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On the precision in polyhedral partition representation and the fragility
of PWA control

Rajesh Koduri1 Sorin Olaru1 and Pedro Rodriguez-Ayerbe1

Abstract— Explicit model predictive control (EMPC) solves
a multi-parametric Quadratic Programming (mp-QP) problem
for a class of discrete-time linear system with linear inequality
constraints. The solution of the EMPC problem in general is a
piecewise affine control function defined over non-overlapping
convex polyhedral regions composing a polyhedral partition of
the feasible region. In this work, we consider the problem of per-
turbations on the representation of the vertices of the polyhedral
partition.Such perturbations may affect some of the structural
characteristics of the PWA controller such as ”non-overlapping
within the regions” or ”the closed-loop invariance”. We first
show how a perturbation affects the polyhedral regions and
evoke the overlapping within the modified polyhedral regions.
The major contribution of this work is to analyze to what extend
the non-overlapping and the invariance characteristics of the
PWA controller can be preserved when the perturbation takes
place on the vertex representation. We determine a set called
sensitivity margin to characterize for admissible perturbation
preserving the non-overlapping and the invariance property of
the controller. Finally, we show how to perturb multiple vertices
sequentially and reconfigure the entire polyhedral partition.

I. INTRODUCTION

Explicit control laws can be efficiently implemented on
hardware circuits for systems with fast dynamics and relati-
vely small dimension of system states [1]-[3]. Recently, such
control laws have gained popularity for a wide range of real-
time control applications [4]-[6]. However, the adoption of
such control laws are pertained to the numbers of state space
partitions and the piecewise affine control laws associated
with those partitions. In order to exploit the computational
advantages of the explicit controller, a truncation or quan-
tization operation must be performed on the coefficients of
the representation of the state space partitions and on their
associated PWA controls [7]. The implications of the quanti-
zed state-partitions and the quantized PWA gains and offsets
extend to affect control input accuracy, whose computations
are based on point location functions, and the properties of
the PWA controller. The quantized state partitions might also
adversely affect the non-overlapping (uniqueness) and non-
emptiness (feasibility) characteristics of the PWA controller.
The authors of [8] and [9] proposed a geometrical approach
to determine robustness/fragility margins with respect to the
invariance characteristics of the PWA controller. However
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their approach does not extend to the quantized represen-
tation of the state space partitions. In a recent study [10],
the accuracy of the explicit control input for the quantized
representation of the regions and the quantized representation
of the PWA control laws are analyzed in general to prove
the scale of quantization required in order to obtain a certain
degree of control accuracy. However, the paper builds the
control input analysis on the assumption that the modified
state space regions are non-overlapping and thus does not ad-
dress one of the essential characteristics of the representation
of the state partitions: the non-overlapping and completeness
of the polyhedral partition of the feasible domain.

This paper is a continuation of earlier work [11] where a
vertex sensitivity region is derived that guarantees the non-
overlapping characteristics of the PWA controller in the event
of perturbation on the vertex representation of the partition.
In this work we extend the above results to analyze to what
extend the non-overlapping and the invariance characteristics
of the PWA controller can be preserved when a perturbation
on the vertex representation of the partition takes place. First,
we approximate the outer representation of the feasible set
for admissible perturbation on the frontier vertices, which
are considered to be sensitive all by ensuring the feasible set
to preserve the non-overlapping and the invariance property
of the controller. Second, starting from the new feasible
domain, we analyze the polyhedral partitions by considering
each of the vertices of the partition which are not placed
on the frontiers of the feasible domain. We determine a
set called sensitivity margin for the closed-loop invariance.
This set characterizes for admissible perturbation on the
vertex representation to preserve the non-overlapping and
the invariance characteristics of the PWA controller. Third,
we compute the perturbed polyhedral partitions for all the
inner vertices of the feasible set sequentially completing the
transformation of the original polyhedral regions to a new
polyhedral regions for all the vertices in the feasible set.

