp + (yp − r1 sin(θa1))ẏp (6)

r1(yp cos(θa2) + (r3 − xp) sin(θa2))θ̇a2

= (xp − r3 − r1 cos(θa2))ẋp + (yp − r1 sin(θa2))ẏp (7)

the Eqs. (6) and (7) are written in the matrix form:

Aθ̇a = Bṗ (8)

where ṗ =
[
ẋp ẏp

]T
, θ̇a =

[
θ̇a1 θ̇a2

]T
and the 2×2

matrices A and B :
A =

[
ypca1 − (xp + r3)sa1 0

0 ypca2 + (r3 − xp)sa2

]
B =

[
xp + r3 − r1ca1 yp − r1sa1

xp − r3 − r1ca2 yp − r1sa2

]
with cos(θai) = cai

and sin(θai) = sai for i = 1, 2.
The Jacobian matrix is expressed as:

J = A−1B (9)

2) Workspace: In the design process, the Maximum In-
scribed Circle (MIC) is an index useful to evaluate the flatness
of the usable workspace, the MIC is inscribed within the
usable workspace and it is tangent with singular loci [1].
The Maximum Inscribed Workspace (MIW) is defined as the
workspace bounded by the MIC. The MIC is characterized by
the expression:

x2 + (y − yMIC)2 = r2MIC (10)

where rMIC is the radius and (0, yMIC) is the center. For the
cases when r1 + r3 < r2, the MIC is defined by

rMIC = (r1 + r2 − |r1 − r2|)/2

yMIC =
√

(r1 + r2 + |r1 − r2|)2/4− r23 (11)

For the cases when r1 + r3 > r2, the radius and center of the
MIC are defined by:

rMIC = |yMIC | − ycol

yMIC =
(r1 + r2 + ycol)2 − r23

2(r1 + r2 + ycol)
(12)

with ycol =
√
r21 − (r2 − r3)2. Figure 2 shows the workspace

for two different sets of non-dimensional lengths of the link
of the mechanism. Fig. 2(a) presents the usable and MIW
for r1 = 1.2, r2 = 1 and r3 = 0.8 and Fig. 2(b) presents
the usable workspace and MIW for r1 = 1.2, r2 = 0.8 and
r3 = 1. One can observe for these two cases that the MIW
depends on the definition of the length of the links.
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Fig. 2. Maximum Inscribed Workspace.

B. Dynamic Model
In order to derive the complete dynamic model of the

robot, the dynamics of each kinematic chain together with the
flexibility of the active joint is considered separately. Then,
the kinematic constraints of the mechanism are applied to the
dynamics of both kinematic chains to obtain the total dynamics
of the robot.

Considering the dynamic parameters of the robot, the mass
of links and stiffness of joints have to be defined as non-
dimensional parameters in order to evaluate the dynamic and
elastodynamic performance. In accordance with that, let note
that mt = (m1i+m2i)/2 and kt = (k1+k2)/2. Consequently,
the non-dimensional masses of the links (m1 and m2) and the
stiffness of the joints are defined as:

m1i = m1i/mt m2i = m2i/mt m1i +m2i = 2

k1 = k1i/kt k2 = k2i/kt k1 + k2 = 2

The inertial moment and center of mass of the links are defined
as function of the non-dimensional masses and lengths of the
links as fallows:

d1i = r1/2 d2i = r2/2

Iz1i =
1
12
m1r

2
1 Iz2i =

1
12
m2r

2
2

1) Dynamic of the Kinematic Chain: Figure 3(a) shows the
model of a flexible joint. This flexibility is considered in the
active joints. τm =

[
τm1 τm2

]T
is the torque applied by

the motors after the reduction, θm =
[
θm1 θm2

]T
is the

angular position of the motor after the reduction and θa =[
θa1 θa2

]T
is the angular position of the active joints. The

flexible transmission of the motor to the link of the parallel
robot is modeled by a torsional spring of stiffness ki for i =
1, 2. The inertia of the rotor of the motor after the reduction
(ni) is defined by ji = Irizz

n2
i . The dynamics of each motor

is obtained by applying the Euler equation as follows:

jiθ̈mi + vmiθ̇mi + ki(θmi − θai) = τmi (13)



with vmi being the viscous friction in the motor.

