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Abstract—Estimating large covariance matrices has been a
longstanding important problem in many applications and has
attracted increased attention over several decades. This paper
deals with two methods based on pre-existing works to impose
sparsity on the covariance matrix via its unit lower triangular
matrix (aka Cholesky factor) T. The first method serves to
estimate the entries of T using the Ordinary Least Squares (OLS),
then imposes sparsity by exploiting some generalized thresholding
techniques such as Soft and Smoothly Clipped Absolute Deviation
(SCAD). The second method directly estimates a sparse version
of T by penalizing the negative normal log-likelihood with L1

and SCAD penalty functions. The resulting covariance estimators
are always guaranteed to be positive definite. Some Monte-
Carlo simulations as well as experimental data demonstrate
the effectiveness of our estimators for hyperspectral anomaly
detection using the Kelly anomaly detector.

Keywords– Hyperspectral anomaly detection, covariance
matrix, sparsity, Cholesky factor.

I. INTRODUCTION

An airborne hyperspectral imaging sensor is capable of si-
multaneously acquiring the same spatial scene in a contiguous
and multiple narrow spectral wavelength (color) bands [1],
[2], [3]. When all the spectral bands are stacked together,
the resulting hyperspectral image (HSI) is a three dimensional
data cube; each pixel in the HSI is a p-dimensional vector,
x = [x1, · · · , xp]T ∈ Rp, where p designates the total number
of spectral bands. With the rich information afforded by the
high spectral dimensionality, hyperspectral imagery has found
many applications in various fields such as agriculture [4],
[5], mineralogy [6], military [7], [8], [9], and in particular,
target detection [1], [2], [10], [11], [7], [12], [13]. In many
situations of practical interest, we do not have sufficient a priori
information to specify the statistics of the target class. More
precisely, the target’s spectra is not provided to the user. This
unknown target is referred as « anomaly » [14] having a very
different spectra from the background (e.g., a ship at sea).

Different Gaussian-based anomaly detectors have been
proposed in the literature [15], [16], [17], [18], [19]. The
detection performance of these detectors mainly depend on
the true unknown covariance matrix (of the background sur-
rounding the test pixel) whose entries have to be carefully
estimated specially in large dimensions. Due to the fact that
in hyperspectral imagery, the number of covariance matrix
parameters to estimate grows with the square of the spectral
dimension, it becomes impractical to use traditional covariance
estimators where the target detection performance can deteri-
orate significantly. Many a time, the researchers assume that

compounding the large dimensionality problem can be allevi-
ated by leveraging on the assumption that the true unknown
covariance matrix is sparse, namely, many entries are zero.

This paper outlines two simple methods based on pre-
existing works in order to impose sparsity on the covariance
matrix via its Cholesky factor T. The first method imposes
sparsity by exploiting thresholding operators such as Soft and
SCAD on the OLS estimate of T. The second method directly
estimates a sparse version of T by penalizing the negative
normal log-likelihood with L1 and SCAD penalty functions.

Summary of Main Notations: Throughout this paper, we
depict vectors in lowercase boldface letters and matrices in
uppercase boldface letters. The notation (.)T stands for the
transpose, while |.|, (.)−1, (.)

′
, det(.), and 1 are the absolute

value, the inverse, the derivative, the determinant, and indicator
function, respectively. For any z ∈ R, we define sign(z) = 1
if z > 0, sign(z) = 0 if z = 0 and sign(z) = −1 if z < 0.

II. BACKGROUND AND SYSTEM OVERVIEW

Suppose that we observe a sample of n independent and
identically distributed p-random vectors, {xi}i∈[1, n], each fol-
lows a multivariate Gaussian distribution with zero mean and
unknown covariance matrix Σ = [σg,l]p×p. The first traditional
estimator we consider in this paper is the Sample Covariance

Matrix (SCM), defined as Σ̂SCM = [σ̂g,l]p×p =
1

n

n∑
i=1

xi x
T
i .

