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Sensitivity of Piecewise control laws with respect to perturbation of the
state-space partition

Rajesh Koduri1 Sorin Olaru 1 and Pedro Rodriguez-Ayerbe1

Abstract— The control design techniques for linear or hy-
brid systems (e.g. anti-wind up, MPC) lead often to off-line
state-space partitions with non-overlapping convex polyhedral
regions. This corresponds to a piecewise state feedback control
laws associated to polyhedral partition of the state-space. In
this work, we consider the perturbation in the representation
of the vertices of the polyhedral regions. For such control laws,
this problem is of particular interest with respect to the reduced
precision representation of the state-space partition. The per-
turbed state-space partitions might lose one of the important
property of the explicit controllers: the ”non-overlapping” char-
acterization. We derive a set called vertex sensitivity region to
determine the admissible perturbation independently for each
vertex of the polyhedral partition. A perturbation is deemed
admissible if the non-overlapping property of the polyhedral
regions is preserved. In the present work, the analysis of the
sensitivity of each vertex is done under the assumption that the
rest of the partition remains on the nominal configuration.

I. INTRODUCTION

Model Predictive Control (MPC) is one example of
control design methodologies which has the ability to
handle multivariate systems in the presence of constraints
on inputs, states and outputs. MPC algorithms have
been widely used to control plants or processes related
to chemical, electrical and mechanical applications [1].
However, implementing an MPC algorithm to obtain
the optimal control input on-line by solving a Quadratic
Programming (QP) problem for every time step using the
available measurement is time consuming, particularly
when it comes to system with fast dynamics. This on-line
computational complexity can be overcome by transforming
the QP problem to multi-parametric Quadratic Programming
(mp-QP) problem and solving it off-line at the control
design stage. This approach of solving the mp-QP problem
off-line is also called Explicit MPC (EMPC), where the
computation of the optimal control input is reduced to a
simple evaluation of algebraic functions stored in a look-up
table [2], [3]. EMPC control laws can be easily evaluated
and implemented on-line for systems with extremely fast
dynamics and as long as the state-space models are of small
dimensions.

Such control laws can be effectively implemented on
micro-controller circuits or on Field-Programmable Gate
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Array (FPGA) for a wide-range of control applications
[4], [5]. The cost of the micro-controller circuits or FPGA
depend on the size of the memory unit or Arithmetic
and Logic Unit (ALU) associated with it. For storing a
relatively small state-space partitions and the PWA control
laws associated with each partition, the cost of the micro-
controller required might be reasonable. But for storing
considerably large state-space partitions and PWA functions,
a truncation (interpreted also as a quantization) operation
should be performed on the representation of the state-space
regions and the associated PWA control laws in order to
reduce the hardware costs [8]. The quantized state-space
regions and quantized affine control laws associated with
the regions adversely impact the accuracy of the control
laws. Moreover, the modified regions might lose the non-
overlapping property of the state-space partition. Such a
phenomenon will lead to non-uniqueness of the feedback
control, discontinuities and the associated loss in stability,
performance and other real-time certifications.

The authors of [6] proposed a geometrical approach to
adopt the robustness margin for PWA control law with
respect to the positive invariance characteristics of a nominal
discrete-time linear system. This work has been extended
in [7] to handle the robustness of the contractivity and
not only the invariance. It is worth to be mentioned that
these studies handle the robustness/fragility with respect to
the model parameters and the control law gains but does
not extend the analysis to the quantized explicit control
law or quantized state-space regions. A recent study on
the accuracy of explicit model predictive control law for
quantized state-space partitions and quantized explicit
control law is proposed in [8] analyzing in general the
amount of bits required in order to achieve a relative degree
of control input accuracy. However, the paper constructs the
analysis based on the assumption that the quantized state-
space regions are non-overlapping and thus do not answer
to the essential question of the admissible representation
errors in the state space domain. The present work deals
with this essential property of non-overapping regions in the
state space partitioning, thus completing all these previous
studies on the rigorous theoretical ground.

