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Abstract
Estimating large covariance matrices has been a long-

standing important problem in many applications and has
attracted increased attention over several decades. This pa-
per deals with two methods based on pre-existing works
to impose sparsity on the covariance matrix via its unit
lower triangular matrix (aka Cholesky factor) T. The first
method serves to estimate the entries of T using the Ordinary
Least Squares (OLS), then imposes sparsity by exploiting
some generalized thresholding techniques such as Soft and
Smoothly Clipped Absolute Deviation (SCAD). The second
method directly estimates a sparse version of T by penaliz-
ing the negative normal log-likelihood with L1 and SCAD
penalty functions. The resulting covariance estimators are al-
ways guaranteed to be positive definite. Some Monte-Carlo
simulations as well as experimental data demonstrate the
effectiveness of our estimators for hyperspectral anomaly
detection using the Kelly anomaly detector.

Introduction

Fig. 1. A hyperspectral image (HSI)

A hyperspectral image (HSI) is a three dimensional data cube consisting of a
series of images of the same spatial scene in a contiguous and multiple narrow
spectral wavelength (color) bands. Each pixel in the HSI is a p-dimensional
vector, x ∈ Rp, where p stands for the total number of spectral bands. With the
rich information afforded by the high spectral dimensionality, target detection is
not surprisingly one of the most important applications in hyperspectral imagery.

In many situations of practical interest, we do not have sufficient a priori
information to specify the statistics of the target class. More precisely, the
target’s spectra is not provided to the user. This unknown target is referred as
“anomaly” having a very different spectra from the surrounding background.

Different Gaussian-based anomaly detectors have been proposed in the
literature. The detection performance of these detectors mainly depend on the
true unknown covariance matrix (of the background surrounding the test pixel)
whose entries have to be carefully estimated specially in large dimensions.
Due to the fact that in hyperspectral imagery, the number of covariance matrix
parameters to estimate grows with the square of the spectral dimension, it
becomes impractical to use traditional covariance estimators where the target de-
tection performance can deteriorate significantly. Many a time, the researchers
assume that compounding the large dimensionality problem can be alleviated
by leveraging on the assumption that the true unknown covariance matrix is
sparse, namely, many entries are zero.

Covariance estimation via linear re-
gression
Suppose that we observe a sample of n independent and identically distributed
p-random vectors, {xi}i∈[1, n], each follows a multivariate Gaussian distribution

with zero mean and unknown covariance matrix Σ = [σg,l]p×p. The first tra-
ditional estimator we consider in this paper is the Sample Covariance Matrix

(SCM), defined as Σ̂SCM = [σ̂g,l]p×p =
1

n

n∑
i=1

xi x
T
i .

In order to address the positivity definiteness constraint problem of Σ̂SCM ,
Pourahmadi [1] has modeled the covariance matrices via linear regressions.
This is done by letting x̂ = [x̂1, . . . , x̂p]

T ∈ R
p, and consider each element

x̂t, t ∈ [1, p], as the linear least squares predictor of xt based on its t − 1

predecessors {xj}j∈[1, t−1]. In particular, for t ∈ [1, p], let

x̂t =

t−1∑
j=1

Ct,j xj, TΣTT = D . (1)

where T is a unit lower triangular matrix with −Ct,j in the (t, j)th position for
t ∈ [2, p] and j ∈ [1, t − 1], and D is a diagonal matrix with θ2t = var(εt) as
its diagonal entries, where εt = xt − x̂t is the prediction error for t ∈ [1, p].
Note that for t = 1, let x̂1 = E(x1) = 0, and hence, var(ε1) = θ21 = E

[
(x1)

2
]
.

Given a sample {xi}i∈[1, n], with n > p, a natural estimate of T and D, de-
noted as T̂OLS and D̂OLS in this paper, is simply done by plugging in the
OLS estimates of the regression coefficients and residual variances in (1), re-
spectively. In this paper, we shall denote the second traditional estimator by
Σ̂OLS = T̂−1OLS D̂OLS T̂−TOLS.

