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Sparsity-based Cholesky Factorization and Its Application to Hyperspectral Anomaly Detection

Estimating large covariance matrices has been a longstanding important problem in many applications and has attracted increased attention over several decades. This paper deals with two methods based on pre-existing works to impose sparsity on the covariance matrix via its unit lower triangular matrix (aka Cholesky factor) T. The first method serves to estimate the entries of T using the Ordinary Least Squares (OLS), then imposes sparsity by exploiting some generalized thresholding techniques such as Soft and Smoothly Clipped Absolute Deviation (SCAD). The second method directly estimates a sparse version of T by penalizing the negative normal log-likelihood with L 1 and SCAD penalty functions. The resulting covariance estimators are always guaranteed to be positive definite. Some Monte-Carlo simulations as well as experimental data demonstrate the effectiveness of our estimators for hyperspectral anomaly detection using the Kelly anomaly detector.

Introduction

A hyperspectral image (HSI) is a three dimensional data cube consisting of a series of images of the same spatial scene in a contiguous and multiple narrow spectral wavelength (color) bands. Each pixel in the HSI is a p-dimensional vector, x ∈ R p , where p stands for the total number of spectral bands. With the rich information afforded by the high spectral dimensionality, target detection is not surprisingly one of the most important applications in hyperspectral imagery.

In many situations of practical interest, we do not have sufficient a priori information to specify the statistics of the target class. More precisely, the target's spectra is not provided to the user. This unknown target is referred as "anomaly" having a very different spectra from the surrounding background.

Different Gaussian-based anomaly detectors have been proposed in the literature. The detection performance of these detectors mainly depend on the true unknown covariance matrix (of the background surrounding the test pixel) whose entries have to be carefully estimated specially in large dimensions. Due to the fact that in hyperspectral imagery, the number of covariance matrix parameters to estimate grows with the square of the spectral dimension, it becomes impractical to use traditional covariance estimators where the target detection performance can deteriorate significantly. Many a time, the researchers assume that compounding the large dimensionality problem can be alleviated by leveraging on the assumption that the true unknown covariance matrix is sparse, namely, many entries are zero.

Covariance estimation via linear regression

Suppose that we observe a sample of n independent and identically distributed p-random vectors, {x i } i∈ [1, n] , each follows a multivariate Gaussian distribution with zero mean and unknown covariance matrix Σ = [σ g,l ] p×p . The first traditional estimator we consider in this paper is the Sample Covariance Matrix (SCM), defined as

ΣSCM = [σ g,l ] p×p = 1 n n i=1 x i x T i .
In order to address the positivity definiteness constraint problem of ΣSCM , Pourahmadi [START_REF] Pourahmadi | Joint mean-covariance models with applications to longitudinal data: unconstrained parameterisation[END_REF] has modeled the covariance matrices via linear regressions. 

xt = t-1 j=1 C t,j x j , TΣT T = D . ( 1 
)
where T is a unit lower triangular matrix with -C t,j in the (t, j)th position for t ∈ [2, p] and j ∈ [1, t -1], and D is a diagonal matrix with θ 2 t = var( t ) as its diagonal entries, where t = x t -xt is the prediction error for t ∈ [1, p]. Note that for t = 1, let x1 = E(x 1 ) = 0, and hence, var( 1 ) = θ 2 1 = E (x 1 ) 2 . Given a sample {x i } i∈ [1, n] , with n > p, a natural estimate of T and D, denoted as TOLS and DOLS in this paper, is simply done by plugging in the OLS estimates of the regression coefficients and residual variances in (1), respectively. In this paper, we shall denote the second traditional estimator by

ΣOLS = T-1 OLS DOLS T-T OLS .

