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Abstract: We consider the control of differentially flat linear delay systems with constraints.
The constraints can be given on the state and/or on the control. Linear delay systems are here
envisioned as modules over a ring of differential and distributed delay operators. Due to the nice
Bezout property that this ring enjoys, the controllability notions of freeness, projectivity and
torsion freeness coincide. Thanks to the flatness (corresponding to freeness for linear systems)
property, all constraints are reported through the flat output (the basis of the corresponding
module). We then make use of polynomial B-splines as specialisations for the flat output; the
constraints are then expressed as inequalities in these B-splines control points. Some examples
illustrate the effectiveness of the approach.
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1. INTRODUCTION

The presence of delays in the state or the input char-
acterizes many natural as well as artificial systems. A
large part of the control literature is thus devoted to the
study of linear and non linear delay systems (Richard,
2003), but few results are also able to handle constraints.
Constraints in the input or the state variables are usually
tackled with numerical methods entailing the computa-
tion of trajectory invariant intervals (Moussaoui et al.,
2014) and positively invariant sets (Dambrine et al., 1995;
Hennet and Tarbouriech, 1998), or more complex, but
similar in spirit, Model Predictive Control approaches (see
for instance (Marcus et al., 2010; Olaru and Niculescu,
2008)). A systematic approach capable of embedding the
constraint satisfaction directly in the control formulation
is still lacking for delay systems.

In the present work we propose a control design technique
based on the π-freeness property for infinite linear systems
(delay systems (Mounier, 1995; Mounier et al., 1997; Fliess
and Mounier, 2001), partial differential equations (Gehring
et al., 2013; Mounier and Greco, 2016)) which is an
extension of the differential flatness originally developed
for finite dimensional systems. Other algebraic related
approaches include (Sename et al., 1995; Picard et al.,
1998; Conte and Perdon, 2005).

According to this method, all the states and the control
input of the linear delay system can be parametrized
through a so-called π-flat output by using differentiations,
delays and advances.

In other words, the nominal input and the states can be
expressed as a linear combinations of the delayed and
advanced reference trajectory and its derivatives. We here
propose to embed a priori the constraints in the trajectory

design and to exploit the differential flatness to ensure
precise tracking.

The framework of the differential flatness, usually called
two degree of freedom controller, can be decomposed into
two steps: 1. Design of the reference trajectory of the
flat outputs; offline computation of the open loop controls
(feedforward part). 2. The second stage is online compu-
tation of the complementary closed loop controls in order
to stabilize the system around the reference trajectories
(feedback part).

Our goal is to write the state/input constraints in terms of
the flat output and its derivatives. The idea is to translate
the beauty and simplicity of the freeness property of a
delay system (analogue of flatness for finite dimensional
system) into constrained control via B-spline procedures
for the reference trajectories. The adoption of B-spline
curves is motivated by their peculiar properties, which
allow a natural remapping of the constraints from the
input/state to the flat output, while leaving sufficient
flexibility to express a rich class of reference trajectories.
We establish explicit relations between the control points
of the B-spline describing the reference trajectory and
those of the B-spline expressing the control input and
states. This way, the constraints on input and states is
directly translated in a set of inequalities for the control
points of the reference trajectory. Such inequalities can
then be efficiently solved by means of the cylindrical
algebraic decomposition (CAD) (Strzebonski, 2006) to find
admissible regions for the control points.

Once the constrained open-loop trajectories are generated
offline, and in order to guarantee the stability and a
certain robustness of the approach, we need a feedback
control (second step). There are many different linear and
nonlinear feedback controls that can be used to ensure
convergence to zero of the tracking error. We obtain a
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stable trajectory tracking with prescribed tracking error
dynamics if distributed delays are admitted in the feedback
law. This is a model based prediction.

The outline of the paper is as follows. In section 2, we
recall the definition of π-freeness for delay linear systems
and in the section 3, we give a stabilizing feedback law for
a class of delay systems that makes use of predictor forms
elaborated with distributed delays. In section 4, we give
an overview of the B-splines curves and its properties. In
section 5, we detail the procedure in establishing reference
trajectories for constrained open-loop control. In section
6, we illustrate an example on car-following with human
memory effects.