In order to analyze the impact on the closed-loop, the
present work starts from the existence of a discrete-time
linear system controlled by an explicit piecewise affine
control law. We show how the polyhedral partitions change
when perturbations on the vertex representation of the poly-



hedral partitions or regions take place. This perturbed vertex
transforms the original state-space regions into new regions.
The goal is to analyze to what extent the non-overlapping
property of the polyhedral partition can be preserved in
event of an perturbation in the representation of the vertices
of the regions. We characterize the vertex perturbation by
determining a set called vertex sensitivity region which
preserves the non-overlapping property of the polyhedral
partition.

The paper is organized as follows, After the definition of
the basic notations, the background of the explicit MPC is
presented and the main problem is stated in a mathematical
form. In section III, the main results concerning with the
formulation of overlapping in the change of partition is
shown and the vertex sensitivity margin is provided with
related theorem, proof and implementation algorithm. In
section IV, the numerical example for vertex sensitivity is
provided.

BASIC NOTATIONS AND PRELIMINARIES

This section addresses some basic notations and defini-
tions. The sets R, R+, Z, N and N+ denote set of real
numbers, set of non-negative real numbers, set of integers, set
of non-negative integers, set of positive integers, respectively.
We denote Rn a Euclidean space and x ∈ Rn a vector with
n elements.

A set S ⊂ Rn is a proper C-set if it is convex, closed,
compact and contains the origin in its interior. A polyhedron
is the (convex) intersection of a finite number of open or
closed half-spaces and a polytope is a bounded and closed
polyhedron. The set of vertices of a polytope M ⊂ Rn

is denoted V(M ). For a N ∈ N+, IN denotes the set of
integers, IN := { i ∈ N+ | i ≤N }. For a given set P , int(P)
denotes the interior of P and Conv denotes the convex hull.

II. BACKGROUND

A. System Description

Let us consider for the statement of the problem a discrete-
time linear system given by,

x(k + 1) = Ax(k) +Bu(k), (1)

here, x(k) ∈ Rn is the state vector at time k and u(k) ∈
Rm is the control input vector. The system states and inputs
variables are subject to constraints, with state constraints
given by

X = {x : Hxx ≤ hx, Hx ∈ Rp×n, hx ∈ Rp}, (2)

And input constraints by,

U = {u : Huu ≤ hu, Hu ∈ Rpu×m, hu ∈ Rpu}. (3)

where the matrices Hx, Hu and the vectors hx, hu are
assumed to be constant, and X ⊂ Rn and U ⊂ Rm. The
state and input constraints sets X and U are proper C-sets.

Definition 1: A closed and bounded set P ⊂ X is called
controlled positively invariant with respect to (1) if there
exists a control law u∗(x(k)), such that ∀ x(0) ∈ P , then
x(k) ∈ P , ∀ k ∈ Z.

Consider the discrete-time linear prediction model given
by (1) subject to the state and input constraints (2), (3).
The constrained finite-time optimal control problem for the
standard MPC is given by,

J(x(k), U) = min
u∈U

x(k +Np)TPx(k +Np) +∑Np−1
j=0 (x(k + j)TQx(k + j) + u(k + j)TRu(k + j)),

(4a)
s.t. x(k + j + 1) = Ax(k + j) +Bu(k + j),

j = 0, · · · , Np − 1,
(4b)

x(0) = x(k), x(Np) ∈ Xf ,
(4c)

u(k + j) ∈ U , x(k + j) ∈ X , j = 0, · · · , Np − 1.
(4d)

Here, Np is the prediction horizon and the optimal control
sequence obtained from the open-loop finite-time optimal
control problem can be written as:

U∗ = [u(0)∗T · · ·u(Np − 1)∗T ]T ∈ Rm. (5)

The weighting matrices Q = QT ≥ 0 and P =PT ≥ 0 are
positive semi-definite matrices, and R = RT > 0 is a positive
definite matrix, all of them contributing to the definition of
the performance index of the optimization problem. Xf is a
controlled invariant set admissible with respect to the input
and state constraints [10].