II. BASIC NOTATIONS

This section addresses some basic notations and definiti-
ons. The sets R, Z, N and N+ denote set of real numbers, set
of integers, set of non-negative integers and set of positive
integers respectively. A vector is noted x ∈ Rn, x = [
x1, · · · , xn]T and a matrix S ∈ Rn×m, S = [sij]. An identity
matrix is represented by In, where the subscript n denotes
the dimension of that matrix.

A polyhedron is the (convex) intersection of a finite
number of open or closed half-spaces and a polytope is a
bounded and closed polyhedron. For a N ∈ N+, IN denotes



the set of integers, IN := { i ∈ N+ | i ≤ N }. For a given
set P , int(P) denotes the interior of P and Conv denotes
the convex hull. The set of vertices of a polytope P ⊂ Rn
is denoted V(P). Given a matrix S, V(S) denotes the set of
points described by the colums of S.

III. SYSTEM DESCRIPTION

Consider a linear discrete-time system given by,

xk+1 = Axk +Buk (1)

here, xk ∈ Rn and uk ∈ Rm denote the state vector and
input variables respectively at time k.

The constraints on the system’s states and input variables
are represented by polytopic sets,

X = {x : Hxx ≤ hx, Hx ∈ Rnx×n, hx ∈ Rnx} (2a)
U = {u : Huu ≤ hu, Hu ∈ Rmu×m, hu ∈ Rmu} (2b)

The constrained control law is considered to be designed
upon a classical MPC framework for (1)-(2) with a quadratic
cost function and standard stability guarantees based on the
terminal costs and terminal constraints [12]. Subsequently
the receding horizon constrained problem is transformed
into a multi-parametric Quadratic Programming (mp-QP)
problem [2] to obtain a so-called explicit MPC (EMPC)
formulation for the feedback control law.

The solution of EMPC problem is a finite set of affine
functions defined over the polyhedral partition of the set
R, where PN (R)= [R1,R2 · · ·RN ] also called polyhedral
partitions of the set R. The polyhedral regions Ri are non-
overlapping such that int(Ri)∩ int(Rj) = ∅, for i 6= j. The
non-overlapping property ensures the unique solution for the
point location of a given state xk ∈ Ri, ∀i ∈ IN . Two
neighboring polyhedral Ri and Rj share common facets. It
is worth to be recalled that the feasible set R represents a
bounded polyhedron in itself.

Definition 1: A mapping from Rn to Rm described by:

fpwa(x) = Fix+ gi,∀x ∈ Ri, i ∈ IN (3)

is called a piecewise affine function over ∪i∈INRi .
The EMPC feedback law is given in terms of the piecewise

affine function defined over the polyhedral partition PN (R)
of the set R ⊂ Rn and it can be written as:

upwa(xk) = Fixk + gi, ∀xk ∈ Ri. (4)

Definition 2: The closed and bounded setR ⊂ X is called
positively invariant with respect to the system (1) in closed
loop with the control law upwa(xk) in (4) if ∀x(0) ∈ R, it
follows xk ∈ R, ∀k ∈ Z[1;∞].

By construction of the standard MPC the positive inva-
riance is considered to be guaranteed for the explicit MPC
law.

IV. MOTIVATION AND PROBLEM FORMULATION

For real-time implementation of explicit controller, the on-
line implementation of the PWA control law is composed of
three stages,

(i) Storage of the polyhedral regions Ri, the PWA control
gains Fi and affine components gi.

(ii) Implementation of a point location mechanism with
respect to the parameter x and the polyhedral partitions
R = ∪Ni=1Ri.

(iii) On-line evaluation of the PWA control law upwa(x) =
Fix+ gi based on the elements resulting from the first
two stages and the state measurements.

In practice this evaluation procedure can fail due to several
reasons. Some of those are i) the precision of Ri represen-
tation ii) due to point location mismatch iii) PWA control
accuracy inflicted by the precision of representation of the
control gain Fi and offset gi.