2. π-FREENESS FOR DELAY LINEAR SYSTEMS

We shall use a module theoretic approach framework
developed, among others, in (Mounier, 1995; Fliess and
Mounier, 1999). The adopted framework emphasizes on
equations (rather than solutions) in order to study a given
system. When dealing with linear equations, a system is
associated with a module over a ring, this notion playing
for differential equations the role played by vector spaces
for linear algebraic equations. The basic definitions we
shall use in this paper, can be found in (Mounier, 1995;
Fliess, 1990).

2.1 Algebraic setting and preliminaries

Spectral controllability We shall consider linear delay
systems as modules over the polynomial ring R[ ddt , δ1, . . . ,
δr] where the δi’s play the role of localized delay operators.
This ring is isomorphic to the ring R[s, e−h1s, . . . , e−hrs]
(the variable s plays the role of d

dt , the hi’s being the
amplitudes of the corresponding delays). In order to in-
volve distributed delays, we use an extended ring: Sr =
R(s)[e−h1s, . . . , e−hrs] ∩ E, where E denote the ring of
entire functions. This ring is a Bézout domain i.e. any
finitely generated ideal in this domain is principal. A
typical element of Sr is (1 − e−his)/s (it is an entire
function, since 1 − e−his = his − h2

i s
2 + h3

i s
3 + · · · is

zero when s = 0), which corresponds to a distributed delay
operator in the time domain. Another slightly larger ring is
R[s, s−1, e−h1s, . . . , e−hrs] which contains the integration
(through application of the s−1 operator).
Given a ring R (commutative, with unity and no zero
divisors, such as one of the above), an R-system is a
module over R.
We shall consider three controllability notions, correspond-
ing to algebraic properties of the corresponding module.
An R-system Λ is called R-torsion free (resp. projective,
free) controllable if the corresponding module is torsion
free (resp. projective, free).
Let us recall that, on a Bezout ring (as well as on a
principal ideal domain such as R[ ddt ]), the three notions
coincide.

In the next sections, by using this π-freeness formalism, we
obtain all the system open-loop trajectories zr (the states
and the inputs) as functions of the π-flat output yr, a finite
number of its derivatives, time delays, and advances.

In the case of a π-free delay system, we embed constraints
Kl,Kh ∈ R on a system open-loop trajectory by imposing:

Kl � zr � Kh with

zr = R(yr, ẏr, . . . , δ
±j
i y(q)r , θy(q)r , . . . , δ±j

i y(γ)r , θy(γ)r ),

where δ±j
i yr(t) = yr(t ∓ jτi), are delays and advances

respectively, and (θyr)(t) =
∫ t

t−h
e(t−τ)yr(τ)dτ represents

a distributed delay.

3. STABILIZATION OF THE SYSTEM

Here by the means of distributed delays in the feedback
law, we avoid pure predictions (torsion-free controllable)
i.e. the delay is compensated by the controller (Mounier
and Rudolph, 1998). The control law achieves asymptotic
tracking compensating the effects of the input delay. With
this, we want to overcome the delay in the closed-loop
which may be a source of poor system performance and
instability.

Let us first consider one of the simplest system, i.e. a linear
system with commensurate delay in the input

ẏ(t) = u(t− h) (1)

for which the open-loop control yields

ur(t) = ẏr(t+ h).

For the closed-loop control, setting

u(t) = ẏr(t+ h)−Kpe(t+ h), e(t) = y(t)− yr(t) (2)

e(t+ h) =

∫ t+h

t

ė(τ)dτ + e(t)

we obtain

u(t) = ẏr(t+ h)−Kp

∫ t+h

t

ė(τ)dτ −Kpe(t)

= Kp

(
−
∫ t+h

t

ẏ(τ)dτ +

∫ t+h

t

ẏr(τ)dτ − e(t)
)
+ ẏr(t+ h)

Finally, we obtain a closed-loop control

u(t) = Kp

(
−
∫ t

t−h

u(τ)dτ+

∫ t+h

t

ẏr(τ)dτ−e(t)
)
+ẏr(t+h)

which involves only distributed delays of finite support but
no pure predictions.

4. B-SPLINES PRELIMINARIES

Using B-spline curve as reference trajectory is a simple
way to reduce the problem of infinite unspecified function
f(t) into a finite dimensional one determined by control
points cj associated to a basis functions Bj,d.