The MPC problem (4) can be equivalently written in
terms of a multi-parametric Quadratic Programming (mp-
QP) problem [3].

J(x, U∗) = min
U∗

1

2
U∗T H̄U∗ + xT F̄TU∗ +

1

2
xT Ȳ x, (6a)

s.t ḠU∗ ≤ W̄ + Ēx. (6b)

In (6), x is the current state supposed to be measured. The
matrices H̄, F̄ , Ȳ , Ḡ, W̄ , Ē are obtained after the transfor-
mation (see [10] for further details).

Definition 2: Consider a set of sets PN (R). This will
define a polyhedral partition of the C-set R ⊂ Rn, with
PN (R) = {R1, R2 · · ·RN}, N ∈ N+ and Ri ⊂ Rn if

1) R = ∪i∈IN Ri,
2) int(Ri) 6= ∅, ∀i ∈ IN ,
3) int(Ri) ∩ int(Rj) = ∅, ∀ (i, j) ∈ I2

N , and i 6= j.
Definition 3: The solution to the EMPC problem is a

piecewise affine function fpwa defined over a polyhedral
partition PN (R):

fpwa(x) = Fixk + gi, if xk ∈ Ri. (7)

with i ∈ IN , Fi ∈ Rm×n and gi ∈ Rm, and the regions Ri

are polytopic and bounded.
The feedback law (7) is continuous and by substituting in

the equation (1), it leads to the PWA closed-loop dynamics:

x(k+1) = (A+BFi)x(k)+Bgi∀x(k) ∈ Ri, i ∈ IN . (8)



III. MAIN RESULTS

The polyhedral partition PN (R) considered next is the
one resulting from the solution of the EMPC problem (6).
In order to develop the sensitivity analysis, let us consider
a polytopic region Ri ⊂ R ∈ Rn within the polyhedral
partition given by the half space representation,

Ri = {x |Hix ≤ ki}, i ∈ IN . (9)

For each such region, an equivalent vertex representation
exists in the virtue of Motzkin duality [11]:

Ri = Conv{vi,1, · · · , vi,ri}, i ∈ IN , (10)

where ri is the number of vertices of Ri.
In order to analyze the sensitivity of this set representation

and its implication on the PWA control, a perturbation in the
representation of the vertex vi,j , j ∈ Iri of the region R̂i:

v̂i,j = vi,j + ∆vi,j (11)

will be considered leading to a new polyhedral set:

R̂i = Conv{vi,1, vi,2, . . . , vi,j + ∆vi,j , · · · , vi,ri}. (12)

The comparative analysis of the set (9) and (10) with respect
to (12) will represent the main object of study.

Remark : The analysis will privilege the vertex repre-
sentation (11) with respect to the half-space representation
(9) for two reasons. The first is related to the fact that the
perturbation is concentrated on a single element of the set of
generators with obvious computation advantages. A second
argument is related to the non-emptiness of the set R̂i in (12)
independent on the magnitude of the perturbation ∆vi,j . As a
term of comparison, the equivalent half-space representation
of R̂i is

R̂i = {x |Ĥix ≤ k̂}, i ∈ IN , (13)

where several entries of the inequalities are affected and
thus the analysis of the perturbation will have to deal
with structural problems with respect to the Definition 2 of
the polyhedral partitions. Indeed considering a perturbation
directly with respect to the half-space representation (9) can
lead to an empty set R̂i posing well-possessedness issues in
the characterization of the partition.

With respect to the perturbed sets in (12), the main issue is
the overlapping of the regions occurred due to representation
errors in the original vertices of state-space partitions.

