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Abstract

For linear delay-differential equations, a question of ongoing interest is to determine conditions on the equation
parameters that guarantee exponential stability of solutions. Recent results have shown an unexpected link between
the stable manifold and the variety characterizing multiple characteristic spectral values allowing to the right-most
root assignment. In this paper, such an idea is presented and exploited in the control of active vibrations.

Keywords: Retarded functional differential equations, asymptotic stability, active vibration control, rightmost root,
root assignment

1. Introduction

To the best of the authors’ knowledge, the theoretical use of time-delay in controllers design were first introduced
in1 where it is shown that the conventional proportional controller equipped with an appropriate time-delay performs
an averaged derivative action and thus can replace the proportional-derivative controller. The interest of considering
such delayed control laws of lies in the simplicity of the controller as well as in its easy practical implementation. In
particular, it is proven in2 that a chain of n integrators can be stabilized using n distinct delay blocks, where a delay
block is described by two parameters: ”gain” and ”delay”, see also3. In the context of mechanical engineering prob-
lems, the effect of time-delay was emphasized in4 where concrete applications are studied, such as, for instance, the
machine tool vibrations and robotic systems5, see also6 where the stabilization of an inverted pendulum is considered.

In recent works, a new interesting property of time-delay systems was emphasized. As a matter of fact, the multiple
spectral values for time-delay systems was characterized by using a Birkhoff/Vandermonde-based approach, (see for
instance7,8,9,10). More precisely, in8, it is shown that the admissible multiplicity of the zero spectral value is bounded
by the generic Pólya and Szegő bound denoted PS B, which is nothing else than the degree of the corresponding
quasipolynomial11. In7, it is shown that a given Crossing Imaginary Root (CIR) with non vanishing frequency never
reaches PS B and a sharper bound for its admissible multiplicities is established. Furthermore, in10, it is shown that
the variety corresponding to a multiple root defines a stable variety for the steady state. Furthermore, it is emphasized
that such a multiple spectral value corresponds to the spectral abscissa, see also12,13.
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2. System description

The problem of active vibration damping of thin mechanical structures is a topic that has received a great attention
by the control community since several years14, especially when actuators and sensors are based on piezoelectric
materials. For mechanical structures that are deformable, piezoelectric materials are used as strain sensors or strain
actuators. With an appropriate controller, they allow to achieve shape control15,16 or the active damping of multi-
modal vibrations thanks to their very large bandwidth. Moreover, their behavior is quite linear when they work in a
specific range of use. This explains in part the great interest of using piezoelectric materials for the instrumentation
of thin mechanical structures. In this area, the major challenge is the design of controllers able to damp the most
vibrating modes in a specified low-frequency bandwidth while ensuring robustness against high-frequency modes,
outside the bandwidth of interest, often unmodelled or weakly modelled. The inherent feature of this kind of systems
is that they arise robustness issues when they are tackled with finite dimensional control tools. Many works have
concerned the vibration control problem of the “Euler-Bernoulli beam” equipped with one rectangular piezoelectric
actuator and sometime, another one, identical and collocated, but used as sensor. See for example17,18 where one
edge of the beam is clamped whereas the other remains free. Other works dealt with the problem of vibration control
for laminated rectangular plates19 or complex plate like structures20.

In this work, we consider the flexible structure depicted in Fig. 1. It is an aluminium-based beam, embedded in
a mobile support. The mobile support is subjected to an acceleration, denoted by w in the sequel, and it is moving
along the z axis. This flexible beam is equipped with two piezoelectric patches made with lead zirconate titanate (also
called PZT). One of them is used as an actuator and the other works as a sensor. These patches are supposed to be
rigidly bounded on the beam, one on each side, located at the clamped edge. The whole device is called thereafter
as a piezo-actuated beam. It can be deformed by the application of a voltage, denoted by u, across the actuator.
The sensor delivers an electrical voltage which corresponds to a measure, denoted by y, of the local deformation
under the piezoelectric patch. Very often, this equipped mechanical structure is partly described by the in-plane
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20x10x0.4mm

h=1.56 mm
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y

x
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w(t)

Figure 1: Sketch of the piezo-actuated flexible beam, clamped at one edge.