4.1 B-splines

The B-spline Bj,d depends on the knots tj , . . . , tj+1+d.
This means that if the knot vector is given by t =
(tj)

n+d+1
j=1 for some positive integer n, we can form n B-

splines {Bj,d}nj=1 of degree d associated with this knot
vector. A B-spline curve (or a linear combination of B-
splines) is a combination of B-splines of the form

f =
n∑

j=1

cjBj,d (3)

where c = (cj)
n
j=1 are n real numbers. We formalise this

in a definition.
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which may be a source of poor system performance and
instability.

Let us first consider one of the simplest system, i.e. a linear
system with commensurate delay in the input

ẏ(t) = u(t− h) (1)

for which the open-loop control yields

ur(t) = ẏr(t+ h).

For the closed-loop control, setting

u(t) = ẏr(t+ h)−Kpe(t+ h), e(t) = y(t)− yr(t) (2)

e(t+ h) =

∫ t+h

t

ė(τ)dτ + e(t)

we obtain

u(t) = ẏr(t+ h)−Kp

∫ t+h

t

ė(τ)dτ −Kpe(t)

= Kp

(
−
∫ t+h

t

ẏ(τ)dτ +

∫ t+h

t

ẏr(τ)dτ − e(t)
)
+ ẏr(t+ h)

Finally, we obtain a closed-loop control

u(t) = Kp

(
−
∫ t

t−h

u(τ)dτ+

∫ t+h

t

ẏr(τ)dτ−e(t)
)
+ẏr(t+h)

which involves only distributed delays of finite support but
no pure predictions.

4. B-SPLINES PRELIMINARIES

Using B-spline curve as reference trajectory is a simple
way to reduce the problem of infinite unspecified function
f(t) into a finite dimensional one determined by control
points cj associated to a basis functions Bj,d.

4.1 B-splines

The B-spline Bj,d depends on the knots tj , . . . , tj+1+d.
This means that if the knot vector is given by t =
(tj)

n+d+1
j=1 for some positive integer n, we can form n B-

splines {Bj,d}nj=1 of degree d associated with this knot
vector. A B-spline curve (or a linear combination of B-
splines) is a combination of B-splines of the form

f =
n∑

j=1

cjBj,d (3)

where c = (cj)
n
j=1 are n real numbers. We formalise this

in a definition.
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Definition 1. (B-spline curves). Let

t = (tj)
m=n+d+1
j=1 = [0, . . . , 0︸ ︷︷ ︸

d + 1

, td+1, . . . , tm−d−1, 1, . . . , 1︸ ︷︷ ︸
d + 1

]

be a non-decreasing sequence of real numbers, i.e. , a knot
vector for a total of n B-splines. The linear space of all
linear combinations of these B-splines is the spline space
Sd,t defined by

Sd,t =
{ n∑

j=1

cjBj,d | cj ∈ R for 1 � j � n
}

An element f =
n∑

j=1

cjBj,d of Sd,t is called a B-spline curve

or a spline function, of degree d with knots t, and (cj)
n
j=1

are called the control points of the B-spline curve (see
Fig.1).

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2
B-Spline-curve with 7 control points of order 5

Fig. 1. The B-spline curve and its control polygon

Definition 2. (Cox-DeBoor recursion formula) Let d be
a nonnegative integer and let t = (tj), the knot vector
or knot sequence, be a non-decreasing sequence of real
numbers of at least d + 2. The jth B-spline of degree d
(order k) with knots t is defined by:

Bj,k,t(x) =
x− tj

tj+d − tj
Bj,d−1,t(x)+

tj+k − x

tj+1+d − tj+1
Bj+1,d−1,t(x)

for all real numbers x, with

Bj,0,t(x) =

{
1, if tj � x < tj+1

0, otherwise

Remark 1. • Choosing the knot vector in this way
guarantees the start and end tangent property.

• Each control point movement only has local effects.

Definition 3. (Control polygon for B-spline curve (see
(Lyche and Morken, 2002))). Let f =

∑n
j+1 cjBj,d be a

spline in Sd,t. the control points of f are the points with

coordinates (t∗j , cj) for j = 1, . . . , n where

t∗j =
tj+1 + · · ·+ tj+d

d
(4)

are the knot averages of t. The control polygon of f
is the piecewise linear function obtained by connecting
neighbouring points by straight lines.

