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A Delay Based Sustained Chemical Oscillator:
Qualitative Analysis of Oregonator Based Models

Hakki Ulas Unal and Islam Boussaada and Silviu-Tulian Niculescu Senior Member, IEEE

Abstract—Belousov-Zhabotinskii reaction is a complicated
chemical oscillator exhibits temporal and spatiotemporal be-
haviours that quantitatively match some rhythmic behaviours in
biological systems. Its important features are covered by a simple
irreversible mechanism, called the Oregonator. By taking into
account the physical constraints and to describe the mechanism
with a fewer variables, two-delays Oregonator based model is
considered in order to investigate the delay effects in chemical
reactions exhibiting sustained oscillations. It is shown that the
solutions of the model, obtained by use of the delay-mass action
kinetics, are positive and bounded. By utilizing the asymptotic
stability properties of the model which exhibits positive and
bounded solutions, a positive invariant set for the solutions is
described. Numerical results are presented to compare with
the existing solutions which are qualitatively matches with the
experimental results.

Index Terms—Chemical Oscillator, Oregonator, Delayed Neg-
ative Feedback, Sustained oscillation

I. INTRODUCTION

The recurrence of any event within a biological system
at some intervals can be considered as a biological rhythm
[1]. It can be observed from in a single cell to physiological
process with periods ranging from fractions of a second to
years. Although rhythmic phenomena has been known for a
long time, their mechanism has not been fully understood.
Observation of analogous behaviours in some chemical oscilla-
tors leads to explain the biological rthythm by investigating the
mechanism of these oscillators [2]. However, these reactions
involve dozens of species and intermediate steps and it may
not be possible to fully cover the features of their dynamics
without resorting to modelling and numerical computations
[3].

Mass-action kinetics are used to model most of the bio-
logical and chemical reactions. The law of mass-action states
that the velocity of a reaction is proportional to product
of the concentrations of reactants raised to the power of
their stoichiometric coefficients [4]. This leads to obtain a
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model expressed by polynomial ordinary differential equations
(ODEs) with positive solutions for positive initial conditions
[5]. As suggested in [6], delayed mass-actions kinetics lead
to more accurate models by conserving the simplicity and
a relative reduced number of parameters (see [7]-[9] and
references therein). In addition, models described by using
delay-differential equations (DDEs) exhibit better consistency
compared to ODEs from the numerical point of view [10],
[11]. In fact, delays naturally appear in dynamics of chem-
ical reactions due to the transportation and/or propagation
phenomena. They are often relatively small and may be
neglected for analysis, since solution of a DDE requires to
define an infinite-dimensional set of initial functions on a
time interval of length equal to the largest delay. However,
since the presence of delay in systems’ dynamics often induce
unexpected behaviours [12], they should be taken into account.
On the other hand, they may not be necessarily used for certain
reversible chemical reactions.

Belousov-Zhabotinskii (BZ) reaction is one of the compli-
cated chemical oscillators exhibits sustained and relaxation
oscillatory behaviours that are analogous to those in biological
systems. Its irreversible mechanism is described through a
simple model, called Oregonator [13]. To the best knowledge
of the authors’, delay effects in Oregonator based models have
not been deeply analyzed in the literature. In this work, we
will make a qualitative and quantitative analysis for a two
delay Oregonator based model given in [14]. In Section II, the
mechanism of the model be presented. Then, in Section III,
positivity and boundedness properties of the solutions of the
model will be presented. Its asymptotic stability properties and
a positive invariant set for the solutions of the model will be
given in the same section. Numerical results will be presented
in Section IV and the paper will be concluded in Section V.