In order to address the positivity definiteness constraint prob-
lem of Σ̂SCM , Pourahmadi [20] has modeled the covariance
matrices via linear regressions. This is done by letting x̂ =
[x̂1, . . . , x̂p]

T ∈ Rp, and consider each element x̂t, t ∈ [1, p],
as the linear least squares predictor of xt based on its t − 1
predecessors {xj}j∈[1, t−1]. In particular, for t ∈ [1, p], let

x̂t =

t−1∑
j=1

Ct,j xj , TΣTT = D . (1)

where T is a unit lower triangular matrix with −Ct,j in the
(t, j)th position for t ∈ [2, p] and j ∈ [1, t − 1], and D is
a diagonal matrix with θ2t = var(εt) as its diagonal entries,
where εt = xt − x̂t is the prediction error for t ∈ [1, p].
Note that for t = 1, let x̂1 = E(x1) = 0, and hence,
var(ε1) = θ21 = E

[
(x1)

2
]
. Given a sample {xi}i∈[1, n], with

n > p, a natural estimate of T and D, denoted as T̂OLS and
D̂OLS in this paper, is simply done by plugging in the OLS
estimates of the regression coefficients and residual variances



in (1), respectively. In this paper, we shall denote the second
traditional estimator by Σ̂OLS = T̂−1OLS D̂OLS T̂−TOLS .

Obviously, when the spectral dimension p is considered
large compared to the number of observed data n, both Σ̂SCM

and Σ̂OLS face difficulties in estimating Σ without an extreme
amount of errors. Realizing the challenges brought by the
high dimensionality, researchers have thus circumvent these
challenges by proposing various regularization techniques to
consistently estimate Σ based on the assumption that the co-
variance matrix is sparse. Recently, Bickel et al. [21] proposed
a banded version of Σ̂SCM , denoted as Bm(Σ̂SCM ) in this
paper, with Bm(Σ̂SCM ) = [σ̂g,l 1(|g − l| ≤ m)], where
0 ≤ m < p is the banding parameter. However, this kind of
regularization does not always guarantee positive definiteness.
In [22], a class of generalized thresholding operators applied
on the off-diagonal entries of Σ̂SCM have been discussed.
These operators combine shrinkage with thresholding and have
the advantage to estimate the true zeros as zeros with high
probability. These operators (e.g., Soft and SCAD), though
simple, do not always guarantee positive definiteness of the
thresholded version of Σ̂SCM . In [23], the covariance matrix
is constrained to have an eigen decomposition which can be
represented as a sparse matrix transform (SMT) that decom-
poses the eigen-decomposition into a product of very sparse
transformations. The resulting estimator, denoted as Σ̂SMT in
this paper, is always guaranteed to be positive definite.
In addition to the above review, some other works have
attempted to enforce sparsity on the covariance matrix via
its Cholesky factor T. Hence, yielding sparse covariance
estimators that are always guaranteed to be positive definite.
For example, in [24], Pourahmadi et al. proposed to smooth
the first few subdiagonals of T̂OLS and set to zero the remain-
ing subdiagonals. In [25], Huang et al. proposed to directly
estimate a sparse version of T by penalizing the negative
normal log-likelihood with a L1-norm penalty function. Hence,
allowing the zeros to be irregularly placed in the Cholesky
factor. This seems to be an advantage over the work in [24].

We put forth two simple methods for imposing sparsity
on the covariance matrix via its Cholesky factor T. The first
method is based on the work in [22], but attempts to render
Σ̂OLS sparse by thresholding its Cholesky factor T̂OLS using
operators such as Soft and SCAD. The second method aims
to generalize the work in [25] in order to be used for various
penalty functions. The two methods allow the zeros to be
irregularly placed in the Cholesky factor.
Clearly, in real world hyperspectral imagery, the true covari-
ance model is not known, and hence, there is no prior informa-
tion on its degree of sparsity. However, enforcing sparsity on
the covariance matrix seems to be a strong assumption, but can
be critically important if the true covariance model for a given
HSI is indeed sparse. That is, taking advantage of the possible
sparsity in the estimation can potentially improve the target
detection performance, as can be seen from the experimental
results later. On the other hand, while the true covariance
model may not be sparse (or not highly sparse), there should
be no worse detection results than to those of the traditional
estimators Σ̂SCM and Σ̂OLS .