4.2 B-spline properties

B-splines play a central role in the representation of B-
spline curves. For that purpose, we report here the most
important properties.

Lemma 1. ( (Lyche and Morken, 2002) page 40) Let d be
a nonnegative polynomial degree and let t = (tj) be a knot
sequence. The B-splines on t have the following properties:

(1) Local knots. The jth B-splines Bj,d depends only on
the knots tj , tj+1, . . . , tj+d+1.

(2) Local support
• If x is outside the interval [tj , tj+d+1) then

Bj,d(x) = 0. In particular, if tj = tj+d+1 then
Bj,d is identically zero.

• If x lies in the interval [tµ, tµ+1) then Bj,d(x) = 0
if j < µ− d or j > µ.

(3) Positivity. If x ∈ (tj , tj+d+1) then Bj,d(x) > 0. the
closed interval [tj , tj+d+1] is called the support of
Bj,d.

(4) Piecewise polynomial. The B-spline Bj,d can be writ-
ten

Bj,d(x) =

j+d∑
k=j

Bk
j,d(x)Bk,0(x) (5)

where each Bk
j,d(x) is a polynomial of degree d.

(5) Special values. If z = tj+1 = . . . = tj+d < tj+d+1

then Bj,d(z) = 1 and Bi,d(z) = 0 for i �= j.
(6) Smoothness. If the number z occurs m times among

tj , tj+1, . . . , tj+d+1 then the derivatives of Bj,d of
order 0, 1, . . . , d−m are all continuous at z.

5. CONSTRAINED TRAJECTORY GENERATION
PROCEDURE

In this section we present the design of the desired B-
spline trajectory yr(t). The initial equilibrium point is its
first control point yinitial = c0 and the final equilibrium
point is its last control point yfinal = cn.

For the sake of completeness, we state a few necessary
B-spline ingredients (derivative, integral, and degree ele-
vation) that are crucial in establishing our result.

5.1 Derivative property of the B-spline curve

Theorem 1. (see (Lyche and Morken, 2002)) The deriva-
tive of the jth B-spline of degree d on t is given by

DBj,d(x) = d

(
Bj,d−1(x)

tj+d − tj
− Bj+1,d−1(x)

tj+1+d − tj+1

)
(6)

for d � 1 and for any real number x.

According to the previous theorem, if the flat output or the
reference trajectory yr is a B-spline curve, its derivative
is still a B-spline curve and we can explicitly compute its
control points.

Let y(ν)(x) denote the νth derivative of y(x). If x is fixed,
we can obtain y(ν)(x) by computing the νth derivatives of
the basis functions:

y(ν)(x) =

n∑
j=1

cjB
(ν)
j,d (x) (7)
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Letting c
(0)
j = cj , we write

y(x) = y(0)(x) =

n∑
j=1

c
(0)
j Bj,d(x) (8)

Then,

y(ν)(x) =

n−ν∑
j=1

c
(ν)
j Bj,d−ν(x) (9)

with derivative control points such that

c
(ν)
j =




cj , ν = 0

d− ν + 1

tj+d+1 − tj+ν

(
c
(ν−1)
j+1 − c

(ν−1)
j

)
, ν > 0

(10)

and a vector knot

t(ν) = 0, . . . , 0︸ ︷︷ ︸
d − ν + 1

, td+1, . . . , tm−d−1, 1, . . . , 1︸ ︷︷ ︸
d − ν + 1

Remark 2. We should take a B-spline curve of degree
d > ν, where ν is the derivation order of the flat output,
to avoid to introduce discontinuities.

5.2 Integral property of B-spline curve

Similar to the derivation operation, an integral of a B-
spline is a B-spline and we are able to find the control
points of the integral of the B-spline curve in terms of the
control points of the initial B-spline curve.
The indefinite integral of a B-spline function f(x) (see
(de Boor, 2001))

f(x) =
n∑

j=1

cjBj,d(x) (11)

on the knot vector (tj)
n+d+1
j=1 is given by the B-spline

function g(x) where

g(x) =

∫ x

t1

n∑
j=1

cjBj,k(u)du

=
n∑

j=1

(
tj+k+1 − tj

k

i∑
i=1

ci

)
Bj,k+1(x),

tk � x � tn+1.