The PWA control accuracy and the fragility issues of the
Fi and gi has been extensively discussed in [8]-[10]. The
resulting solution obtained from the EMPC problem is a
set of PWA functions defined over the polyhedral partition
PN (R) and their analysis in the point iii) above can be
handled in the respective framework. However, the issues
related with the representation and the closely related point
location problems (items (i and ii) above) remain largely
uncovered and will represent the main goal of the present
study. Before entering into the details of the main results, let
us motivate the chosen approach by considering a polyhedral
region Ri ⊂ R ∈ Rn, i ∈ IN , and its half-space
representation is given by,

Ri = {x | hi,rbx ≤ bi,rb ,∀i ∈ IN , rb = 1, · · · , ri} (5)

here, ri denotes the number of closed half-spaces of the
region Ri. In order to analyze the sensitivity of the polyhe-
dral partition representation and its implication on the PWA
control, a perturbation in the representation of the half-space
{hi,rb ≤ bi,rb}, for some rb ∈ Iri of the region Ri will be
considered,

ĥi,rb = hi,rb + ∆hi,rb and b̂i,rb = bi,rb + ∆bi,rb (6)

which leads to a new polyhedral set:

R̂i = {x | ĥi,rbx ≤ b̂i,rb}. (7)

The perturbation of the half-space inequalities of the region
Ri will concomitantly affect all the neighbor regions Rj
sharing the respective frontier within their half-space repre-
sentation. As several regions are affected, the analysis of the
effects on the partition will encounter structural problems.

1) Overlapping of the polyhedral partitions, violating the
PWA characterization: int(R̂i)∩ int(R̂j) = ∅, ∀i 6= j.

2) R\∪Ni=1R̂i 6= ∅ posing an well-possessedness issue in
the characterization of the polyhedral partition.

The first type of problem arise from the asymmetric consi-
deration of the perturbation in between neighboring regions
while the second can take place even if the perturbation is
treated similarly among the neighboring regions. Moreover,
both phenomena lead to invalidation of the PWA control law
defined over the partitions. Particularly the second phenome-
non leaves the point location function seemingly untraceable
and this case is shown in Figure 1. The drawbacks demon-
strated by the perturbation on the half-space representation
are the consequence that the perturbations are not considered



(a) 2-D Polyhedral with four
regions R = ∪4

i=1Ri before
perturbation of the half-space re-
presentation.

(b) Illustration of regions R̂1,
R̂2, R̂3 and R̂4 after perturba-
tion. Such a reconfiguration pro-
duces holes in the feasible dom-
ain that will undermine the well-
possessedness characteristics.

Fig. 1: 2-D polyhedral representation before and after per-
turbation on the half-space representation

jointly for different half-spaces. This is due to the fact
that the closed half-spaces of the regions Ri are described
uniquely and addressing perturbation on such representation
is not possible locally. These drawbacks force us to rely on
the duality of the polyhedron and lead us to the following
problem formulation. Eq (6) can be given with equivalent
vertex representation in the virtue of Motzkin duality:

Ri = Conv{vi,1, · · · , vi,ri}, ∀i ∈ IN (8)

here ri is the number of vertices of Ri. Now, consider
a perturbation with respect to the vertex representation
vi,j , j ∈ Iri of the region Ri,

v̂i,j = vi,j + ∆vi,j , i ∈ IN , j ∈ Iri (9)

this will lead to a new polyhedral set:

R̂i = Conv{vi,1 + ∆vi,1, · · · , vi,ri + ∆vi,ri}. (10)

In order to illustrate the representation in this framework and
present the obvious advantages of considering perturbation
on the vertex representation a similar partition to the one
presented in Figure 1 is depicted in the Figure 2. This time
it is obvious that the completeness of the partition is not
lost. In general terms, the case R \ ∪Ni=1R̂i 6= ∅ is avoided
from the consequences of the perturbations in the polyhedral
partition. To resume, the main objective is to start from the
existence of the system in the form (1) stabilized by a PWA
control law, and discuss the impact of perturbations on the
vertex representation of the polyhedral region by proposing:
• An analysis of the admissible perturbations with respect

to the non-overlapping and invariance characteristics of
the PWA controller.