We evaluate our estimators for hyperspectral anomaly de-
tection using the Kelly anomaly detector [26]. More precisely,
we first perform a thorough evaluation of our estimators

on some Monte-Carlo simulations for three true covariance
models of different sparsity levels. From our experiments in
Subsection IV-A, the detection results show that in trully sparse
models, our estimators improve the detection significantly with
respect to the traditional ones, and have competitive results
with state-of-the-art [21], [22], [23]. When the true model is
not sparse, we find that empirically our estimators still have
no worse detection results than to those of Σ̂SCM and Σ̂OLS .
Next, in Subsection IV-B, our estimators are evaluated on
experimental data where a good target detection performances
are obtained comparing to the traditional estimators and state-
of-the-art. In all the experiments later, we observe that Σ̂OLS

achieves higher target detection results than to those of Σ̂SCM .

III. MAIN CONTRIBUTIONS

Before describing the two methods, we want to recall the
definition for Σ̂OLS . Given a sample {xi}i∈[1, n], we have:

xi,t =

t−1∑
j=1

Ct,j xi,j + εi,t t ∈ [2, p], i ∈ [1, n]. (2)

By writing (2) in vector-matrix form for any t ∈ [2, p], one
obtains the simple linear regression model:

yt = An,t βt + et , (3)

where yt = [x1,t, · · · , xn,t]T ∈ R
n, An,t = [xi,j ]n×(t−1),

βt = [Ct,1, · · · , Ct,t−1]T ∈ R
(t−1), and et =

[ε1,t, · · · , εn,t]T ∈ Rn.
When n > p, the OLS estimate of βt and the corresponding
residual variance are plugged in T and D for each t ∈ [2, p],
respectively. At the end, one obtains the estimator Σ̂OLS =
T̂−1OLS D̂OLS T̂−TOLS . Note that T̂OLS has -ĈOLSt,j in the (t, j)th
position for t ∈ [2, p] and j ∈ [1, t− 1].

A. Generalized thresholding based Cholesky Factor

For any 0 ≤ λ ≤ 1, we define a matrix thresholding opera-
tor Th(.) and denote by Th(T̂OLS) = [Th(−ĈOLSt,j )]p×p the
matrix resulting from applying a specific thresholding operator
Th(.) ∈ {Soft, SCAD} to each element of the matrix T̂OLS

for t ∈ [2, p] and j ∈ [1, t− 1].
We consider the following minimization problem:

Th(T̂OLS) = argmin
T

p∑
t=2

t−1∑
j=1

{
1

2
(ĈOLSt,j −Ct,j)2 + pλ{|Ct,j |}

}
(4)

where pλ ∈ {pL1

λ , pSCADλ,a>2 }. We have
pL1

λ (|Ct,j |) = λ|Ct,j |, and pSCADλ,a>2 (|Ct,j |) =
λ|Ct,j | if |Ct,j | ≤ λ
− |C

2
t,j |−2aλ|Ct,j |+λ2

2(a−1) if λ < |Ct,j | ≤ aλ
(a+1)λ2

2 if |Ct,j | > aλ

.

Solving (4) with pL1

λ and pSCADλ,a>2 , yields a closed-form
Soft and SCAD thresholding rules, respectively [22], [27].
The value a = 3.7 was recommended by Fan and Li [27].
Despite the application here is different than in [27], for
simplicity, we use the same value throughout the paper.
We shall designate the two thresholded matrices by T̂Soft and
T̂SCAD, that apply Soft and SCAD on T̂OLS , respectively.
We denote our first two estimators as:



Σ̂
Soft

OLS = T̂−1Soft D̂OLS T̂−TSoft

Σ̂
SCAD

OLS = T̂−1SCAD D̂OLST̂−TSCAD

Note that in [22], the authors have demonstrated that for a non
sparse true covariance model, the covariance matrix does not
suffer any degradation when thresholding is applied to the off-
diagonal entries of Σ̂SCM . However, this is not the case for the
target detection problem where the inverse covariance is used;
we found that, and in contrast to our estimators, the scheme
in [22] has a deleterious effect on the detection performance
when compared to those of Σ̂SCM and Σ̂OLS .