(12)

Hence the integral of a B-spline is presented as:

g(x) =

∫ x

t1

f(u)du =

n+1∑
j=1

ejBj,k+1(x), (13)

where

e1 = 0, ej+1 =
1

d+ 1

j∑
i=1

ci (ti+d+1 − ti) 1 � j � n.

(14)
The knot vector for g(x) matches that of the original curve
except for the extra knot at both ends due to the increased
degree. For a definite integral of a B-spline we have:∫ x2

x1

f(u)du =

∫ x2

t1

f(u)du−
∫ x1

t1

f(u)du = g(x2)− g(x1),

tk � x1, x2 � tn+1.

Remark 3. Notice that the input constraints in the pres-
ence of commensurable and/or distributed known delay in

the state x(t− h) or
∫ t

t−h
x(τ)dτ can be given in straight-

forward algebraic manner.

Thanks to the integral property, we can easily deal with
distributed delay in the state. For instance, consider a
system in the form:

ẏ =

∫ t

t−h

y(τ)dτ + y(t− h) + u (15)

where y is the flat output. An open loop control allowing
the tracking of yr by y is:

ur = ẏr(t+ h)−
∫ t

t−h

yr(τ)dτ − yr(t+ h). (16)

5.3 Degree elevation and knot insertion

To accomplish an addition and/or subtraction of two B-
spline curves f(x) and g(x) with different degrees df and
dg respectively s.t. df < dg, first, we need to increase
(dg−df ) times the degree of f(x). A good visual algorithm
of the degree elevation and knot insertion of the B-spline
reference trajectory can be found in (Piegl and Tiller,
1994).

5.4 Reference trajectory design procedure

The simple-minded idea on the reference trajectory design
is based on the following steps:

• Assign a B-spline reference trajectory to each flat
output

• Find the analytical B-spline expressions of the states
and the inputs

• Express the input/state constraints as inequalities
in terms of the B-spline control points and find the
suitable region for each control point of the B-spline
reference trajectory by using the B-spline properties
(see the previous sections 5.1, 5.2, 5.3).

We find the relationship between the input control points
Ui and the control points of the reference trajectory cj
such that Ui = Φi(c1, . . . , cn). Our aim is to constraint
Kl � |Ui| � Kh by choosing suitable regions for the
reference trajectory.

Remark 4. To solve the system of inequalities, we use sym-
bolic computation of the Cylindrical Algebraic Decompo-
sition (CAD) algorithm which is the best currently known
algorithms for solving many classes of problems related
to systems of real polynomial equations and inequalities
(Strzebonski, 2006). By using Cylindrical Algebraic De-
composition, we compute the regions in which one chooses
the values for cj ’s of the reference trajectory.

6. EXAMPLE: CAR-FOLLOWING MODEL

We investigate a car-following model including human
drivers memory effects from (Sipahi and Niculescu, 2010).
For the sake of clarity, we consider a simplified example.
The dynamics of two vehicles, when the second vehicle
follows the first vehicle is represented by the following
equations:

ÿ1 = α

∫ h+δ

h

f(τ)H(t− τ)dτ −Kp(y2 − y1) (17a)

ÿ2 = u (17b)
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Letting c
(0)
j = cj , we write

y(x) = y(0)(x) =

n∑
j=1

c
(0)
j Bj,d(x) (8)

Then,

y(ν)(x) =

n−ν∑
j=1

c
(ν)
j Bj,d−ν(x) (9)

with derivative control points such that

c
(ν)
j =




cj , ν = 0

d− ν + 1

tj+d+1 − tj+ν

(
c
(ν−1)
j+1 − c

(ν−1)
j

)
, ν > 0

(10)

and a vector knot

t(ν) = 0, . . . , 0︸ ︷︷ ︸
d − ν + 1

, td+1, . . . , tm−d−1, 1, . . . , 1︸ ︷︷ ︸
d − ν + 1

Remark 2. We should take a B-spline curve of degree
d > ν, where ν is the derivation order of the flat output,
to avoid to introduce discontinuities.