II. DELAY MODEL OF THE OREGONATOR

The BZ reaction can be described as presence of two
different processes occurring at the same time. One of these
processes occurs when the bromide ion concentration rises
above certain value, while the other one dominates the re-
action when the concentration falls below a certain value.
The oscillatory behaviour origins that whenever bromide ion
concentration is sufficiently enough, consumes the bromide ion
that leads to initiate the other process which indirectly yields to
produce bromide ion. This mechanism can be described by the
Oregonator model, whose kinetic equations are as following



[13]:
A+Y B X4p (Ry)

X+Y 225 0p (R2)

B+X 59X 47 (Rs)

2X M, A4+ P (Ra)

7L py (Rs)

where A, B are assumed to be constant chemical species,
Y (Bromide ion), X (Bromous acid), and Z (Cerium (IV))
are chemical variables, P is some chemical product, k;, ¢ =
1,...,5, is the positive rate constant, and, f is a stoichiometric
factor. By the law of mass-action, the mechanism can be
described by a set of ODEs with these chemical variables.

In [15], a positive delayed feedback Oregonator, which is
based on one of the models in [16], has been analyzed. The
models in [16] cover the relaxation oscillatory mechanism
of the Oregonator by two variables, which correspond to
“slow” and one of the “fast” dynamics of the mechanism.
By use of delay mass-action kinetics, a few attempts have
been done to describe the sustained oscillatory behaviour of
the Oregonator with two variables in [6], [17]. However, in
our opinion, the proposed models in these works are not
realistic, in addition, one of the models in [17] does not exhibit
oscillatory behaviour, while, the other one, is not meaningful
in the sense of law of mass-action.

The reactions start whenever the reactants posses some
amount of energy, called “activation energy”, which naturally
happens after a some amount of time. In addition to this,
the crucial argument is that molecules, which are activated
and have the required minimum activation energy, have not to
react immediately [18]. Then, in our opinion, it will be more
realistic to consider the outputs of (R;) appear after a some
amount of delay that implies Y in this step will be subjected
to a delay, what we call “delayed concentration”. This term is
completely different than the used in [17] from the modelling
and physical point of view. In [14], in addition to this delay,
another delay, which arises to represent the Oregonator with
two variables as in [6], also taken into account. By the use of
delay-mass-action kinetics, dynamics of the model in [14] can
be expressed as;

& (t) 1 (y(t —m) —a()y(t) +a(t) —qz(t)?) (1)
g(t) = a(=yt) —x)y) + fz(t — 1)), 2
where 77 is introduced due to the physical constraints and

y(t—m1) is called “delayed-concentration” of bromide-ion, 7o
is introduced to ensure the sustained oscillatory behaviour, x =
Xko/a, y=Yka/n, a=kA, n=ksA, q=2ksa/(kan).
Throughout the paper, R} is the set of n-tuples with
positive real entries, if n = 1, it is represented as R..
C:=C([-7,0),R), where 7 := max{7y, 72 }, represents the
Banach space of continuous functions mapping from [—7,0)
into R, R(-) is the real part and /(-) is the argument of a
complex number (-), and C is the closed-right-half-plane.

III. QUALITATIVE/QUANTITATIVE ANALYSIS
A. Properties of the dynamic model

The unique positive equilibrium point of the dynamic
model, say (z*,y*), is y* = f*z*/(1 + z*), where z* is the
unique positive solution of

¢(I+at)e” =1+2" = [ (2" = 1), 3)

for a given (f*,¢*) iff f* € Ry and ¢* # 1.
Proposition 1: The solutions of the model with positive ini-
tial history functions are positive and bounded, if (1, a) € R3.
Proof: Let us assume that the positivity statement does
not hold. Then, since the initial conditions and history func-
tions are positive, at least one of the solutions crosses the zero
at a finite time. Let x(6), y(0) € C be initial history functions
for z(t) and y(t) and ¢; be the first time when x(¢1) or y(t1)
(or both) becomes negative. Then, there exists 7' € (0,t1)
such that z(T)y(T) = 0. Let (T") = 0. Then, from (1), since

&(t),_, = ny(T —71) > 0, where y(0) >0, 6 [-71,0),

x(t1) can not be negative. Now, let us assume that y(7") = 0.
However, from (2), since

Y(t),_p = afx(T —t2) > 0, where 2(0) >0, 0 € [~72,0),

the solutions are positive. Now, let us assume that the positive
solutions are unbounded. Therefore, there exists a sequence
{tm }—00 as m—oo such that

d
0< %x(t)“:tm. 4)