V. TREATMENT OF ONE VERTEX CONSIDERED
INDEPENDENTLY

A. Vertex Perturbation with respect to non-overlapping cha-
racterization

In the following, the definition of the vertex sensitivity for
a single vertex is provided under the assumption that all the
other vertices are fixed and not subject to perturbations.

(a) 2-D Polyhedral
with four regions
R = ∪4

i=1Ri

before perturbation
of the vertex
representation.

(b) Regions R̂1,
R̂2, R̂3 and R̂4

after perturbation
preserving
the property,
int(R̂i)∩ int(R̂j) =
∅, ∀i, j ∈I4, i 6= j.

(c) After perturbation
with the particular
configuration
leading to: int(R̂i)
∩int(R̂j) 6=
∅, ∀i, j ∈I4, i 6= j.

Fig. 2: 2-D polyhedral representation before and after per-
turbation of the vertex representation

Definition 3: Consider the set of partitions PN (R) ∈ Rn
with Ri = Conv{vi,1, · · · , vi,ri}, i ∈ IN given by vertex
representation. Assume v ∈ Rn be a vertex within PN (R)
and denote Θv as the set of indexes of polyhedral regions
having v as a vertex:

Θv = {j ∈ IN | v ∈ V(Rj)} (11)

The set Ψv ⊂ R ⊂ Rn is describing the vertex sensitivity
for v if ∀(v + ∆v) ∈ Ψv the collection of sets{

R̂j = Conv{V(Rj) \ {v}, v + ∆v}, ∀j ∈ Θv,

R̂j = Rj ,∀j ∈ IN \Θv (12)

represents a polyhedral partition: P̂N (R) = {R̂1, · · · , R̂N}.
Theorem 1: Consider the subset of regions Rj , j ∈ Θv of

PN (R) such that v ∈ V(Rj), ∀j ∈ Θv , then the perturbed
vertex sensitivity for v is represented by a polyhedral set.

Proof: For interested readers, please refer proof 1 in
[11] .

B. Vertex Perturbation with respect to invariance characte-
rization

In this section, we discuss the invariance characterization
of the PWA controller as an additional ”dynamics-related”
property, to be considered on top of the non-overlapping pro-
perty of the PWA control. We will preserve the assumption
that only one vertex is perturbed at the time. This last point
will be relaxed in section VI.

From Theorem 1, it is understood that the vertex sensitivity
is analyzed for the admissible perturbation related to the non-
overlapping characteristics for any single vertex that belongs
to the polyhedral regions Ri. In order to incorporate the
analysis for vertex sensitivity and the invariance property of
the PWA control law, we will have to deal with the vertices
that are sensitive to perturbation. The vertices that represent
extreme points of the set R are particularly sensitive to
perturbation taking into account that they characterize the
controlled-invariant properties per se. This can result in the
invalidation of the invariant set with respect to the nominal
system and the constraints given in equation (1) and (2).



1) Perturbations of extreme points of the feasible domain
R: In the following, we aim to analyze the perturbation
of vertices that represent extreme point of the set R and
reconstruct the polyhedral partition R = {R1, · · · ,RN}.

Now, we define the set of vertices on the frontier of R as:

V = {v ∈ R : ∃i such that v ∈ V(Ri) and v /∈ int(R)}
(13)

Consider the set R = ∪Ni=1Ri, with Ri =
Conv{vi,1, vi,2, · · · , vi,ri}. Let, V = {v1, v2, · · · , vr} be
the vertices, such that vj ∈ V,∀j ∈ Ir, lies on the frontier
of the set R. The approximation of set R assuring the non-
overlapping and invariance characteristics is characterized by
perturbing and positioning the frontier vertices sequentially.
We start by defining the closed-loop mapping for any point
in the set R preserving the invariance characteristics of the
PWA controller:

fpwa(x) = Ax+Bupwa(x) ∈ R (14)

From (14), we can represent the image of the set R preser-
ving the invariance with,

F = Conv{fpwa(vj),∀j ∈ Ir} (15)

In the reference [13], it has been shown that any sets of
approximation of R denoted by Rα ⊆ R and Rα ⊇ F , the
invariance holds with respect to the approximated set Rα for
the existing PWA controller,

Rα = conv{vαj = vj + ∆vj , v
α
i = vi : ∃j ∈ Ir,∀i ∈ Ir \ j

such that vαj ∈ (Ψvj ∩R) and vαj /∈ int(F)} .