5.2 Integral property of B-spline curve

Similar to the derivation operation, an integral of a B-
spline is a B-spline and we are able to find the control
points of the integral of the B-spline curve in terms of the
control points of the initial B-spline curve.
The indefinite integral of a B-spline function f(x) (see
(de Boor, 2001))

f(x) =
n∑

j=1

cjBj,d(x) (11)

on the knot vector (tj)
n+d+1
j=1 is given by the B-spline

function g(x) where

g(x) =

∫ x

t1

n∑
j=1

cjBj,k(u)du

=
n∑

j=1

(
tj+k+1 − tj

k

i∑
i=1

ci

)
Bj,k+1(x),

tk � x � tn+1.

(12)

Hence the integral of a B-spline is presented as:

g(x) =

∫ x

t1

f(u)du =

n+1∑
j=1

ejBj,k+1(x), (13)

where

e1 = 0, ej+1 =
1

d+ 1

j∑
i=1

ci (ti+d+1 − ti) 1 � j � n.

(14)
The knot vector for g(x) matches that of the original curve
except for the extra knot at both ends due to the increased
degree. For a definite integral of a B-spline we have:∫ x2

x1

f(u)du =

∫ x2

t1

f(u)du−
∫ x1

t1

f(u)du = g(x2)− g(x1),

tk � x1, x2 � tn+1.

Remark 3. Notice that the input constraints in the pres-
ence of commensurable and/or distributed known delay in

the state x(t− h) or
∫ t

t−h
x(τ)dτ can be given in straight-

forward algebraic manner.

Thanks to the integral property, we can easily deal with
distributed delay in the state. For instance, consider a
system in the form:

ẏ =

∫ t

t−h

y(τ)dτ + y(t− h) + u (15)

where y is the flat output. An open loop control allowing
the tracking of yr by y is:

ur = ẏr(t+ h)−
∫ t

t−h

yr(τ)dτ − yr(t+ h). (16)

5.3 Degree elevation and knot insertion

To accomplish an addition and/or subtraction of two B-
spline curves f(x) and g(x) with different degrees df and
dg respectively s.t. df < dg, first, we need to increase
(dg−df ) times the degree of f(x). A good visual algorithm
of the degree elevation and knot insertion of the B-spline
reference trajectory can be found in (Piegl and Tiller,
1994).

5.4 Reference trajectory design procedure

The simple-minded idea on the reference trajectory design
is based on the following steps:

• Assign a B-spline reference trajectory to each flat
output

• Find the analytical B-spline expressions of the states
and the inputs

• Express the input/state constraints as inequalities
in terms of the B-spline control points and find the
suitable region for each control point of the B-spline
reference trajectory by using the B-spline properties
(see the previous sections 5.1, 5.2, 5.3).

We find the relationship between the input control points
Ui and the control points of the reference trajectory cj
such that Ui = Φi(c1, . . . , cn). Our aim is to constraint
Kl � |Ui| � Kh by choosing suitable regions for the
reference trajectory.

Remark 4. To solve the system of inequalities, we use sym-
bolic computation of the Cylindrical Algebraic Decompo-
sition (CAD) algorithm which is the best currently known
algorithms for solving many classes of problems related
to systems of real polynomial equations and inequalities
(Strzebonski, 2006). By using Cylindrical Algebraic De-
composition, we compute the regions in which one chooses
the values for cj ’s of the reference trajectory.

6. EXAMPLE: CAR-FOLLOWING MODEL

We investigate a car-following model including human
drivers memory effects from (Sipahi and Niculescu, 2010).
For the sake of clarity, we consider a simplified example.
The dynamics of two vehicles, when the second vehicle
follows the first vehicle is represented by the following
equations:

ÿ1 = α

∫ h+δ

h

f(τ)H(t− τ)dτ −Kp(y2 − y1) (17a)

ÿ2 = u (17b)
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where y1 and y2 are the positions of the first and the
second vehicle respectively, H(t) = y2(t) − y1(t) is the
headway perturbation between the vehicles, u is the motor
torque, taken as control input and the constants: α > 0 is
the measure of the driver’s aggressiveness per unit vehicle
mass and Kp is the human regulation parameter. The
delayed action/decision of human drivers is represented
using distributed delays. As distribution function f(t), as
stated in (Sipahi and Niculescu, 2010), we take the uniform
distribution, which is a good fit for modelling the short-
term memory of drivers:

f(τ) =

{1

δ
, h � τ � h+ δ

0, otherwise,
(18)

where h is the memory dead-time and δ is the memory
window.