Main contributions
Before describing the two methods, we want to recall the definition for Σ̂OLS.
Given a sample {xi}i∈[1, n], we have:

xi,t =

t−1∑
j=1

Ct,j xi,j + εi,t t ∈ [2, p], i ∈ [1, n]. (2)

By writing (2) in vector-matrix form for any t ∈ [2, p], one obtains the simple
linear regression model:

yt = An,tβt + et , (3)

where yt = [x1,t, · · · , xn,t]T ∈ R
n, An,t = [xi,j]n×(t−1), βt =

[Ct,1, · · · , Ct,t−1]T ∈ R(t−1), and et = [ε1,t, · · · , εn,t]T ∈ Rn.
When n > p, the OLS estimate of βt and the corresponding residual variance
are plugged in T and D for each t ∈ [2, p], respectively. At the end, one obtains
the estimator Σ̂OLS = T̂−1OLS D̂OLS T̂−TOLS. Note that T̂OLS has -ĈOLS

t,j in the
(t, j)th position for t ∈ [2, p] and j ∈ [1, t− 1].

Generalized thresholding based Cholesky
Factorization
For any 0 ≤ λ ≤ 1, we define a matrix thresholding operator Th(.) and denote
by Th(T̂OLS) = [Th(−ĈOLS

t,j )]p×p the matrix resulting from applying a specific
thresholding operator Th(.) ∈ {Soft, SCAD} to each element of the matrix
T̂OLS for t ∈ [2, p] and j ∈ [1, t− 1].
We consider the following minimization problem:

Th(T̂OLS) = argmin
T

p∑
t=2

t−1∑
j=1

{
1

2
(ĈOLS

t,j − Ct,j)2 + pλ{|Ct,j|}
}

(4)

where pλ ∈ {pL1λ , pSCADλ,a>2 }. We have pL1λ (|Ct,j|) = λ|Ct,j|, and pSCADλ,a>2 (|Ct,j|) =
λ|Ct,j| if |Ct,j| ≤ λ

− |C
2
t,j |−2aλ|Ct,j |+λ2

2(a−1) if λ < |Ct,j| ≤ aλ
(a+1)λ2

2 if |Ct,j| > aλ

.

Solving (4) with pL1λ and pSCADλ,a>2 , yields a closed-form Soft and SCAD thresh-
olding rules, respectively [2], [3]. The value a = 3.7 was recommended by Fan
and Li [3]. Despite the application here is different than in [3], for simplicity,
we use the same value throughout the paper.
We shall designate the two thresholded matrices by T̂Soft and T̂SCAD, that
apply Soft and SCAD on T̂OLS, respectively. We denote our first two estimators
as:

Σ̂
Soft

OLS = T̂−1Soft D̂OLS T̂−TSoft

Σ̂
SCAD

OLS = T̂−1SCAD D̂OLST̂
−T
SCAD

A generalization of the estimator in [4]
Note that det(T) = 1 and Σ = T−1 D T−T . It follows that det(Σ) = det(D) =
p∏
t=1

θ2t . Hence, the negative normal log-likelihood of X = [x1, · · · , xn] ∈ Rp×n,

ignoring an irrelevant constant, satisfies:
Λ = −2 log(L(Σ,x1, · · · ,xn)) = n log(det(D)) + XT (TT D−1 T) X =

n log(det(D)) + (T X)T D−1(T X) = n
p∑
t=1

log θ2t +
p∑
t=1

n∑
i=1

ε2i,t/θ
2
t . By adding a

penalty function
p∑
t=2

t−1∑
j=1

pα{|Ct,j|} to Λ, where pα ∈ {pL1α , pSCADα,a>2 } (see subsec-

tion III. A) with α ∈ [0,∞), we have:

n log θ21 +

n∑
i=1

ε2i,1
θ21

+

p∑
t=2

(
n log θ2t +

n∑
i=1

ε2i,t
θ2t

+

t−1∑
j=1

pα{|Ct,j|}
)

(5)

Obviously, minimizing (5) with respect to θ21 and θ2t gives the solutions

θ̂21 = 1
n

n∑
i=1

ε2i,1 = 1
n

n∑
i=1

x2i,1 and θ̂2t = 1
n

n∑
i=1

ε2i,t = 1
n

n∑
i=1

(xi,t −
t−1∑
j=1

Ct,jxi,j)
2, re-

spectively.
It remains to estimate the entries of T by minimizing (5) with respect to βt.
From equation (2) and (3), the minimization problem to solve for each t ∈ [2, p]

is:

β̂t = argmin
βt

n∑
i=1

ε2i,t
θ2t

+

t−1∑
j=1

pα{|Ct,j|}

= argmin
βt

1

θ2t

n∑
i=1

xi,t − t−1∑
j=1

Ct,jxi,j

2

+

t−1∑
j=1

pα{|Ct,j|}

= argmin
βt

1

θ2t
||yt −An,tβt||2F +

t−1∑
j=1

pα{|Ct,j|}

(6)

By denoting l(βt) = 1
θ2t
||yt − An,tβt||2F and r(βt) =

t−1∑
j=1

pα{|Ct,j|} =

t−1∑
j=1

rj(Ct,j), we solve βt iteratively using the General Iterative Shrinkage and

Thresholding (GIST) algorithm [5]:

β̂
(k+1)

t = argmin
βt

l(β
(k)
t ) + r(βt) + (∇l(β(k)

t ))T (βt − β
(k)
t )

+
w(k)

2
||βt − β

(k)
t ||2

= argmin
βt

0.5||βt − u
(k)
t ||2 +

1

w(k)
r(βt)

(7)

where u
(k)
t = β

(k)
t −∇l(β

(k)
t )/w(k), and w(k) is the step size initialized using

the Barzilai-Browein rule [6].
By decomposing (7) into independent (t-1) univariate optimization problems,
we have for j = 1, · · · , t− 1:

C
(k+1)
t,j = argmin

Ct,j

0.5||Ct,j − u(k)t,j ||
2 +

1

w(k)
rj(Ct,j) (8)

where u
(k)
t = [u

(k)
t,1 , · · · , u

(k)
t,t−1]

T ∈ R(t−1).
By solving (8) with the L1-norm penalty, pL1α , we have the following closed
form solution:

C
(k+1)
t,j,(L1)

= sign(u
(k)
t,j ) max(0, |u(k)t,j | − α/w

(k)) (9)

For the SCAD penalty function, pSCADα,a>2 , we can observe that it contains three
parts for three different conditions. In this case, by recasting problem (8) into
three minimization sub-problems for each condition, and after solving them,
one can obtain the following three sub-solutions h1t,j, h

2
t,j, and h3t,j, where:

h1t,j = sign(u
(k)
t,j ) min(α,max(0, |u(k)t,j | − α/w(k))),

h2t,j = sign(u
(k)
t,j ) min(aα,max(α,

w(k)|u(k)t,j |(a−1)−aα
w(k)(a−2) )),

h3t,j = sign(u
(k)
t,j ) max(aα, |u(k)t,j |).

Models Σ Σ̂SCM Σ̂OLS Σ̂
Soft

OLS Σ̂
SCAD

OLS Σ̂L1 Σ̂SCAD Σ̂SMT Bk(Σ̂SCM) Σ̂
Soft

SCM Σ̂
SCAD

SCM

Model 1 0.9541 0.7976 0.8331 0.9480 0.9480 0.9509 0.9509 0.9503 0.9509 0.9509 0.9509
Model 2 0.9540 0.7977 0.8361 0.9124 0.9124 0.9264 0.9264 0.9184 0.9478 0.9274 0.9270
Model 3 0.9541 0.7978 0.8259 0.8169 0.8257 0.8236 0.8261 0.7798 0.5321 0.5969 0.5781
MUSE Not known 0.6277 0.6575 0.9620 0.9643 0.8844 0.8844 0.7879 0.9277 0.7180 0.7180

Table 1. List of AUC values.

Hence, we have the following closed form solution:

C
(k+1)
t,j,(SCAD) = argmin

qt,j

0.5||qt,j − u(k)t,j ||
2 +

1

w(k)
rj(qt,j)

s.t. qt,j ∈ {h1t,j, h2t,j, h3t,j}
(10)

At the end, we denote our last two estimators as:

Σ̂L1 = T̂−1L1 D̂ T̂−TL1

Σ̂SCAD = T̂−1SCAD D̂ T̂−TSCAD

where T̂L1 and T̂SCAD have respectively −Ĉt,j,(L1) and −Ĉt,j,(SCAD) in the
(t, j)th position for t ∈ [2, p] and j ∈ [1, t − 1], whereas D̂ has the entries
(θ̂21, θ̂

2
t ) on its diagonal.