(a) Flexible joint. (b) Kinematic chain of the robot.

Fig. 3. Kinematic chain with flexibility in the active joint.

Figure 3(b) shows one of the kinematic chains. The mod-
eling of each single kinematic chain is analyzed separately
in order to simplify the total formulation of the dynamics of
the robot. The dynamic equation is obtained by means of the
Lagrange formulation presented in Eq. (14). This approach
takes into account the kinetic and potential energies of the
mechanism according to [12].

τ i − fi =
d

dt

(
∂Li

∂θ̇i

)
− ∂Li

∂θi
(14)

where τ i = (τai, τpi)T is the vector of the joint torque, fi =
(fai, fpi)T is the vector of the active and passive joint friction,
θi = (θai, θpi)T is the vector of joints for each i−th kinematic
chain. Moreover, Li is the Lagrangian defined by:

Li = Ki − Pi (15)

with Ki and Pi being the kinematic and potential energy,
respectively. As the gravity is acting in the −z axis direction,
the potential energy takes into account the elastic potential
energy of the active joint, thus

Pi =
1
2
ki(θai − θmi)2 (16)

The total kinetic energy is Ki = K1i +K2i, where K1i and
K2i represent the kinetic energy of the first and second link
of the i−th kinematic chain respectively (see Fig. 3(b)), thus:

K1i =
1
2
Iz1iθ̇

2
ai +

1
2
m1i(ẋ2

c1i + ẏ2
c1i) (17)

K2i =
1
2
Iz2iθ̇

2
pi +

1
2
m2i

(
ẋ2

c2i + ẏ2
c2i

)
(18)

m1i and m2i are the masses, and Iz1i and Iz2i are the
inertia moments of the links for each i− th kinematic chain.
Additionally, (xc1i, yc1i)T and (xc2i, yc2i)T are the Cartesian
positions of the center of mass of each link that are defined
by:

xc1i = d1i cos θai yc1i = d1i sin θai

xc2i = r1 cos θai + d2i cos θpi yc2i = r1 sin θai + d2i sin θpi

By substituting the previous relations in the Lagrangian of
Eq. (15), it is obtained:

Li =
1
2
θ̇2aiαi +

1
2
θ̇2piβi + γiθ̇aiθ̇pi cos(θai − θpi)− . . .

. . .
1
2
ki(θai − θmi)2 (19)

where αi = Iz1i + m1id
2
1i + m2ir

2
1 , βi = Iz2i + m2id

2
2i and

γi = m2ir1d2i.
The dynamics of each i − th kinematic chain is obtained

by substituting the Lagrangian of Eq. (19) into the Lagrange
formulation presented in Eq. (14), thus:

τ i − fi = Mi(θi)θ̈i + Ci(θi, θ̇i)θ̇i + fki (20)

where
Mi(θi) =

[
αi γi cos(θai − θpi)

γi cos(θai − θpi) βi

]
Ci

(
θi, θ̇i

)
=
[

0 γiθ̇pi sin(θai − θpi)
−γiθ̇ai sin(θai − θpi) 0

]
fki =

[
ki(θai − θmi) 0

]T
2) Dynamic Model: Finally, the complete dynamic model

of the two kinematic chains is formulated by combining the
model of the two kinematic chains of Eq. (20), thus:

M(θ)θ̈ + C
(
θ, θ̇

)
θ̇ + f + fk = τ (21)

with θ = (θT
a ,θ

T
p )T , θ̇ = (θ̇

T

a , θ̇
T

p )T , f = (fT
a , f

T
p )T and

τ = (τT
a , τ

T
p )T . θp = (θp1, θp2)T is the vector of angular

position of active joints. τ a = (τa1, τa2)T is the vector of input
torque in the active joints, τ p = (τp1, τp2)T is the vector of
the torque in the passive joints. fa = (fa1, fa2)T is the vector
of frictions in the active joints, fp = (fp1, fp2)T is the vector
of frictions in the passive joints. fk = (fT

ka, f
T
kp)T is the elastic

torque in active and passive joints respectively. The elastic
torque is introduced in active joints by the elastic transmission
of the motor, therefore fka = (k1(θa1−θm1), k2(θa2−θm2))T .
In addition, no elasticity is considered in passive points, thus
fkp = (0, 0)T . An input torque is not applied in passive joints,
thus τ p = (0, 0)T . Moreover, the friction in passive joints
is assumed negligible when compared with friction in active
joints thus fp = (0, 0)T . The friction in the active joints
considers the viscous friction, viθ̇ai, and coulomb friction,
disign(θ̇ai), thus:

fai = viθ̇ai + disign(θ̇ai) (22)

The mass and Coriolis matrices (see Eq. (21)) of both kine-
matic chains are given by:

M(θ) =


α1 0 γ1cap1 0
0 α2 0 γ2cap2

γ1cap1 0 β1 0
0 γ2cap2 0 β2



C
(
θ, θ̇

)
=


0 0 γ1θ̇p1sap1 0
0 0 0 γ2θ̇p2sap2

−γ1θ̇a1sap1 0 0 0
0 −γ2θ̇a2sap2 0 0


where capi = cos(θai−θpi), sapi = sin(θai−θpi), for i = 1, 2.



3) Complete dynamic model: The dynamics of the two
motors is written in matrix form by combining the model of
the two single motors, of eq. (13), as follows:

Jθ̈m + Vθ̇m + K(θm − θa) = τm (23)

with J = diag(j1, j2) being the inertia matrix of rotors of
motors, K = diag(k1, k2) being the stiffness matrix of flexible
transmission and V = diag(vm1, vm2).

The complete dynamic model of the parallel mechanism is
obtained by considering the coupling of the kinematic chains
at the passive joint of point P . The kinematic constraints of
the coupling are derived from the Jacobian matrix. By using
the D’Alembert’s principle and the principle of virtual work,
the torques of the active joint τ a and torque of the joints τ
satisfy the relation:

τ a = ΨT τ (24)

where Ψ = ∂θ/∂θa, consequently Ψ = [I,J] with I being
the identity matrix and J = ∂θp/∂θa where:

J =
∂θp

∂θa
= −

[
∂h
∂θp

]−1 [
∂h
∂θa

]
(25)

with:

h =
[
r1ca1 + r2cp1 − 2r3 − r1ca2 − r2cp2

r1sa1 + r2sp1 − r1sa2 − r2sp2

]
where cpi = cos θpi, spi = sin θpi for i = 1, 2. The dynamic
equation of Eq. (21) is multiplied by the constraint of Eq. (24)
leading to:

ΨT M(θ)θ̈ + ΨT C
(
θ, θ̇

)
θ̇ + ΨT f + ΨT fk = ΨT τ (26)

Moreover, the following relations are established:

θ̇ =
∂θ

∂θa
θ̇a (27)

θ̈ = Ψ̇θ̇a + Ψθ̈a (28)

The relation of Eqs. (24), (27) and (28) are substituted into
Eq. (26), therefore the total dynamic equation is expressed as
follows:

Mtθ̈a + Ctθ̇a + fa + fka = τ a (29)

where Mt = ΨT M(θ)Ψ and Ct = ΨT M(θ)Ψ̇ +
ΨT C

(
θ, θ̇

)
Ψ.