(16)
The validity of this construction will be demonstrated based
on the idea in [13] and also considering the non-overlapping
issues emerging from vertex perturbation. Figure 3 illustrates
the set R with its image F and the vertex sensitivity sets for
the corresponding vertices vj depicted with blue dots. In the
following, we discuss about the possible scenarios where it
leads to invalidation of invariance of the approximate set and
overlapping issues.

Stage 1: From Figure 3, it can be noted that some
boundary vertices of the image set F lies on the frontier of
the setR and perturbing those vertices will result in violating
the relation Rα ⊇ F , here Rα denotes the approximated set
for the perturbed vertex. These vertices have no admissible
perturbation in the first stage of the procedure. There after,
we perturb any vertices that satisfies the relation Rα ⊇ F .

Stage 2: Take two vertices [v1, v2] ∈ V , the vertex
sensitivity of the set Ψv1 for the vertex v1 is computed
assuming that the vertex v2 is fixed and vice versa. Perturbing
the vertex v1 inside its vertex sensitivity set may invalidate
the vertex sensitivity set computed for the vertex v2. There
after, we fix the position for the vertex after perturbation
satisfying Stage 1 and recompute the set R̂ with its partition
R̂i, here the perturbed set is assumed to be Rα. We proceed
to deriving the image set for the new Rα and recompute the
vertex sensitivity sets for all the untreated vertices.

Thus, we complete the proof that R ← Rα represents
the approximation of the set R whose vertices are perturbed

and positioned in a way that the set Rα assures the non-
overlapping and the invariance property of the controller.

Fig. 3: Representation of the set R and its image F are
represented by contour in dashed lines and the contour in full
lines respectively. The colored polytopes apart from white
and gray ones represent the vertex sensitivity for the vertices
depicted in blue dots

Remark 1: Analyzing the PWA characteristics with re-
spect to the vertex sensitivity for the boundary vertices are
considered vital for many purposes. It could help the on-line
PWA controller to tackle considerable perturbation on the
system states. The most resourceful purpose is to perform
”quantizer” operation on the state-space partition given by
vertex representation. Such a process can effectively bring
down the memory cost concerning the hardware require-
ments.
In the following we assume R ≡ Rα and we introduce
a matrix V̄ ∈ Rn×p to store all the vertices of all the
polyhedral regions Ri,∀i ∈ IN excluding the vertices on
the boundary of the polyhedron R,

V̄ = [v̄1, v̄2, · · · , v̄p]. (17)

2) Treatment of one inner vertex for non-overlapping and
invariance:

Definition 4: Consider the polyhedral partition PN (R) ⊂
Rn with Ri = Conv{vi,1, · · · , vi,ri}, i ∈ IN , V̄ =
[v̄1, · · · , v̄p] and R is assumed to be invariant with respect to
the closed-loop dynamics (1)-(4). For any v̄ ∈ V(V̄ ) ∈ Rn,
denote Λv̄ as the subset of indexes of regions that satisfies
(Ψv̄ ∩Rj) 6= ∅:

Λv̄ = {j ∈ IN | v̄ ∈ (Ψv̄ ∩Rj) 6= ∅} (18)

The set Υv̄ ⊆ Ψv̄ ⊂ R is representing the invariance-
vertex sensitivity for a given vertex v̄ if ∀(v̄ + ∆v̄) ∈ Υv̄ ,
the following properties hold for the newly constructed
polyhedral partition PN (R̂):

1) R̂ is a polytope.
2) R̂ is invariant with respect to the closed loop dynamics.
3) R̂ = ∪Ni=1 R̂i.
4) int(R̂i) ∩ int(R̂j) = ∅, ∀i, j ∈ IN , i 6= j.
Theorem 2: Let the subset of regions {Rj : j ∈ Λv̄} ⊂