B. A generalization of the estimator in [25]

We present the same concept in [25], but by modifying
the procedure by which the entries of T have been estimated.
Note that det(T) = 1 and Σ = T−1 D T−T . It follows

that det(Σ) = det(D) =
p∏
t=1

θ2t . Hence, the negative normal

log-likelihood of X = [x1, · · · , xn] ∈ R
p×n, ignoring an

irrelevant constant, satisfies:
Λ = −2 log(L(Σ,x1, · · · ,xn)) = n log(det(D)) +
XT (TT D−1 T) X = n log(det(D))+(T X)T D−1(T X) =

n
p∑
t=1

log θ2t +
p∑
t=1

n∑
i=1

ε2i,t/θ
2
t . By adding a penalty function

p∑
t=2

t−1∑
j=1

pα{|Ct,j |} to Λ, where pα ∈ {pL1
α , pSCADα,a>2 } (see

subsection III. A) with α ∈ [0,∞), we have:

n log θ21 +

n∑
i=1

ε2i,1

θ21
+

p∑
t=2

(
n log θ2t +

n∑
i=1

ε2i,t

θ2t
+

t−1∑
j=1

pα{|Ct,j |}

)
(5)

Obviously, minimizing (5) with respect to θ21 and θ2t gives the

solutions θ̂21 = 1
n

n∑
i=1

ε2i,1 = 1
n

n∑
i=1

x2i,1 and θ̂2t = 1
n

n∑
i=1

ε2i,t =

1
n

n∑
i=1

(xi,t −
t−1∑
j=1

Ct,jxi,j)
2, respectively.

It remains to estimate the entries of T by minimizing (5) with
respect to βt. From equation (2) and (3), the minimization
problem to solve for each t ∈ [2, p] is:

β̂t = argmin
βt

n∑
i=1

ε2i,t
θ2t

+

t−1∑
j=1

pα{|Ct,j |}

= argmin
βt

1

θ2t

n∑
i=1

(
xi,t −

t−1∑
j=1

Ct,jxi,j

)2

+

t−1∑
j=1

pα{|Ct,j |}

= argmin
βt

1

θ2t
||yt −An,tβt||

2
F +

t−1∑
j=1

pα{|Ct,j |}

(6)

By denoting l(βt) = 1
θ2t
||yt − An,tβt||2F and r(βt) =

t−1∑
j=1

pα{|Ct,j |} =
t−1∑
j=1

rj(Ct,j), we solve βt iteratively using

the General Iterative Shrinkage and Thresholding (GIST) al-
gorithm [28]:

β̂
(k+1)
t = argmin

βt

l(β
(k)
t ) + r(βt) + (∇l(β(k)

t ))T (βt − β
(k)
t )

+
w(k)

2
||βt − β

(k)
t ||

2

= argmin
βt

0.5||βt − u
(k)
t ||

2 +
1

w(k)
r(βt)

(7)

where u
(k)
t = β

(k)
t −∇l(β

(k)
t )/w(k), and w(k) is the step size

initialized using the Barzilai-Browein rule [29].
By decomposing (7) into independent (t-1) univariate optimiza-
tion problems, we have for j = 1, · · · , t− 1:

C
(k+1)
t,j = argmin

Ct,j

0.5||Ct,j − u(k)
t,j ||

2 +
1

w(k)
rj(Ct,j) (8)

where u
(k)
t = [u

(k)
t,1 , · · · , u

(k)
t,t−1]T ∈ R(t−1).

By solving (8) with the L1-norm penalty, pL1
α , we have the

following closed form solution:

C
(k+1)
t,j,(L1)

= sign(u
(k)
t,j ) max(0, |u(k)t,j | − α/w

(k)) (9)

For the SCAD penalty function, pSCADα,a>2 , we can observe
that it contains three parts for three different conditions (see
Subsection III-A). In this case, by recasting problem (8) into
three minimization sub-problems for each condition, and after
solving them, one can obtain the following three sub-solutions
h1t,j , h

2
t,j , and h3t,j , where:

h1t,j = sign(u
(k)
t,j ) min(α,max(0, |u(k)t,j | − α/w(k))),

h2t,j = sign(u
(k)
t,j ) min(aα,max(α,

w(k)|u(k)
t,j |(a−1)−aα

w(k)(a−2) )),

h3t,j = sign(u
(k)
t,j ) max(aα, |u(k)t,j |).