Main contributions

Before describing the two methods, we want to recall the definition for ΣOLS . Given a sample {x i } i∈[1, n] , we have:

x i,t = t-1 j=1 C t,j x i,j + i,t t ∈ [2, p], i ∈ [1, n]. (2) 
By writing (2) in vector-matrix form for any t ∈ [2, p], one obtains the simple linear regression model:

y t = A n,t β t + e t , (3) 
where 1) , and

y t = [x 1,t , • • • , x n,t ] T ∈ R n , A n,t = [x i,j ] n×(t-1) , β t = [C t,1 , • • • , C t,t-1 ] T ∈ R (t-
e t = [ 1,t , • • • , n,t ] T ∈ R n .
When n > p, the OLS estimate of β t and the corresponding residual variance are plugged in T and D for each t ∈ [2, p], respectively. At the end, one obtains the estimator

ΣOLS = T-1 OLS DOLS T-T OLS . Note that TOLS has -ĈOLS t,j in the (t, j)th position for t ∈ [2, p] and j ∈ [1, t -1].

Generalized thresholding based Cholesky Factorization

For any 0 ≤ λ ≤ 1, we define a matrix thresholding operator T h(.) and denote by T h( TOLS ) = [T h(-ĈOLS t,j )] p×p the matrix resulting from applying a specific thresholding operator T h(.) ∈ {Soft, SCAD} to each element of the matrix

TOLS for t ∈ [2, p] and j ∈ [1, t -1].
We consider the following minimization problem:

T h( TOLS ) = argmin T p t=2 t-1 j=1 1 2 ( ĈOLS t,j -C t,j ) 2 + p λ {|C t,j |} (4) 
where

p λ ∈ {p L 1 λ , p SCAD λ,a>2 }. We have p L 1 λ (|C t,j |) = λ|C t,j |, and p SCAD λ,a>2 (|C t,j |) =        λ|C t,j | if |C t,j | ≤ λ - |C 2 t,j |-2aλ|C t,j |+λ 2 2(a-1) if λ < |C t,j | ≤ aλ (a+1)λ 2 2 if |C t,j | > aλ .
Solving (4) with p L 1 λ and p SCAD λ,a>2 , yields a closed-form Soft and SCAD thresholding rules, respectively [START_REF] Rothman | Generalized thresholding of large covariance matrices[END_REF], [START_REF] Fan | Variable selection via nonconcave penalized likelihood and its oracle properties[END_REF]. The value a = 3.7 was recommended by Fan and Li [START_REF] Fan | Variable selection via nonconcave penalized likelihood and its oracle properties[END_REF]. Despite the application here is different than in [START_REF] Fan | Variable selection via nonconcave penalized likelihood and its oracle properties[END_REF], for simplicity, we use the same value throughout the paper. We shall designate the two thresholded matrices by TSoft and TSCAD , that apply Soft and SCAD on TOLS , respectively. We denote our first two estimators as:

ΣSoft OLS = T-1 Sof t DOLS T-T Sof t ΣSCAD OLS = T-1 SCAD DOLS T-T SCAD
A generalization of the estimator in [START_REF] Huang | Covariance matrix selection and estimation via penalised normal likelihood[END_REF] Note that det(T) = 1 and

Σ = T -1 D T -T . It follows that det(Σ) = det(D) = p t=1 θ 2 
t . Hence, the negative normal log-likelihood of

X = [x 1 , • • • , x n ] ∈ R p×n ,
ignoring an irrelevant constant, satisfies: 

Λ = -2 log(L(Σ, x 1 , • • • , x n )) = n log(det(D)) + X T (T T D -1 T) X = n log(det(D)) + (T X) T D -1 (T X) = n p t=1 log θ 2 t + p t=1 n i=1 2 
n log θ 2 1 + n i=1 2 i,1 θ 2 1 + p t=2 n log θ 2 t + n i=1 2 i,t θ 2 t + t-1 j=1 p α {|C t,j |} (5) 
Obviously, minimizing (5) with respect to θ 2 1 and θ 2 t gives the solutions r j (C t,j ), we solve β t iteratively using the General Iterative Shrinkage and Thresholding (GIST) algorithm [START_REF] Gong | Gist: General iterative shrinkage and thresholding for non-convex sparse learning[END_REF]:

θ2 1 = 1 n n i=1 2 i,1 = 1 n n i=1 x 2 i,1 and θ2 t = 1 n n i=1 2 i,t = 1 n n i=1 (x i,t - t-1 j=1 C t,j x i,j )
β(k+1) t = argmin β t l(β (k) t ) + r(β t ) + (∇l(β (k) t )) T (β t -β (k) t ) + w (k) 2 ||β t -β (k) t || 2 = argmin β t 0.5||β t -u (k) t || 2 + 1 w (k) r(β t ) (7) 
where u

(k) t = β (k) t -∇l(β (k) t )/w (k)
, and w (k) is the step size initialized using the Barzilai-Browein rule [START_REF] Barzilai | Two-point step size gradient methods[END_REF]. By decomposing (7) into independent (t-1) univariate optimization problems, we have for j

= 1, • • • , t -1: C (k+1) t,j = argmin C t,j 0.5||C t,j -u (k) t,j || 2 + 1 w (k) r j (C t,j ) (8) 
where u 1) .

(k) t = [u (k) t,1 , • • • , u (k) t,t-1 ] T ∈ R (t-
By solving [START_REF] Cao | Covariance estimation for high dimensional data vectors using the sparse matrix transform[END_REF] with the L 1 -norm penalty, p L 1 α , we have the following closed form solution:

C (k+1) t,j,(L 1 ) = sign(u (k) t,j ) max(0, |u (k) t,j | -α/w (k) ) (9)
For the SCAD penalty function, p SCAD α,a>2 , we can observe that it contains three parts for three different conditions. In this case, by recasting problem (8) into three minimization sub-problems for each condition, and after solving them, one can obtain the following three sub-solutions h 1 t,j , h 2 t,j , and h 3 t,j , where:

h 1 t,j = sign(u (k) t,j ) min(α, max(0, |u (k) t,j | -α/w (k) )), h 2 t,j = sign(u (k)
t,j ) min(aα, max(α,

w (k) |u (k) t,j |(a-1)-aα w (k) (a-2)
)), Hence, we have the following closed form solution:

h 3 t,j = sign(u (k) t,j ) max(aα, |u (k) t,j |).
C (k+1) t,j,(SCAD) = argmin q t,j 0.5||q t,j -u (k) t,j || 2 + 1 w (k) r j (q t,j ) s.t. q t,j ∈ {h 1 t,j , h 2 t,j , h 3 t,j } (10) 
At the end, we denote our last two estimators as:

ΣL 1 = T-1 L 1 D T-T L 1 ΣSCAD = T-1 SCAD D T-T SCAD
where TL 1 and TSCAD have respectively -Ĉt,j,(L 1 ) and -Ĉt,j,(SCAD) in the (t, j)th position for t ∈ [2, p] and j ∈ [1, t -1], whereas D has the entries ( θ2 1 , θ2 t ) on its diagonal.

Hyperspectral anomaly detection

Suppose the following signal model:

H 0 : x = n, x i = n i , i = 1, • • • , n H 1 : x = γ d + n, x i = n i , i = 1, • • • , n (11) 
where n 1 , • • • , n n are n i.i.d p-vectors, each follows a multivariate Normal distribution N (0, Σ). d is an unknown steering vector and which denotes the presence of an anomalous signal with unknown amplitude γ > 0. The Kelly anomaly detector [START_REF] Kelly | An adaptive detection algorithm[END_REF] is described as follows:

D KellyAD Σ(x) = x T Σ-1 SCM x H 1 ≷ H 0 δ , ( 12 
)
where δ is a prescribed threshold value. In the following two subsections, the detection performances of the estimators, when are plugged in D KellyAD, Σ are evaluated by the Receiver Operating Characteristics (ROC) curves and their corresponding Area Under Curves (AUC) values.

Note that the tuning parameter λ and α are chosen automatically using a 5-fold crossvalidated loglikelihood procedure (see Subsection 4.2 in [START_REF] Huang | Covariance matrix selection and estimation via penalised normal likelihood[END_REF] for details).