PN (R) satisfy (Ψv̄ ∩ Rj) 6= ∅ and R be invariant
with respect to the closed-loop dynamics (1)-(4). Then
the invariance-vertex sensitivity for v̄ is represented by a
polyhedral set:

Υv̄ = Ψv̄ ∩ {v̄ | Av̄ +B(Fj v̄ + gj) ∈ R, ∀j ∈ Λv̄} (19)



Proof: Starting from the PWA state-feedback control
assuring the invariance characteristics of the set R,

Av̄ +B(Fiv̄ + gi) ∈ R,∀i ∈ IN , (20)

and the vertex sensitivity described by the set Ψv̄ .
Now, locate the subset of regions of PN (R) assuring the

non-overlapping behavior for the vertex v̄ and index it using
a set Λv̄ . Using (20) and the description of Λv̄ , we are able
to compute the sets denoted by Sv̄j containing all the points
for the PWA controllers, given by the indexes in the set Λv̄ ,
such that the invariance property is preserved. By simply
intersecting the set Sv̄j and Ψv̄ sequentially we obtain the
invariance-vertex sensitivity set:

Υv̄ =
⋂
j∈Λv̄

(Sv̄j ∩Ψv̄) (21)

VI. TREATMENT OF MULTIPLE VERTEX PERTURBATION

In this section, we propose to perturb multiple vertices
inside the polyhedral partition PN (R). So far, we have
discussed the perturbation of a single vertex assuring the non-
overlapping characteristics of the set R and the invariance
property of the PWA closed-loop dynamics hold, under the
assumption that all the other vertices are fixed.

We propose an algorithm to consider perturbing the posi-
tion of all the inner vertices sequentially given in Algorithm
1. The steps involved in transforming the set R to R̂ with
respect to relocating the position of the vertices to the
perturbed ones are described in the following.
• The first loop involvs the computation of vertex sensi-

tivity, sensitivity margin and Chebyshev radius of the
sensitivity margin set for all the inner vertices yet to be
perturbed.

• Secondly, the the vertex, also called as candidate, that
has the least fragility is selected. This is done by
identifying the vertex that has the smallest Chebyshev
radius associated to its invariance-vertex sensitivity.

• The next step is to consider a quantization function as
f(v̄) = v̄ + ∆v̄, here ∆v̄ is a random vector satisfying
‖∆v̄‖∞ ≤ 10−ε, ε ∈ N+.

• The regions that contain the perturbed (quantized) ver-
tex are updated.

• The reconstruction of the set R is performed by re-
moving the candidate vertex from the matrix V̄ and
restarting the same procedure for the remaining vertices.

VII. EXAMPLE

Consider the discrete-time linear system,

xk+1 = Axk +Buk, (22)

where, A =

[
1.4 0
1.8 −1.1

]
and B =

[
0.5
0.7

]
. The constraints

on the states are 5 ≤ [1 0 ]xk ≤ −5 and input constraint

5 ≤ uk ≤ −5. The weighing matrices Q =

[
1 0
0 1

]
, R = 1

and prediction horizon of length 2 are considered in the finite
time optimal control problem.

Algorithm 1 Algorithm for computing the perturbed set R̂
Input: R = ∪Ni=1Ri, i ∈ IN , V̄ ∈ int(R).
Output: R̂

Initialization : R̂ = R
LOOP Process

1: for γ = 1 to p do
2: Rad = [ ]
3: for b1 = 1 to p− γ − 1 do
4: Compute the vertex sensitivity set Ψv̄b1

5: Compute the sensitivity margin Υv̄b1

6: Rad(b1) = Υv̄b1 .Chebyshev.radius()
7: end for
8: [, R] = sort(Rad)
9: % Set the quantified value for v̄R(1)

10: vqn = quantify(v̄R(1))
11: if vqn /∈ Υv̄R(1) break end if
12: for t = 1 to length(Θv̄R(1)) do
13: R̂j = Conv{V(Rj) \ {v̄R(1)}, vqn} ∀j ∈ Θv̄R(1)

14: end for
15: V̄ (R(1), :) = [ ]
16: R = R̂
17: end for
18: return R̂

Solving the EMPC problem using MPT 3.0 toolbox [14]
yields 13 affine controllers and its associated state space
partitions. First, we approximated the set R by perturbing
the vertices on the boundary of the set. A quantization
function f(vj) = vj +∆vj , ∀j ∈ Ir with a random variable
‖∆vj‖∞ ≤ 10−2 is considered for perturbing the frontier
vertices. A smaller quantizer function is chosen concerning
the volume of the operating domain.