In order to provide a graphical interpretation of the prob-
lem under study let us consider the example of a simple
continuous PWA function fpwa(x) defined over the interval
[−µ, µ] = [v2,1, v3,2] ⊂ R.

fpwa(x) =

αx for x ∈ R1 = Conv{v1,1, v1,2},
β̄ for x ∈ R2 = Conv{v2,1, v2,2},
γ̄ for x ∈ R3 = Conv{v3,1, v3,2}.


(14)

which can be simplified by the continuity between the
neighboring regions: v1,2 = v3,1 and v2,2 = v1,1.

(a) 1-D Polyhedral with three regions R1, R2 and R3

and the corresponding PWA functions before perturba-
tion.

(b) 1-D Polyhedral with three regions R1, R2 and
R3 before perturbation of the vertex representation.
Illustration of regions R̂1, R̂2 and R̂3 after perturbation
preserving the property, int(R̂i)∩int(R̂j) = ∅, ∀i, j ∈
I3, i 6= j.

(c) 1-D Polyhedral with three regions R1, R2 and R3

before perturbation. Illustration of the regions R̂1, R̂2

and R̂3 after perturbation with the particular configura-
tion leading to: int(R̂i)∩int(R̂j) 6= ∅, ∀i, j ∈ I3, i 6=
j.

Fig. 1: 1-D Polyhedral partition with three regions before
and after perturbation and the corresponding PWA function.

In Fig. 1, the regions representation before and after the
perturbation on the vertices is presented. In Fig. 1 (a), the
nominal three regions obtained from EMPC denoted by
R1, R2 and R3, R = R1 ∪ R2 ∪ R3 satisfy by definition
the property int(Ri) ∩ int(Rj) = ∅, ∀i, j ∈ I3, i 6= j.

The vertices of the regions are denoted by vi,ri , here i and
ri denote the index of regions and the index of vertices for
each region respectively. After introducing a perturbation ∆v
on the vertex v1,2 and v3,1 (recall that v1,2 = v3,1) which falls
in the regions R1 and R3, the perturbed vertex is denoted
by v̂1,2 and v̂3,1 (v̂1,2 = v1,2 + ∆v1,2, v̂3,1 = v3,1 + ∆v3,1,
v̂1,2 = v̂3,1) as depicted in Fig. 1 (b).

Consequently, one vertex displacement will influence the
topology of the regions R1 and R3 and leading to R̂1 and R̂3,
while region R2 = R̂2 remains unchanged. It can be noticed
from Fig. 1 (b) that even after the change in the regions,
R̂ = R̂1 ∪ R̂2 ∪ R̂3 and particularly the property int(R̂i) ∩
int(R̂j) = ∅,∀i, j ∈ I3, i 6= j is preserved. Thus the non-
overlapping property of the polyhedral partition holds.

A very important consequence of the perturbation is the



lost of the continuity for the PWA function fpwa(x) defined
over R = R̂1 ∪ R̂2 ∪ R̂3. Moreover, the control input
depends on which region the state vector x falls into and
in particular with the regions R̂1 and R̂3, the control action
being multivalued at the frontier. It is obvious that the control
input modifications will lead to a loss of control continuity
and consequently of the performances. This phenomenon can
be seen however as a singularity and is out of the scope of
the present work.

In the same framework, in Fig. 1 (c), the vertex v1,2

and v3,1 is perturbed to v̂1,2 and v̂3,1 and jumped into the
region R2 adversely affecting all the three regions. The
new regions denoted by R̂1, R̂2 and R̂3 are overlapping,
i.e., int(R̂1) ∩ int(R̂2) 6= ∅, int(R̂2) ∩ int(R̂3) 6= ∅ and
int(R̂1) ∩ int(R̂3) 6= ∅.

This possible overlapping due to changes in the vertices
of the polyhedral partition represents a critical structural
change because the unicity of the control law is lost on a
compact full-dimensional region of the state space. The non-
uniqueness of the control action leads to behaviors which
are difficult to characterized in terms of determinedness
and lose of performance and thus should be avoided in
the first place. This issue forms the basis for investigation
in the present work and can be resumed by the need to
characterize the limits of the perturbation which preserve
the ”non-overlapping” property of the polyhedral partition.