Hence, we have the following closed form solution:

C
(k+1)

t,j,(SCAD) = argmin
qt,j

0.5(qt,j − u(k)
t,j )

2 +
1

w(k)
rj(qt,j)

s.t. qt,j ∈ {h1
t,j , h

2
t,j , h

3
t,j}

(10)

At the end, we denote our last two estimators as:

Σ̂L1 = T̂−1L1
D̂ T̂−TL1

Σ̂SCAD = T̂−1SCAD D̂ T̂−TSCAD

where T̂L1
and T̂SCAD have respectively −Ĉt,j,(L1) and

−Ĉt,j,(SCAD) in the (t, j)th position for t ∈ [2, p] and
j ∈ [1, t − 1], whereas D̂ has the entries (θ̂21, θ̂

2
t ) on its

diagonal. Note that in [25], the authors have used the local
quadratic approximation (LQA) of the L1-norm in order to get
a closed form solution for βt in equation (6). Our algorithm
is now more general since after exploiting the GIST algorithm
to solve (6), it can be easily extended to some other penalties
such as SCAD [27] , Capped-L1 penalty [30], [31], [32], Log
Sum Penalty[33], Minimax Concave Penalty [34] etc. and they
all have closed-form solutions [28]. In this paper, we are only
interested to the L1 and SCAD penalty functions.

IV. HYPERSPECTRAL ANOMALY DETECTION

We first describe the Kelly anomaly detector [26] used for
the detection evaluation. Next, we present two subsections to
gauge the detection performances of our estimators {Σ̂

Soft

OLS ,
Σ̂
SCAD

OLS , Σ̂L1
, Σ̂SCAD} when compared to the traditional

ones {Σ̂SCM , Σ̂OLS} and state-of-the-art: Σ̂SMT [23],
Bk(Σ̂SCM ) [21], and the two estimators that apply Soft and
SCAD thresholding on the off-diagonal entries of Σ̂SCM in
[22], and which will be denoted in the following experiments
as Σ̂

Soft

SCM and Σ̂
SCAD

SCM , respectively. Note that the tuning



Models Σ Σ̂SCM Σ̂OLS Σ̂
Soft

OLS Σ̂
SCAD

OLS Σ̂L1
Σ̂SCAD Σ̂SMT Bk(Σ̂SCM ) Σ̂

Soft

SCM Σ̂
SCAD

SCM

Model 1 0.9541 0.7976 0.8331 0.9480 0.9480 0.9509 0.9509 0.9503 0.9509 0.9509 0.9509
Model 2 0.9540 0.7977 0.8361 0.9124 0.9124 0.9264 0.9264 0.9184 0.9478 0.9274 0.9270
Model 3 0.9541 0.7978 0.8259 0.8169 0.8257 0.8236 0.8261 0.7798 0.5321 0.5969 0.5781
MUSE Not known 0.6277 0.6575 0.9620 0.9643 0.8844 0.8844 0.7879 0.9277 0.7180 0.7180

Table 1. A List of Area Under Curve (AUC) values of our estimators Σ̂
Soft
OLS , Σ̂

SCAD
OLS , Σ̂L1

, Σ̂SCAD when compared to some others.
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Fig. 1. ROC curves three Models. (a) Model 1. (b) Model 2. (c) Model 3.

parameter λ (in subsection III-A) and α (in subsection III-B)
are chosen automatically using a 5-fold crossvalidated loglike-
lihood procedure (see Subsection 4.2 in [25] for details).