In the next step, we assume that the vertices on the boun-
dary are fixed and we proceed to perturb the inner vertices
in the set R sequentially as described in Algorithm 1. In the
set R there are 8 inner vertices and we choose to manually
displace them for this analysis for illustrative purpose. Figure
4 shows the functioning of the algorithm for each iteration.
In the subplots from Figure 4, the polyhedral regions R̂i are
presented with the vertex sensitivity and invariance-vertex
sensitivity sets depicted in red and green color respectively,
for the vertex that has the smallest Chebyshev radius. The
symbols dot and × in the subplots are the vertex candidate
and the new position where the candidate needs to be pushed.
The positions of the vertex candidate for each iteration and
their new position are presented in the TABLE I. The regions
that need to go under transformation for each iteration are
also given in the table along with the Chebyshev radius for
the candidate vertex. The numerical values of the vertices v̄
are originally double precision representation but in the table
we restricted the values till four decimal places due to space
constraint. Starting from Figure 4 (a), for the first vertex
candidate, we perturb the vertex to the position [−4.0, 1.6]T

there by affecting three regions with indexes 8, 12, 13. The
next subplot shows the new polyhedral regions after pertur-



bation. After the 8th iteration, the subplot 4 (i) represents the
final set R̂ that is the output of the algorithm 1. In Figure 4,

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4: In the subplots, the polyhedral regions R̂i are presen-
ted with the vertex sensitivity and invariant-vertex sensitivity
sets depicted in red and green color respectively. The dot and
the × in the subplots are the vertex candidate and their new
positions

it is obvious from the subplots that no overlapping took place
although a very aggressive perturbation has been tested for
illustration. This validates one part of our work. In order to
conclude on the closed loop behavior, we simulated the state
trajectories for the PWA controller for the outer vertices as
initial states and present the results in Figure 5.

γ v̄
Chebyshev
radius

v̄ + ∆v̄ Θv̄R(1)

1
[−1.3314,
8.1440]T 0.706 [−4.0, 1.6]T {8, 12, 13}

2
[−0.2162,
8.5668]T 0.54 [0.2, 8]T {7, 11, 12}

3
[1.3314,
−8.1440]T 0.706 [2,−6]T {4, 6, 9}

4
[0.2162,
−8.5668]T 0.70 [−0.2,−8]T {1, 3, 4}

5
[0.6361,
−6.5235]T 2.128 [−1,−4]T {1, 2, 4, 6}

6
[−3.7291,
−0.9076]T 1.395 [−3, 2]T {1, 2, 5, 8}

7
[−0.6361,
6.5235]T 1.02 [1, 6]T {2, 7, 8, 12}

8
[3.7291,
0.9076]T 0.87 [3.5, 3]T {2, 6, 7, 10}

TABLE I: This table represents the vertex candidates for each
iteration and their new position along with their Chebyshev
radius. The last column shows the indexes of the subset of
regions that are impacted by the perturbation of the vertex

Fig. 5: The states trajectories for the polyhedral partition,
outcome of the algorithm 1 as show in Fig 4 (i), for the
vertices that lie on the boundary of the polytope.

VIII. CONCLUSION

In this work the analysis on the perturbation of the
vertex representation has been presented for a PWA control
function. The sensitivity set that preserve the closed-loop
invariance in the event of perturbation has been computed.
It was shown that a perturbed polyhedral partition can be
constructed by treating sequentially each vertex with a higher
priority on those with a small sensitivity margin.
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