Then, since x(t,,) < @(tm+1), there exists some M’ such that
Z(ty) > 1/q for m > M’'. Then, by (1) and from (4), since

Y(tm — 11) + (tm) > y(tm)z(tm) + qz(ty,)?
> y(tm)x(tm) + 2(tm), m =M, (5)

which implies y(¢,, — 1) > y(tm )z (¢ ). Then, (4) holds only
if %y(t)ﬁztp < 0 for some time sequence {t, } 00 as p—o0.
However, since the initial history functions are positive and
bounded, (4) does not hold, hence, x(t) and y(t) are bounded.
|
Remark 1: The equilibrium points of the model are the
same as in [13], since delay terms does not have an affect
on the solution of #(t) = y(¢) = 0. However, if we relax the
positivity of 1 and «, there exists positive initial conditions
that result in negative solutions.

B. Stability and spectral properties

Let us consider the model for (f*, ¢*,n) € R3., where ¢* <
1, n* > 1. Then, the characteristic function of the linearized
model around (z*, y*) by assuming nae = 1 can be written as

A(s,71,72) = P(s) — f*Q1(s,71)Q2(s, T2), (6)

where P(s) = (s + n(¢*z* + 1J{I)(s + 1%), Q1(s,m) =
(z* —e*™), and Q2(s,T2) = (ﬁ —e7°™2), where 5 > 0.
Proposition 2: A(s,T1,72) # 0 for R(s) > 0, if any one
of the following conditions hold;
DT <1/20r f7 2 3)2,




11) T2 — O,
iii) 71 =0, and, 7 < 75 (5 +ng*).

Proof: From (6), since P(s) and @Q1(s,71)Q2(s, 72) do
not have common zeros for s € C, A(s*,7,75) = 0 for
some 71 > 0,75 > 0,s* € Cy iff

[P(s")] = f1Qu(s", 7)[|Q2(s", 72 O

P(s*) = /Q(s",74)/Qa(s",75): ®)

Then, since z* > 1, (7) does not hold for s € Cy if f* <1/2
or f* > 3/2. In addition, for 75 = 0, or 71 = 0, but, 75 <
7= (5 +1q*), then, (8) fails for s € Cs. [ ]

Proposition 3:  A(s,71,72) has a real positive zero in
(v/7*,1/7*) for 7y > 7%/, 70 > T*, where

* n (z*)Q —1
> , 9
’ 1—e ! np(l—e1) ©)
~ < 1, however, v > log(y), where

[ =1)
= 10
v <2f*(a:*2 —x*—=1)— (z*+ 1) (z*+2) )’ (10)
where f € (0.8,1.1) and ¢ << 1.
Proof: Since A(0,71,72) > 0, A(s, 7, 72) = 0 for some

s = o > 0 iff there exists (o*,71,75) € Ri such that
A(o*, 75, 73) < 0, which implies
2 npt Tt + 1,

< -0 (e e ) -

+7'2*2 (f*(l—e—’YTf/Tz*)(lix* —e_“f)), (11)

where v = 0 /75. For v > log(i), since the right-side of (11)
is positive, in addition, since 0 < log(y) < 1, there exists o*
such that 0*75 < 1. Then, for 7 = 75 /v and 75 = 7%, which
defined as in (9), the inequality holds. ]

Proposition 4: There exists finite intervals 7 and ¥V such
that A(jw,71,72) = 0 for 7 € T and w € W if 773 # 0.
Otherwise, 72 and W are only single points.

Proof: Since (7) and (8) are necessary and sufficient
conditions for the existence of (w*,75) € RZ such that
A(jw*,0,75) = 0, and £ |P(jw)| > 0, 75 and W con-
tain only a single point whenever 7, = 0. Note, for any
(w,71) € R3, since z* > 1,

(x—1) <|z—e |, [(a*—e ™) > /(z* —1). (12)

In addition, since - Qs (jw, 72)| (or d—%\@g(jw,ﬁ)b is pos-
itive, there exists some @ > w* such that A(jw, 7, 72) =0
for some 73' > T > 75, where 73 is the lower bound on
T9, Which results in zeros in the C,. In addition, by (12),
as 71—00, there exists some 7o such that A(jo,71,72) = 0,
where 7o < 75 ]