In the following, a formal definition of the vertex
sensitivity is provided in the perspective of non-overlapping
property of the polyhedral regions.

Definition 4: Consider the polyhedral partition PN (R) ∈
Rn with Ri = Conv{vi,1, · · · , vi,ri}, i ∈ IN . Let v ∈ Rn

be a vertex within the polyhedral partition PN (R) and denote
Jv as the subset of indexes of regions having v as a vertex:

Jv = {j ∈ IN | v ∈ V(Rj)}. (15)

The set V̂ ⊂ Rn is describing the vertex sensitivity region
for v if ∀v̂ ∈ V̂ the collection of sets{

R̂j = Conv{V(Rj) \ {v}, v̂}, ∀j ∈ Jv,

R̂j = Rj ,∀j ∈ IN \ Jv (16)

represents a polyhedral partition: P̂N (R) = {R̂1, · · · , R̂N}.
Theorem 1: Consider the subset of regions Rj , j ∈ Jv of

PN (R) such that v ∈ V(Rj), ∀j ∈ Jv , then the perturbed
vertex sensitivity is represented by a polyhedral set V̂ ⊂ Rn.

Proof: The proof will be constructive based on the
enumeration of the possible overlapping scenarios and super-
posing the linear constraints imposed to avoid such configu-
rations. The indexes within Jv identify the regions containing
v as a vertex. For each j ∈ Jv , the half-space representation
can be exploited:

Rj = {x | Hjx ≤ kj} or explicitly, (17a)
Rj = {x | hj,rix ≤ kj,ri , ri = 1, · · · , rj} (17b)

here rj is the total number of closed half-spaces of Rj . It
is straight forward to identify the subset of those half-spaces
passing through the vertex v.

Consider nv to be the total number of hyperplanes
hj,rix = kj,ri , j ∈ Jv, ri = {1, · · · , rj} from the closed
half-spaces that construct the regions Rj ,∀j ∈ Jv based on
the definition (17b). Let us denote mv with mv < nv the
number of hyperplanes that pass through the vertex v. Let us
reorder the complete set of half-spaces of Rj ,∀j ∈ Jv such
that the first mv pass by v. We have then hiv = ki,∀i ∈ Imv .

Scenario I: Let us construct a set denoted as R̃ which
includes a first set of constraints imposed on the vertex,

R̃ = {x ∈ Rn|hix ≤ ki,∀i ∈ Imv
\ Inv

}. (18)

The set R̃ ⊂
⋃

j∈Jv

Rj is a closed convex subset of the

union of the regions Rj . Supposing that v̂ /∈ R̃, then the
perturbed vertex characterize an overlapping phenomena.
Such excessive perturbation leads to v̂ /∈

⋃
j∈Jv

Rj and

v̂ ∈
⋃

j∈IN\Jv

Rj and this overlapping violation makes some

closed half-spaces of the regions Rj redundant. Considering
a case v̂ /∈

⋃
j∈Jv

Rj and v̂ /∈
⋃

j∈IN\Jv

Rj , the perturbed

vertex implodes the feasible set R and such violations will
lead to the invalidation of the polyhedral partition PN (R).
There after, in (18) some constraints are placed to make
the set R̃ closed and bounded and positioning the perturbed
vertex such that v̂ ∈ R̃ will overcome such possibilities of
overlapping phenomena.