Euler-Bernoulli Partial Differential Equation (PDE) that suffers from the lack of precision in describing the electro-
mechanical interactions between the passive structure and the piezoelectric components. Indeed, these latter are often
withdrawn in the computation of the eigenfrequencies21 of the whole structure. Nevertheless, such a structure obeys
to fundamental equations of continuum mechanics in 3D space22, involving computations of gradient of displacement
vector and divergence operator applied to strength tensor. When completed with Neumann and Dirichlet boundary
conditions, the fundamental equations give several PDEs that are coupled, thus that are hardly or impossible to solve
analytically. Then, for controller design purposes, one naturally turns toward numerical methods in order to get the
inputs-to-outputs dynamical models23.

Finite Element Modelling (FEM) is a numerical method that approximates the displacement field with a dis-
placement vector of finite dimension, denoted q ∈ Rndo f , containing as many components as needed to describe the
displacement field in the 3D space, for both mechanical and electrical variables24. This method leads to the following
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matricial Ordinary Differential Equations (ODE), time invariant but coupled and linear23:

Mqqq̈(t) + Dqqq̇(t) + Kqqq(t) = Mqww(t) − Kquu(t) (1)

y(t) = Kqyq(t) (2)

z(t) = Fzww(t) − Fzuu(t) − Fzqq(t) − Fzvq̇(t) (3)

where w(t) ∈ R is the absolute acceleration (m/s2) of the movable support along axis z, z(t) ∈ R is the relative
acceleration (m/s2) of the free end, derived from the equations of motion, u(t) ∈ R is the piezoelectric voltage (V)
across the actuator (control signal), y(t) ∈ R is the piezoelectric sensor voltage (V) across the sensor (measured output
signal y(t)). Moreover, the terms Mqq, Dqq, Mqw, Kqq, Kqu, Kqy, Fzw, Fzu, Fzq and Fzv are all matrices derived from the
assembly step of the FEM such that ndo f #1000, i.e. with several thousands degrees of freedom. The dynamical model
given by equations (1)—(3) is not numerically tractable because of the very large number of degrees of freedom
ndo f #103 for our flexible system. After producing a FEM, a modal analysis is performed to the undamped motion
equation (1). It consists in finding the eigenstructure of

Mqqq̈(t) + Kqqq(t) = 0,

and using the eigenvalues and eigenvectors as a new basis allowing the description of (1)—(3) into a new system of
ODEs, still linear but decoupled, involving a new state vector, called vector of modes. The advantage of this form
is that it allows to build a model in state-space form devoted to analysis (4), having its order sufficiently small to
describe the dynamical behavior within a low-frequency bandwidth. Furthermore, a reduced order system, devoted to
the controller synthesis step, is also available and differs from the analysis one by the presence of direct feedthrough
terms between the outputs {z, y} and the inputs {w, u}. The analysis model is of order 12, containing two uncontrollable
and unobservable modes, and describing the inputs-outputs behavior in the bandwidth [0 − 3500Hz]. The reduced
order system is of order 2 and it only takes into account the first bending mode (see Fig. 3). This mode is controllable
and observable. Let xp ∈ R

np be the state vector of the system, whatever its order. For the analysis model, np = 12
and Dp,zw, Dp,zu, Dp,yw and Dp,yu are all equal to zero. For the reduced order model, np = 2 and the direct feedthrough
terms Dp,zw, Dp,zu, Dp,yw and Dp,yu are not equal to zero because of the model reduction technique that is used to keep
the static responses of the analysis model. The frequency responses for the analysis and the reduced order models are
shown in Fig. 2 and the shapes of the first three bending modes in Fig. 3.

P


ẋp(t) = Ap xp(t) + Bp,ww(t) + Bp,uu(t)

z(t) = Cp,z xp(t)
(
+ Dp,zww(t) + Dp,zuu(t)

)
y(t) = Cp,y xp(t)

(
+ Dp,yww(t) + Dp,yuu(t)

) (4)

It is worthmentioning that the piezo-actuated beam is a SISO system, i.e. with only one actuator, driven by the
controlled electrical voltage u, and only one measured output signal corresponding to the electrical voltage y. The
perturbation input w is the total acceleration applied to the clamped edge of the structure. The vertical total accelera-
tion of the free edge is our controlled output z. In the sequel, we shall use the transfer function based model, derived
from (4) by applying to it Laplace transform, given by