Moreover, the complete dynamic model considers the dy-
namics of the motor defined in eq. (23) and the dynamics of
the parallel mechanism of eq. (29), thus:

{
Mtθ̈a + Ctθ̇a + fa + K(θa − θm) = 0
Jθ̈m + Vθ̇m + K(θm − θa) = τm

(30)

The torque is only applied by the motors and no torque is
applied directly to active joints, thus τ a = (0, 0)T in eq. (30).
One can observe that parallel mechanism and motor dynamics
of eq. (30) are dynamically coupled by the elastic torque in

the active joints K(θm − θa). Finally, the dynamics can be
express by using the matrix notation as follows:

MT (θ)z̈ + CT (θ, θ̇)ż + ft + KT z = u (31)

where z = (θT
a ,θ

T
m)T , MT (θ) =

[
Mt(θ) 02,2

02,2 J

]
,

CT (θ, θ̇) =
[
Ct(θ, θ̇) 02,2

02,2 02,2

]
and KT =

k1 0 −k1 0
0 k2 0 −k2

−k1 0 k1 0
0 −k2 0 k2

, ft = (fT
a ,Vθ̇

T

m)T and

u = (01,2, τm)T .

III. PERFORMANCE INDICES

Several performance criteria have been formulated in order
to optimize the kinematic design of parallel mechanism [13].
The atlases of the performance indices i.e., the performance
indices for every single length of the non-dimensional links
can be evaluated based on the design space. This section first
presentes the design space and then introduces the dynamic
and elastodynamic performance criteria.

A. The Design Space

The optimum design demands the evaluation of a per-
formance index as function of the link lengths in order to
determine the link dimensions that optimize the performance
of the mechanism. The design space assesses all the possible
combinations of the links dimensions and their correspondent
performance indices [2].

The non-dimensional length of links were previously de-
scribed by eqs. (1) and (2). Theoretically, 0 < ri < 3,
nevertheless, the non-dimensional lengths of the links are
constrained in order to avoid a failure of mechanism assembly
[2], thus:

0 < r1, r2 < 3 and 0 ≤ r3 ≤ 1.5 (32)

Based on the Eq. (2) and the constraints of Eq. (32), the design
space is defined as a trapezoid shown in Fig. 4(a). Additionally,
a planar configuration (see Fig. 4) is defined based on two
orthogonal coordinates s and t, with

s =2r1/
√

3 + r3/
√

3 (33)
t =r3 (34)
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Fig. 4. Design space of the parallel symmetrical robot.



B. Dynamic Performance Evaluation

The dynamic performance evaluates the dynamic dexterity,
i.e. the capability of the end-effector to accelerate on every one
of the directions of the workspace. The dynamic performance
is evaluated by using the Generalized-Inertia-Ellipsoid (GIE)
proposed by [14] that permits to quantify the inertia properties
of the mechanism. With this purpose the inertia matrix Mt of
links, previously defined in eq. (29), is used to evaluate the
dynamic dexterity based on the condition number of inertia
matrix in the workspace (Mw(θ) = J−T Mt(θ)J−1) that
measures isotropy of the acceleration ratio along the axes, thus:

1/k(Mw(θ)) =
σmin(Mw(θ))
σmax(Mw(θ))

(35)

where σmax(Mw(θ)) and σmin(Mw(θ)) are the maximum
and minimum singular values of the workspace inertia matrix.
One can observe that this measure depends on the posture
of the robot, i.e., the dynamic dexterity is a local performance
index and the desirable isotropic performance is obtained when
1/k(Mw(θ)) = 1. The global dynamic dexterity considers the
dexterity within the maximum inscribed workspace by using
the following expression:∫

MIW
1/k(Mw(θ))dw∫
MIW

dw
(36)

Maximizing the global dexterity leads to the optimal dynamic
performance.