Suppose the following signal model:{
H0 : x = n, xi = ni, i = 1, · · · , n
H1 : x = γ d+ n, xi = ni, i = 1, · · · , n (11)

where n1, · · · ,nn are n i.i.d p-vectors, each follows a multi-
variate Normal distribution N (0,Σ). d is an unknown steering
vector and which denotes the presence of an anomalous signal
with unknown amplitude γ > 0. After some calculation (refer
to [26] and both Subsection II. B and Remark II. 1 in [35] for
details), the Kelly anomaly detector is described as follows:

DKellyADΣ̂(x) = xT Σ̂
−1
SCM x

H1

≷
H0

δ , (12)

where δ is a prescribed threshold value. In the following
two subsections, the detection performances of the estimators,
when are plugged in DKellyAD,Σ̂ are evaluated by the Receiver
Operating Characteristics (ROC) curves and their correspond-
ing Area Under Curves (AUC) values.
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Fig. 2. (a) MUSE HSI (average). (b) ROC curves for MUSE. (c) Legend.

A. Monte-Carlo simulations

The experiments are conducted on three covariance models:

• Model 1: Σ = I, the identity matrix,

• Model 2: the Autoregressive model order 1, AR(1),
Σ = [σgl]p×p, where σgl = c|g−l|, for c = 0.3,

• Model 3: Σ = [σgl]p×p, where σgl = (1 − ((|g −
l|)/r))+, for r = p/2: the triangular matrix.

Model 1 is very sparse and model 2 is approximately sparse.
Model 3 with r = p/2 is considered the least sparse [22]
among the three models we consider.
The computations have been made through 105 Monte-Carlo
trials and the ROC curves are drawn for a signal to noise
ratio equal to 15dB. We choose n = 80 for covariance
estimation under Gaussian assumption, and set p = 60. The
artificial anomaly we consider is a vector containing normally
distributed pseudorandom numbers (to have fair results, the
same vector is used for the three models). The ROC curves
for Model 1, 2 and 3 are shown in Fig. 1(a), 1(b) and 1(c),
respectively, and their corresponding AUC values are presented
in Table 1. For a clear presentation of the figures, we only
exhibit the ROC curves for Σ, Σ̂SCM , Σ̂OLS , and Σ̂SCAD.

The highest AUC values are shown in bold in Table 1. For
both Model 1 and 2, our estimators significantly improve the
detection performances comparing to those of the traditional
estimators (Σ̂SCM , Σ̂OLS), and have competitive detection
results with state-of-the-art. An important finding is that even
for a non sparse covariance model (that is, Model 3) , our
estimators do not show a harm on the detection when compared
to those of Σ̂SCM , Σ̂OLS . Despite Σ̂

Soft

OLS , Σ̂
SCAD

OLS and Σ̂L1

have slightly lower AUC values than for Σ̂OLS , this is still a
negligible degradation on the detection. Thus, considering that
Σ̂
Soft

OLS , Σ̂
SCAD

OLS and Σ̂L1
have no worse detection results than

to that of Σ̂OLS is still acceptable.

B. Application on experimental data

Our estimators are now evaluated for galaxy detection on
the Multi Unit Spectroscopic Explorer (MUSE) data cube (see
[36]). It is a 100 × 100 image and consists of 3600 bands
in wavelengths ranging from 465-930 nm. We used one band
of each 60, so that 60 bands in total. Figure 2(a) exhibits the
mean power in dB over the 60 bands. The covariance matrix is
estimated using a sliding window of size 9×9, having n = 80
secondary data (after excluding only the test pixel). The mean
has been removed from the given HSI. Figure 2(b) exhibits the
ROC curves [37] of our estimators when compared to some
others, and their AUC values are shown in Table 1. Note that
the curves for Σ̂SMT , Σ̂

Soft

SCM and Σ̂
SCAD

SCM are not drawn but
their AUC values are shown in Table 1.
The estimators Σ̂

Soft

OLS , Σ̂
SCAD

OLS achieve higher detection results
than for all the others, whereas both Σ̂L1

and Σ̂SCAD achieve
only a lower AUC values than for Bk(Σ̂SCM ).

V. CONCLUSION

Two methods are outlined to impose sparsity on the
covariance matrix via its Cholesky factor T. Some Monte-
Carlo simulations as well as experimental data demonstrate
the effectiveness (in terms of anomaly detection) of the two
proposed methods using the Kelly anomaly detector.
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