P


z(s) =

Nwz(s)
ψ(s)

w(s) +
Nuz(s)
ψ(s)

u(s)

y(s) =
Nwy(s)
ψ(s)

w(s) +
Nuy(s)
ψ(s)

u(s)
(5)

where s denotes the Laplace variable. For np = 2, we have the following numerical data for the reduced order model:

Nwz(s) = −1.57233229405836 s2 − 0.767039493121702 s + 0.114505932957013,

Nuz(s) = 0.0407589609440159 s2 + 0.019883667632349 s − 0.00264721568397969,

Nwy(s) = −0.047734919434071 s2 − 0.023286787751722 s − 24664.7202708044,

Nuy(s) = 0.0824705565013658 s2 + 0.0402320642368774 s + 5472.41008648971,

ψ(s) = 1 s2 + 0.487835488732404 s + 59495.8660165543.

An interesting control objective would be to damp the peak of resonance of the first bending mode, by using an output
feedback controller, without affecting the vibrating modes that were neglected in the reduced order model.
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Figure 2: Frequency responses of the analysis (-) and reduced order (.-) models.

Mode 1 at 37.15 Hz

Mode 3 at 227.3 Hz

Mode 4 at 621.2 Hz

Figure 3: First three controllable and ob-
servable modes.

3. Quasipolynomial function’s roots coalescence

Unlike ordinary differential equation, a scalar retarded differential equation admits an infinite number of spec-
tral values. Furthermore, such spectral values may be complex and may be multiple as suggested by the following
example. For the sake of simplicity, in the next section, we consider the linear scalar equation with two constant
delays.

3.1. The comprehensive scalar example

Consider the scalar linear time invariant equation with two delays:

ẋ(t) + b0 x(t) + b1 x(t − τ1) + b2 x(t − τ2) = 0. (6)

It is well known that the asymptotic behavior of the solutions of (6) is determined from the spectrum ℵ designating the
set of the roots of the associated characteristic function (denoted in the sequel ∆(s, τ)), often called quasipolynomial,
that is a transcendental polynomial in the Laplace variable s in which appear exponential terms induced by delays, see
for instance25,26.

The quasipolynomial function corresponding to (6) is given by:

∆(λ) = λ + b0 + b1 e−λτ1 + b2 e−λτ2 . (7)

where (τ1, τ2) = ( π2 ,
π
6 ). Let us numerically explore if there exists a double spectral value of (6) such that λ = jω0

with ω0 , 0. A first computational step allows us concluding that a double crossing root may exists if and only if the
parameters b0 and b1 satisfy:

b0 =
−6 − 2 b2π cos

(
ωπ
6

)
3π

+ j

(
2 b2 sin

(
ωπ
6

)
− 3ω

)
3

, b1 =
6 cos

(
ωπ
2

)
− b2π cos

(
ωπ
3

)
3π

+ j

(
6 sin

(
ωπ
2

)
− b2π sin

(
ωπ
3

))
3π

. (8)
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Since the system parameters are real, the imaginary parts of b0 and b1 have to vanish. This fact imposes two additional
conditions: the vanishing of the imaginary part of b0 from (8), that is 2 b2 sin (1/6ω) − 3ω = 0, gives us the value of
b2 parameterized by ω, leading to b2 = 3ω/2 sin

(
ωπ
6

)
, then, the vanishing of the imaginary part of the expression of

b1, that is 6 sin
(
ωπ
2

)
− b2π sin

(
ωπ
3

)
= 0, in which one substitutes the obtained value for b2 given above allows us to

an equation only in ω. Indeed, one obtains F(ω0) = 0, where:

F(t) = 2 cos
( t π

3

)
− t π sin

( t π
3

)
− 2 cos

(
2t π
3

)
. (9)

Thus, one concludes that λ = jω0 is a double spectral value of (6) (since ∆”( jω0) , 0) if (9) admits a real solution.
Numerical investigation shows that such a frequency ω0 , 0 exists. As a matter of fact, since ω0 is a real root of (9),
then, under the parameter values defined by (10), jω0 is a double spectral value of (6).

b0 = −
2 sin

(
ωπ
6

)
+ ωπ cos

(
ωπ
6

)
sin

(
ωπ
6

)
π

, b1 =
2 sin

(
2ωπ

3

)
− ωπ cos

(
ωπ
3

)
− 2 sin

(
ωπ
3

)
2 sin

(
ωπ
6

)
π

, b2 =
3ω

2 sin
(
ωπ
6

) . (10)