Monte-Carlo simulations

The experiments are conducted on three covariance models:

• Model 1: Σ = I, the identity matrix, The computations have been made through 10 5 Monte-Carlo trials and the ROC curves are drawn for a signal to noise ratio equal to 15dB. We choose n = 80 for covariance estimation under Gaussian assumption, and set p = 60. The artificial anomaly we consider is a vector containing normally distributed pseudorandom numbers (to have fair results, the same vector is used for the three models). The ROC curves for Model 1, 2 and 3 are shown in Fig. 

•

Application on experimental data

Our estimators are now evaluated for galaxy detection on the Multi Unit Spectroscopic Explorer (MUSE) data cube (see [10]). It is a 100 × 100 image and consists of 3600 bands in wavelengths ranging from 465-930 nm. We used one band of each 60, so that 60 bands in total. Figure 3(a) exhibits the mean power in dB over the 60 bands. The covariance matrix is estimated using a sliding window of size 9 × 9, having n = 80 secondary data (after excluding only the test pixel). The mean has been removed from the given HSI. Figure 3(b) exhibits the ROC curves of our estimators when compared to some others, and their AUC values are shown in Table 1.

The estimators

ΣSoft OLS , ΣSCAD OLS achieve higher detection results than for all the others, whereas both ΣL 1 and ΣSCAD achieve only a lower AUC values than for B k ( ΣSCM ). 

Fig. 1 .

 1 Fig. 1. A hyperspectral image (HSI)

Model 2 :•

 2 the Autoregressive model order 1, AR(1), Σ = [σ gl ] p×p , where σ gl = c |g-l| , for c = 0.3, Model 3: Σ = [σ gl ] p×p , where σ gl = (1 -((|g -l|)/r)) + , for r = p/2: the triangular matrix.

Fig. 3 .

 3 Fig. 3. (a) MUSE HSI (average). (b) ROC curves for MUSE. (c) Legend.

  This is done by lettingx = [x 1 , . . . , xp ] T ∈ R p ,and consider each element xt , t ∈ [1, p], as the linear least squares predictor of x t based on its t -1 predecessors {x j } j∈[1, t-1] . In particular, for t ∈ [1, p], let

  {|C t,j |} to Λ, where p α ∈ {p L 1 α , p SCAD α,a>2 } (see subsection III. A) with α ∈ [0, ∞), we have:

		i,t /θ 2 t . By adding a
	p	t-1
	penalty function	p α
	t=2	j=1

Table 1 .

 1 List of AUC values.

	Models	Σ	ΣSCM ΣOLS	ΣSoft OLS	ΣSCAD OLS	ΣL 1	ΣSCAD ΣSMT B k ( ΣSCM )	ΣSoft SCM	ΣSCAD SCM
	Model 1 0.9541	0.7976 0.8331 0.9480 0.9480 0.9509 0.9509 0.9503 0.9509	0.9509 0.9509
	Model 2 0.9540	0.7977 0.8361 0.9124 0.9124 0.9264 0.9264 0.9184 0.9478	0.9274 0.9270
	Model 3 0.9541	0.7978 0.8259 0.8169 0.8257 0.8236 0.8261 0.7798 0.5321	0.5969 0.5781
	MUSE Not known 0.6277 0.6575 0.9620 0.9643 0.8844 0.8844 0.7879 0.9277	0.7180 0.7180

  For both Model 1 and 2, our estimators significantly improve the detection performances comparing to those of the traditional estimators ( ΣSCM , ΣOLS ), and have competitive detection results with state-of-the-art. An important finding is that even for a non sparse covariance model (that is, Model 3) , our estimators do not show a harm on the detection when compared to those of ΣSCM , ΣOLS . Despite ΣSoft OLS , ΣSCAD OLS and ΣL 1 have slightly lower AUC values than for ΣOLS , this is still a negligible degradation on the detection. Thus, considering that ΣSoft OLS , ΣSCAD OLS and ΣL 1 have no worse detection results than to that of ΣOLS is still acceptable.

2, and their corresponding AUC values are presented in Table
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