Scenario II: Let us introduce the set Φ and initialize it
Φ← Rn. Consider a subset of the regions Rj and denote it
by R̄j , ∀j ∈ Jv ,

R̄j = Conv{{vj,1, · · · , vj,rj} \ v}. (19)

By duality, the set R̄j is equivalently given by the half-space
representation:

R̄j = {x | h̄j,rbx ≤ k̄j,rb , rb = 1, · · · , r̄j} (20)

here, r̄j denotes the total number of closed half-space
inequalities of the region R̄j . In the following, we aim
to impose a set of linear constraints on v̂ to avoid the
overlapping violations caused by the modifications on the
mv number of hyperplanes that pass through the vertex v
from (18). Consider n̄v be the total number of closed half-
spaces from the regions R̄j , ∀j ∈ Jv as defined in (20). Now
analyzing each of the n̄v closed half-spaces with respect to
the closed and bounded set R̃ one can construct the set:

Φ = {R̃ ∩ {−h̄ix ≤ −k̄i},∀i ∈ In̄v
R̃ ∩ {h̄ix ≤ k̄i} 6= R̃}.

(21)
Whenever a perturbation takes place such that v̂ ∈ int(R̄j)
and v̂ ∈ R̃, for some j ∈ Jv , it leads to an overlapping
scenario. Indeed the regions R̂j = R̄j for all the indexes
j such that v̂ ∈ int(R̄j). All the remaining regions with
indexes j such that v̂ /∈ int(R̄j) are containing the point v̂
as a vertex and the overlapping is proved.



(a) Polyhedral with four regions
R1, R2, R3, R4 and the black dot
represents v.

(b) The vertex of interest v and
the vertex sensitivity region V̂ is
shown.

Fig. 2: Polyhedral partition with four regions, the vertex of
interest v and the vertex sensitivity region V̂ are shown.

(a) After perturbation v̂ ∈ V̂
the regions are changed and
int(R̂i) ∩ int(R̂j) = ∅, ∀i, j ∈
Jv, i 6= j.

(b) After perturbation v̂ /∈ V̂
int(R̂i) ∩ int(R̂j) 6= ∅, ∀i, j ∈
Jv, i 6= j.

Fig. 3: The vertex v denoted by a black dot in Fig. 2 (a)
is perturbed to v̂ changing the regions R1, R2, R3, R4 to
R̂1, R̂2, R̂3, R̂4.

To avoid this phenomenon, the restriction to the region
Φ described in (21) needs to be imposed in order to avoid
v̂ ∈ int(R̄j).

Finally, the set that describes for all possible admissible
perturbation for a given vertex v preserving the overlapping
property of the polyhedral partition can be given as:

V̂ ← Φ. (22)

Fig. 2 (a) shows a polyhedral partition with four regions
Ri, i = 1, · · · , 4 and the vertex of interest v = [1 − 1]T

denoted by a black dot. The vertex v is one of the generators
of three among the four regions of the partition. In Fig. 2
(b), the sensitivity of the vertex v is represented by V̂ with
a blue polytope. By consequence the vertex denoted by v̂
must be settled to any of the points in the polytope V̂ in
the event of loss of precision in the representation.

The vertex sensitivity region V̂ is constrained by four
closed half-space inequalities. For any point outside the blue
polytope, the non-overlapping property of the EMPC is lost.
The new regions formed with the displaced vertex v̂ ∈ V̂
guarantees the ”non-overlapping” property of the polyhedral
partition. This observation is better validated with the help

of the Fig. 3 (a) and Fig. 3 (b), where the polyhedral
regions are recreated by the displacement of vertex v̂. In
Fig. 3 (a) the vertex v = [1 − 1]T is displaced to vertex
v̂ = [0 0]T ∈ V̂ which alters all the four regions and still
preserves the overlapping property i.e., int(R̂i)∩ int(R̂j) =
∅, ∀i, j ∈ I4, i 6= j. In Fig. 3 (b), it is clearly visible that the
overlapping of the regions takes place since v̂ = [0 − 2]T /∈
V̂ .

The procedure for computing the vertex sensitivity region
V̂ is resumed in Algorithm 1.