Finally, one easily check such an assertion by substituting the set of conditions in the characteristic quasipolynomial
function (6) as well as in its first derivative with respect to λ to obtain:

∆( jω) = R0(ω) + jI0(ω) and ∆′( jω) = R1(ω) + jI1(ω) where

R0(ω) = 2 sin
(

2ωπ
3

)
cos

(
ωπ

2

)
− 4 sin

(
ωπ

6

)
− 2 sin

(
ωπ

3

)
cos

(
ωπ

2

)
+ ωπ cos

(
ωπ

6

)
− ωπ cos

(
ωπ

3

)
cos

(
ωπ

2

)
,

I0(ω) = ωπ cos
(
ωπ

3

)
sin

(
ωπ

2

)
− ω sin

(
ωπ

6

)
π + 2 sin

(
ωπ

3

)
sin

(
ωπ

2

)
− 2 sin

(
2ωπ

3

)
sin

(
ωπ

2

)
,

R1(ω) = 2 sin
(
ωπ

3

)
cos

(
ωπ

2

)
− 2 sin

(
2ωπ

3

)
cos

(
ωπ

2

)
+ ωπ cos

(
ωπ

3

)
cos

(
ωπ

2

)
+ sin

(
ωπ

6

)
− ωπ cos

(
ωπ

6

)
,

I1(ω) = ω sin
(
ωπ

6

)
π + 2 sin

(
2ωπ

3

)
sin

(
ωπ

2

)
− 2 sin

(
ωπ

3

)
sin

(
ωπ

2

)
− ωπ cos

(
ωπ

3

)
sin

(
ωπ

2

)
.

(11)

Recall that jω0 is a double crossing root for (6) if and only if R0(ω0) = I0(ω0) = R1(ω0) = I1(ω0) = F(ω0) = 0.
Numerical computations shows that the set of such a common roots is non empty and the problem admits at least a

solution ω0 that we are able to locate: ω0 ∈] 8661 π
8192 ,

8662 π
8192 [. The following proposition, which is slightly different from

the result of7, asserts the existence of spectral values with multiplicity three for the scalar equation with two delays.
Its proof is in the same lines of the one from7.

Proposition 1. For each pair (τ1, τ2) ∈ R∗+ × R∗+ (τ1 , τ2), the equation (6) admits a triple spectral value at
z0 = −b0−τ2

−1−τ1
−1 if, and only if, b1 = −τ2e−b0τ1−

τ1
τ2
−1 (τ1 − τ2)−1 τ1

−1, b2 = τ1e−b0τ2−1− τ2
τ1 τ2

−1 (τ1 − τ2)−1 .Moreover,
if b0 > τ2

−1 − τ1
−1, the zero solution is asymptotically stable.

3.2. Second order systems: Quasipolynomial function’s rightmost characteristic root assignment

Roughly speaking, second-order linear systems capture the dynamic behavior of many natural phenomena, and
have found wide applications in many fields, such as vibration and structural analysis. In this section, second-order
linear systems of retarded type are explored.

ẋ =

n∑
k=0

Ak x(t − τk) (12)

with the state-vector x = (x1, x2) ∈ R2, under appropriate initial conditions belonging to the Banach space of
continuous functions C([−τN , 0],R2). Here τ j, j = 1 . . . n are strictly increasing positive constant delays, τ0 = 0,
τ = (τ1, . . . , τn) and the matrices A j ∈ M2(R) for j = 0 . . . n.

The characteristic function corresponding to System (12) is a quasipolynomial ∆ : C × Rn
+ → C of the form:

∆(s, τ) = det

s I − A0 −

n∑
k=1

Ak e−τk s

 . (13)
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More precisely, consider time-delay system where the corresponding characteristic function is written as:

∆(s, τ) = s2 + c1 s + c0 +

n∑
k=1

βk e−τk s. (14)

Using the change of variables s = c1 λ
2 , one obtains the corresponding normalized characteristic function:

∆̃(λ, τ̃) = λ2 + 2 λ + a0 +

n∑
k=1

αk e−λτ̃k , where αk =
4
c2

1

βk, τ̃k =
c1

2
τk, a0 = 4

c0

c1
2 . (15)

It is well known that if all αk = 0 for k = 0, . . . , n, and the problem of spectral abscissa minimization is considered
when a0 = 1 and the rightmost-root is λ0 = −1, see for instance27. By exploiting the delay effect, increasing the
solution’s convergence rate follows from the decrease of the corresponding rightmost-root.