C. Invariance properties

Proposition 5: Let us consider the model for which the
parameters are assumed to be in the following set

1
P = {(7'1,72777,04,q) ERi | 72 <7'1,; <a<lg< 1}.

Then, the solutions with the positive constant history functions,
which are same as the initial conditions stay in

1(0) — y(0)e~m
S::{xt7yt y(t) < fx(t) < ——————— % (13)
(z(t),y(®)) [ y(t) (t) o — ) T
where I(0) = x(0) + y(0).
Proof: Let 1 = My, for some positive integer M. Then,
by use of the method of steps,

w(kry) = 7 ((1(0) = y(0)e™"™))

M l7'2

- /(1_1)72 e” ™ (qz®(n) + y(u))du)

=1

(}CfM)Tz
+nek7’2n /
(k*M*l)Tz

e My (u)dp,

which is bounded and positive by Proposition 1. For & < M,
x(k7y) strictly decreases, and, (qz(t)? + z(t)y(t))e " <
I(0)—y(0)e~"™, for t; >t > 0. Note, by the arguments used
in the proof of Proposition 1, y(k72) starts to decrease and
2 (k7o) increases whenever k > M. However, by the positivity
1(0)—y(0)e~ "

T—e 772)
addition, from (2), since y(k7o) < %, the solutions,

which are positive, stay in S if the initial conditions are in S.
|

of the solutions, z(k72) can not exceed In

I'V. NUMERICAL RESULTS

By using the same rate constant parameters as in [13],
the numerical solutions, which correspond to concentration of
the species in the reaction, of the considered model and the
model in [13] are presented in Figures la and 1b. As seen in
these figures, the solutions are quantitatively match, where the
solutions of [13] are qualitatively same as the experimentally
observed oscillations in the reaction. In addition, for a chosen
parameters to be in P, a stable limit cycle behaviour appears
and solutions stay in S (see Fig. 1c¢). However, if 7 is set to 0,
the solutions are asymptotically stable as seen in Fig. 1d. By
using DDE-BIFTOOL [19], the stability crossing curves are
obtained as presented in Fig. le in delay parameter space. The
curve separates the delay-parameter space, where the points
on the curve correspond to presence of characteristic function
zeros on the imaginary axis, and the shaded region gives for
which (71, 72) values the characteristic function has no zeros
in the C,. Furthermore, the corresponding delay values for
a chosen point on the curve results in sustained oscillation
with a frequency, whose magnitude is sufficiently close to the
chosen point [14]. For delay values above the curve presented
in Fig. 1f, the asymptotic model has real zeros in the C such
that at least one of these zeros, is strictly less than 1/75 for a
chosen (71, 72) above the shaded region in the figure.

V. CONCLUSION

In this work, we considered two delay-based chemical
oscillator based on the Oregonator model. The solutions of
the model positive and bounded for positive initial conditions
and it exhibits sustained oscillations for a certain parameters.
The delay, which stems from the physical constraints does not
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Fig. 1. In a) and b) Dashed line (—) represents numerical solution for A = 0.45M, 71 = 0.932 sec, and 72 = 2.2501 msec, while the straight line
represents the numerical solution of the model in [13] by substituting k1 AY (¢) in with k1 AY (¢t — 71), where A = 0.06M, 71 = 0.932 sec. The other
parameters are taken same as in [13]. In ¢) Phase plane portrait of the solutions for « = 0.1,7 = 1.25, f = 1,q = 1/200, and 71 = 4.5, 72. In d) The
parameters are same as in ¢) however, 71 = 0. In e) The stability crossing curve is presented while 71 versus 7o for the parameters in [13]. In f) The positive
real zero curve on the delay parameter space while f varies in (0.9,1,2) and n = 10, = 1/10, ¢ = 1/200.

yield instability unless the delay arising in the feedback mech-
anism of the model is lower some certain value. Furthermore,
presence of this delay results in oscillatory behaviour with
different frequencies while the delay in the negative feedback
mechanism varies above a certain level.
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