Algorithm 1 Algorithm for computing the vertex sensitivity
set V̂
Input: R = ∪Ni=1Ri, i ∈ IN , v ∈ R.
Output: V̂

Initialization : M = [ ], W = [ ].
1: Find the regions Rj that contain v, such that ∀j ∈ Jv.
2: % Compute the half space representation of Rj .
Rj = {x | hj,rix ≤ kj,ri , ri = 1, · · · , rj}
LOOP Process

3: for j = 1 to Jv do
4: V = [ ]
5: for ri = 1 to rj do
6: if hj,ri × v < kj,ri then
7: M = [M ; hj,ri ]; W = [W ; kj,ri ]
8: end if
9: if vj,ri 6= v then

10: V = [V ; vj,ri ]
11: end if
12: end for
13: % Compute R̄j by vertex representation
14: R̄j = Polyhedron(V )
15: end for
16: % Compute R̃ by half-space representation
17: R̃ = Polyhedron(M,W )
18: % tj is the number of closed half-spaces of R̄j

19: for j = 1 to Jv do
20: for bi = 1 to tj do
21: if ({h̄j,bi , k̄j,bi} ∩ R̃)! = R̃ then
22: M = [M ;−h̄j,bi ]
23: W = [W ;−k̄j,bi ]
24: end if
25: end for
26: end for
27: % Compute V̂ by half-space representation
28: V̂ = Polyhedron(M, W )
29: return V̂

IV. NUMERICAL EXAMPLES

Consider a discrete-time linear system,

x(k + 1) =

[
1.4 0
0.8 −1.1

]
x(k) +

[
0.5
0.7

]
u(k).

Consider the finite time optimal control based on quadratic

cost with weighting matrices Q =
[
1 0
0 1

]
and R = 1.



(a) State-space partition with 13
regions.

(b) The vertex of interest v
shown with a black dot and the
polyhedrals containing v is col-
ored with white.

Fig. 4: State-space partition with 13 regions

Fig. 5: Vertex sensitivity region V̂ is represented by a gray
polytope.

The prediction horizon chosen is 2, the input constraint
−5 ≤ u(k) ≤ 5 and the state constraint −5 ≤ [1 0] x(k) ≤ 5
are considered in the receding horizon optimization. Solving
the EMPC problem yields 13 affine controllers and their
validity regions obtained using MPT Toolbox 3.0 to compute
the polyhedral regions and their associated PWA control
laws [12].

Fig. 4 (a), presents the state-space partition PN (R) with
13 regions denoted as R = ∪13

i=1Ri each of it associated
with a gain matrix Fi and an offset gi. In Fig. 4 (b), the
vertex of interest v is denoted by a black dot and the regions
Rj , j ∈ Jv containing the point v are highlighted in terms
of a union of polyhedra depicted in white color. By applying
the main result of the present paper and the Algorithm 1, the
vertex sensitivity region is obtained as presented in Fig. 5 in
gray color. In Fig. 6 (a), the vertex v is displaced to v̂ within
the sensitivity region V̂ affecting the shapes of four regions
and the perturbed collection of regions R̂j , j = 1, · · · , 13
does not violate the non-overlapping property. The plot is
recreated with four changed regions whereas the unaffected
regions kept unchanged.

In Fig. 6 (b), we can see the overlapping takes places
among the affected regions caused by a perturbation in the
vertex which exceeded the admissible sensitivity margin for
the respective vertex v̂ /∈ V̂ .

V. CONCLUSIONS

In the present work, we derived a vertex sensitivity set
characterizing the admissible disturbance with respect to a
given vertex all by preserving the non-overlapping property

(a) The vertex v̂ ∈ V̂ preserves
the non-overlapping property of
the regions.

(b) The vertex v̂ /∈ V̂ violates
the non-overlapping property of
the regions, the zoomed part con-
firms the violation does happen.

Fig. 6: The black dot in both figures show the perturbed
vertex v̂.

of the polyhedral regions. This element is fundamental in the
characterization of the sensitivity of the representation of a
polyhedral partition. The next step towards this goal is to
consider simultaneous disturbance in all the vertices of the
polyhedral partition. Further work is needed to analyze the
condition such that the trajectories converge to the origin
despite the perturbation on the vertex of the polyhedral
regions.
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