Hyperspectral anomaly detection
Suppose the following signal model:{

H0 : x = n, xi = ni, i = 1, · · · , n
H1 : x = γ d + n, xi = ni, i = 1, · · · , n (11)

where n1, · · · ,nn are n i.i.d p-vectors, each follows a multivariate Normal
distribution N (0,Σ). d is an unknown steering vector and which denotes the
presence of an anomalous signal with unknown amplitude γ > 0. The Kelly
anomaly detector [7] is described as follows:

DKellyADΣ̂(x) = xT Σ̂
−1
SCM x

H1

≷
H0

δ , (12)

where δ is a prescribed threshold value. In the following two subsections, the
detection performances of the estimators, when are plugged in DKellyAD,Σ̂ are
evaluated by the Receiver Operating Characteristics (ROC) curves and their
corresponding Area Under Curves (AUC) values.
Note that the tuning parameter λ and α are chosen automatically using a
5-fold crossvalidated loglikelihood procedure (see Subsection 4.2 in [4] for
details).

Monte-Carlo simulations
The experiments are conducted on three covariance models:

• Model 1: Σ = I, the identity matrix,

• Model 2: the Autoregressive model order 1, AR(1), Σ = [σgl]p×p, where
σgl = c|g−l|, for c = 0.3,

• Model 3: Σ = [σgl]p×p, where σgl = (1− ((|g − l|)/r))+, for r = p/2: the
triangular matrix.

The computations have been made through 105 Monte-Carlo trials and the
ROC curves are drawn for a signal to noise ratio equal to 15dB. We choose
n = 80 for covariance estimation under Gaussian assumption, and set p = 60.
The artificial anomaly we consider is a vector containing normally distributed
pseudorandom numbers (to have fair results, the same vector is used for the
three models). The ROC curves for Model 1, 2 and 3 are shown in Fig. 2, and
their corresponding AUC values are presented in Table 1.
The estimators used in comparison are: Σ̂SCM , Σ̂OLS, Σ̂SMT [8], Bk(Σ̂SCM)

[9], Σ̂
Soft

SCM [2], et Σ̂
SCAD

SCM [2].

For both Model 1 and 2, our estimators significantly improve the detection
performances comparing to those of the traditional estimators (Σ̂SCM , Σ̂OLS),
and have competitive detection results with state-of-the-art. An important
finding is that even for a non sparse covariance model (that is, Model 3) , our
estimators do not show a harm on the detection when compared to those of
Σ̂SCM , Σ̂OLS. Despite Σ̂

Soft

OLS, Σ̂
SCAD

OLS and Σ̂L1 have slightly lower AUC values
than for Σ̂OLS, this is still a negligible degradation on the detection. Thus,
considering that Σ̂

Soft

OLS, Σ̂
SCAD

OLS and Σ̂L1 have no worse detection results than to
that of Σ̂OLS is still acceptable.

Application on experimental data
Our estimators are now evaluated for galaxy detection on the Multi Unit
Spectroscopic Explorer (MUSE) data cube (see [10]). It is a 100 × 100 image
and consists of 3600 bands in wavelengths ranging from 465-930 nm. We used
one band of each 60, so that 60 bands in total. Figure 3(a) exhibits the mean
power in dB over the 60 bands. The covariance matrix is estimated using a
sliding window of size 9 × 9, having n = 80 secondary data (after excluding
only the test pixel). The mean has been removed from the given HSI. Figure
3(b) exhibits the ROC curves of our estimators when compared to some others,
and their AUC values are shown in Table 1.
The estimators Σ̂

Soft

OLS, Σ̂
SCAD

OLS achieve higher detection results than for all the
others, whereas both Σ̂L1 and Σ̂SCAD achieve only a lower AUC values than
for Bk(Σ̂SCM).

Fig. 3. (a) MUSE HSI (average). (b) ROC curves for MUSE. (c) Legend.
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