C. Elastodynamic Performance Evaluation

The elastodynamic performance evaluates at a specific pos-
ture of robot the natural modes and frequencies of the structure
of the robot that are originated by flexible elements of the
structure [15]. For this contribution, the active joints of the
parallel robot are considered with flexibility. In order to eval-
uate the elastodynamic performance, the complete dynamics
of the robot, previously defined in eq. (31), is assumed at
a fixed posture and undamped, i.e., ż = (0, 0, 0, 0)T and
ft = (0, 0, 0, 0)T , therefore these assumptions lead to:

MT (θ)z̈ + KT z = u (37)

The elastodynamic performance depends on the posture of the
robot because total inertia matrix of the robot (MT (θ)) is
also posture dependent. Natural modes and frequencies are
obtained by solving the associated eigenvalue problem when
the dynamics of eq. (37) is evaluated for motions produced
by non-equilibrium initial conditions and non-excitation i.e.,
u = (0, 0, 0, 0)T , thus (KT − λ2

T MT (θ))z = 0. Note λT =
(λ1, . . . , λn) and φT = (φ1, . . . , φn) the set of eigenvalues
and eigenvector respectively. It is desirable that the robot
operates below the smallest mode in order to avoid undesirable
vibrations during the motion. Therefore, the elastodynamic
performance is evaluated by computing the smallest eigenvalue
over the MIW, thus

λe = min
MIW

(λT (r1, r2, r3)) (38)

The elastodynamic performance is optimized by maximiz-
ing the smallest eigenvalue as function of the non-dimensional
length of the links.

IV. RESULTS

The non-dimensional parameters adopted in this contribu-
tion are: m1i=1.2, m2i=0.8, this implied that the mass of the
first link is 20 percent greater than the mass of the second link.
In addition, k1i=1 and k2i=1, this means that the stiffness of
active joints is equal. Additionally, a relationship between the
non-dimensioal mass of the first link and the mass of the rotor
was established based on parameters of previous contributions
[16] as follows: ji = 0.5m1.

A. Dynamic Performance

Initially, the dynamic dexterity is evaluated at each single
posture by considering the specific set of non-dimensional
lengths of the links r1=1.2, r2=1.0 and r3=0.8. Figure 5
shows the local dynamic dexterity 1/k(Mw(θ)) for each
single posture within the usable workspace. It is observed
that the maximum and minimum values of local dynamic
dexterity (max(1/k(Mw(θ))) and min(1/k(Mw(θ)))) are
located within the MIW. i.e., the maximum acceleration ratio
of the end-effector is obtained closed to the center of the
maximum inscribed circle.
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As an additional result, the global dynamic dexterity is
evaluated over the design space by using the expression of
eq. (36). Figure 6 shows the design space and the atlas of
the global dynamic dexterity. It is observed a discontinuity of
global dynamic dexterity for r2 = r1 + r3, this discontinuity
follows the same trend presented by kinematic performance
criteria presented in previous contributions that depend on the
Jacobian matrix [1]. The atlas of Fig. 6 indicates that with
the decrease of r3 the maximum global dynamic dexterity
increases, since t = r3.

B. Elastodynamic Performance

Figure 7 shows the atlas of the elastodynamic performance
that was computed by using the expression of eq. (38). The
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Fig. 6. Atlas of global dynamic dexterity.

atlas indicates that the elastodynamic performance depends
principally on s. Moreover, it is observed in the atlas of
Fig. 7 that elastodynamic performance shows a rather small
dependence on the on t = r3. Consequently, the elastodynamic
performance depends on the r1 and r2 since the length of this
link is directly proportional to the total inertia matrix of the
robot MT defined in eq. (37). Hence, based on the definition
of eqs. (33) and (34), the smallest eigenvalue maximized by
selecting links lengths that follow the relation r1 ≤ r2, this
region in located in the left border of the design space showed
in Fig. 7.
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Fig. 7. Atlas of elastodynamic performance.

V. CONCLUSION

This paper presented design criteria based on dynamic
and elastodynamic model of planar parallel mechanisms. The
dynamic performance was evaluated by using the global
dynamic dexterity and the elastodynamic performance was
evaluated based on the solution of eigenvalue problem. The
global dynamic dexterity and eigenvalues of the structure were
evaluated within the design space, consequently, the atlases of
these design criteria were established.

This contribution is an initial tentative toward the optimal
design of the parallel robot with flexible joints. Future works
will encompass the optimal design of parallel robots with flex-
ible joints by taking into account the design criteria presented
in this contribution.
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