The model (17a)-(17b) is π-free, with basis (or flat output)
given by H, i.e. all system variables can be differentially
parametrized by H.

With the notation ŷ1, ŷ2 and û for the Laplace transform,
(17a)-(17b) is given by:

s2ŷ1 = αe−hs 1− e−δs

δs
(ŷ2 − ŷ1)−Kp(ŷ2 − ŷ1), (19)

s2ŷ2 = û (20)

Let

a(s) = s2 −Kp + αe−hs 1− e−δs

δs
.

We get a differential parametrization of the system as

ŷ1 =

(
a(s)

s2
− 1

)
Ĥ,

ŷ2 =
a(s)

s2
Ĥ,

û = a(s)Ĥ.

From where, we obtain the time domain expression for the
open loop control:

ur(t) = Ḧr(t)−KpHr(t) +
α

δ

∫ t

t−δ

Hr(τ − h)dτ (21)

For the sake of simplicity, we take δ = (k − 1)h.

ur(t) = Ḧr(t)︸ ︷︷ ︸
first term

−Kp Hr(t)︸ ︷︷ ︸
second term

+
α

(k − 1)h

∫ t−h

t−kh

Hr(τ)dτ

︸ ︷︷ ︸
third term

(22)

We take as symbolic reference trajectory Hr a B-spline
curve with degree d = 4, knot vector

T = {0, 0, 0, 0, 0, 10/3, 20/3, 10, 10, 10, 10, 10}
and control points vector A = (aj)

7
j=1 as

Hr =

7∑
j=1

ajBj,d. (23)

The constraints we consider are the following:

(1) Distance constraint: Hmin � H � Hmax

(2) Actuator limit: Umin � u � Umax.

The first constraint will be respected by choosing the
control points for the reference trajectory Hr such that
Hmin � aj � Hmax.

For the second constraint, using the properties of the B-
spline curve, we can find the control points of the open-
loop control ur in terms of the aj ’s by following these
steps:

(1) First, we find the control points a
(2)
j for the second

derivative Ḧxr by using the formula (10):

Ḧxr =

5∑
j=1

a
(2)
j Bj,1(t)

(2) We obtain the third term
∫ t−h

t−kh
H(τ)dτ by

∫ t−h

t−kh

H(τ)dτ =
8∑

j=1

ejBj,5(t)

which is a B-spline curve of degree 5 and where
the control points ei are calculated by the integral
operation (14).

(3) We elevate the degree of the first term and the second
term up to 5 and then, we add additional knots in
order to end up with the same number of control
points in the three terms. After, we can find the sum
of these terms. We end up with ur as a B-spline curve
of degree 8 with control points Ui:

ur(t) =

14∑
i=1

UiBi,5(t)

We want all the input control points to respect the actu-
ator limits Umin � u � Umax. The latter form a system
of inequalities that can be used as a prior study to the
sensibility of the control inputs with respect to the flat
outputs. To solve this system, we use the Mathematica
function CylindricalDecomposition for the symbolic com-
putation of the Cylindrical Algebraic Decomposition. We
compute the regions in which to choose the values for ai’s
of the reference trajectory. For the sake of clarity, instead
of keeping Umin, Umax symbolically, we give a value for
the constraints Umin = 0.2 and Umax = 10. The initial
and final trajectory points are defined as Hr(t0) = a1 and
Hr(tf ) = a7 respectively. The condition under which the
reference trajectory Hr will respect the input constraint is

a2 ∈ R

ai <
1

20
(1− 20ai−2 + 40ai−1), for 3 � i � 6.

The reference 4th degree B-spline trajectory is specified
with the control points a1 = 0.5; a2 = 2; a3 = 2; a4 = 5;
a5 = 6; a6 = 5; a7 = 4 chosen in the constrained region.

Figure 2 depicts the performance of the closed-loop con-
trol.

7. CONCLUSION

This work seeks to find an explicit constraint on the control
input and/or the state of a linear delay system. Thus it
provides a useful tool that can be implemented on various
applications using the B-spline curves and flat system
theory. By expression of the flat outputs in the form of
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Fig. 2. Closed-loop performance

B-spline curves, the input controls depend on the control
points and the degree of the B-spline curves (flat outputs).
In our future works, we shall develop our approach further
for systems represented by partial differential equations.
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