Proposition 2. The quasi-polynomial function (15) admits a real spectral value at λ = λ0 with multiplicity n + 2 if
and only if

λ0 = −1 −
n∑

k=1

1
τ̃k
, a0 = 1 +

n∑
k=1

1
τ̃2

k

, αk = −
2
∏n

l=1,l,k τ̃le
−(1+τ̃k+

∑n
l=1,l,k

τk
τl

)

τ̃2
k

∏n
l=1,l,k(τ̃k − τ̃l)

. (16)

Remark. When (16) is satisfied and λ0 is the rightmost root associated with (15) then the corresponding steady state
solution is asymptotically stable. Notice also that, increasing the number of delays in the loop induces the decrease of
the rightmost root.

4. Vibration damping

u(s)
y(s)

+

0

+

+

+

+

Nwz(s)
ψ(s)

Nwy(s)
ψ(s)

Nuy(s)
ψ(s)

C(s)

Nuz(s)
ψ(s)

z(s)

w(s)

Figure 4: Feedback control structure.

Consider now the piezo-actuated system inserted in the typical output
feedback control structure of Fig. 4, with a zero-reference signal and an
input disturbance w corresponding to a rectangular impulse signal. The
control problem consists in damping the vibrations due to the first mode
when the mobile support is subjected to a shock like disturbance. We
define the output feedback control law u(s) = C(s) y(s) involving the
following Quasi Polynomial Based (QPB) controller given in Laplace
domain by

C(s) :=
N(s, τ)
D(s, τ)

where N(s, τ) := n0 + nr0 e−τ s

and D(s, τ) := d0 + dr0 e−τ s.

(17)

By applying inverse Laplace transform, it can be easily shown that this
control law is given in time domain by

u(t) = −
dr0

d0
u(t − τ) +

n0

d0
y(t) −

nr0

d0
y(t − τ) (18)

which is an output feedback control law based on proportional actions plus delayed proportional actions. By omitting
the variable s in the polynomials for sake of clarity, the closed loop relation between the disturbance w and the
controlled output z is given by

z(s) =
Nwz ψD +

(
Nuz Nwy − Nwz Nuy

)
N

ψ
(
ψD − Nuy N

) w(s). (19)

It can be proven that ψ divide the polynomial
(
Nuz Nwy − Nwz Nuy

)
so that it can be removed from the numerator and

the denominator. In that case, let Q(s) be a polynomial such that Nuz(s) Nwy(s) − Nwz(s) Nuy(s) := Q(s)ψ(s). Then
(19) becomes

z(s) =
Nwz D + Q N
ψD − Nuy N

w(s). (20)
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Let consider the characteristic polynomial ∆(s, τ) := ψ(s) D(s, τ) − Nuy(s) N(s, τ), which is of the form of the one
tackled in subsection 3.2. By applying the results of Proposition 2 with λ0 ' −244.1463568, we obtain the following
numerical values for the parameters of the controller in (17)

n0 ' 0.01309186753, nr0 ' 77.28704202, d0 ' 1.001079694, dr0 ' 6.373905366, τ ' 0.0041, (21)

that assign λ0 as a rightmost root of multiplicity equal to 3. To show the efficiency of the proposed QPB-controller,
we propose to compare, in Fig. 5, the time responses of both output signals in open-loop (blue) and in closed-loop
(red) when the disturbance w is a rectangular impulse (black), say like a shock. We also put the time response of the
control signal u that exhibits a peak of magnitude roughly equal to −90 V which is reasonable for this application.
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Figure 5: Time responses of the measured output y on the left, of the controlled output z on the middle and of the closed-loop control signal u on
the right.

5. Conclusion

In this note, we illustrated the interest in using time-delay in the controller design as a control parameter. It also
emphasized the applicability of the right-most root assignment in the problem of vibration’s attenuation in the case of
a single vibrating mode of a piezo-actuated beam. By lack of space, the whole properties of the QPB controller have
not been shown, although interesting, especially the robustness of this controller with respect to the high frequency
modes that have been neglected in the reduced order model. In future work, the proposed controller design will be
applied to more vibrating modes and it will be compared with other optimal controllers of finite dimension.
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