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Abstract

A question of ongoing interest for linear Time-delay systems is to determine conditions on the
equation parameters that guarantee the exponential stability of solutions. In recent works a new
interesting property of time-delay systems was emphasized. As a matter of fact, the multiple
spectral values for time-delay systems was characterized by using a Birkhoff/Vandermonde-
based approach. Then, a multiplicity induced stability criteria exhibited for reduced order sys-
tems; scalar delay-equations and a special class of second order systems. This work, further
explores such a criteria and shows their applicability to the control of a mechanical system.

Keywords: Time-Delay, Stability, frequency-domain approach, Control design, Vibration
control

1. Introduction

1 In this paper, the special class of nonlinear eigenvalue problems derived from the frequency
domain analysis of Time-delay systems is considered. An ongoing interest for such an eigenvalue
analysis is motivated by the wide range of applications where time-delays occurs. As a matter
of fact, the asymptotic behavior of the solutions of this class of infinite dimensional dynamical
systems is determined from the corresponding spectrum designating the set of the roots of the as-
sociated characteristic function often called quasipolynomial, that is a transcendental polynomial
in the Laplace variable in which appear exponential terms induced by delays, see for instance [1].
The study of the zeros of such a class of entire functions [2] plays a crucial role especially in
the analysis of the asymptotic stability of the zero solution associated with dynamical systems.
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Indeed, the zero solution is asymptotically stable if all the spectral values are in the open left-
half complex plane [3]. Furthermore, the crucial effect of multiplicities (algebraic/geometric) of
a given spectral values on the stability of the steady-state of the corresponding dynamical system
is well known, see for instance [3]. But, such multiple roots may produce complex behaviors,
for instance, in the case of multiple Hopf points’ dynamics one refers the reader to the work [4].
One of the main ingredients allowing to multiple spectral values is the sysmmetry. Symmetries in
dynamical systems often induce equivariance conditions, which may be associated with multiple
spectral values. It is observed in [5] that the existence of multi-dimensional irreducible repre-
sentations of the symmetry group may force a spectral value to be multiple. Also, such multiple
spectral values may occur in optimization problems, see for instance [6].

Recent works by the authors [7, 8, 9] characterized multiple Crossing Imaginary Roots
(CIR) for time-delay systems using a Birkhoff/Vandermonde-based approach. In [8] it is shown
that the admissible multiplicity of the zero spectral value is bounded by the generic Polya and
Szegö bound denoted PS B, which is nothing but the degree of the corresponding quasipolyno-
mial, see for instance [10]. In [7] it is shown that a given CIR with non vanishing frequency
never reaches PS B and a sharper bound for its admissible multiplicities is established. However,
even the characterization of the multiplicity of a given complex (non real) spectral value may
be carried out by the same approach, it involves hyperbolic/trigonometric functional confluent
Vandemonde matrices. Moreover, in such a case the PS B can never be reached. Furthermore,
an example of a scalar retarded equation with two delays is studied in [7] where it is shown
that the multiplicity of real spectral values may reach the PS B. The corresponding system has
some further interesting properties: (i) it is asymptotically stable, (ii) its spectral abscissa (right-
most root) corresponds to this maximal allowable multiple root located on the imaginary axis.
Such observations enhance the outlook of further exhibiting the existing links between the maxi-
mal allowable multiplicity of some negative spectral value reaching the quasipolynomial degree2

and the stability of the trivial solution of the corresponding dynamical system. Such a prop-
erty was already observed in [11], where a tuning strategy is proposed for the design of a delayed
Proportional-Integral controller by placing a triple real dominant root for the closed-loop system.
However, the right-most position is only checked using a Mikhailov curve and QPmR toolbox,
see for instance [12]. In the sequel, the above property which is called in [13] multiplicity induced
stability will be further explored.

The present work is a natural continuation of [7, 8, 13, 14], it aims first to improve the
understanding of the correspondence between the multiple spectral value variety and the stable
variety associated with the steady state solution, and secondly, to demonstrate the applicability
of such a property to a mechanical engineering problem.

The remaining paper is organized as follows. Section 2 introduces the prerequisite and states
the problem. Also, some motivating reduced order examples are discussed. Next, the main results
are enunciated and proved in Section 3, namely, the multiplicity induced stability is explored for
the general second order delay equation. Section 4, is devoted to the application to the control of
active vibrations. Concluding remarks end the paper.

2. Problem Statement and Motivations

In this section, second-order linear systems of retarded type are explored. Namely, a suffi-
cient condition for the asymptotic stability of the following class of LTI time-delay systems is

2The quasipolynomial degree is nothing but the number of the involved polynomials plus their degree minus one
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presented. Consider the system
ẋ = A0x(t) + A1x(t − τ) (1)

with the state-vector x = (x1, x2) ∈ R2, under appropriate initial conditions belonging to the
Banach space of continuous functions C([−τN , 0],R2). Here τ is a positive constant delays and
the matrices A j ∈ M2(R) for j = 0 . . . 1. It is well known that the asymptotic behavior of the
solutions of (1) is determined from the spectrum ℵ designating the set of the roots of the asso-
ciated characteristic function (denoted in the sequel ∆(s, τ)). Namely, the characteristic function
corresponding to system (1) is a quasipolynomial ∆ : C × Rn

+ → C of the form:

∆(s, τ) = det
(
s I − A0 − A1 e−τs) . (2)

To start with, let us recall recent results exploiting multiple spectral values to establish sufficient
conditions for the asymptotic stability of the zero solution of system of type (1).

2.1. Scalar equation with a delay

Consider the simple scalar differential equation with one delay representing a biological
model discussed by K. L. Cooke in [15]. It describes the dynamics of a vector disease dynamics
where the infected host population x(t) is governed by:

ẋ(t) + a0 x(t) + a1 x(t − τ1) − a1 x(t − τ1) x(t) = 0, (3)

here a1 > 0 designates the contact rate between infected and uninfected populations and it is
assumed that the infection of the host recovery proceeds exponentially at a rate −a0 > 0, see also
[16] for more insights on the modeling and stability results. Let us focus on the linearized system
which is given by:

ẋ(t) + a0 x(t) + a1 x(t − τ) = 0. (4)

In [13], it is shown that for a given delay τ ∈ R∗+, equation (4) admits a double spectral value at
z = z0 if and only if z0 = −a0τ + 1/τ and a1 = e−a0τ−1/τ. If in addition, a0 > −1/τ then the zero
solution of system (4) is asymptotically stable and z0 is nothing but the corresponding rightmost
root.

2.2. A particular second order delay equation

In [13] the well known Sunflower model is considered. Namely, the helical movement of a
growing plant is governed by the following delay equation:

ẍ +
a
τ

ẋ +
b
τ

sin(x(t − τ)) = 0 (5)

Such a model is known to reproduce the dynamics of the upper part of the stem of the plant,
which performs a rotating movement. Here the state x(t) designates the angle of the plant with
respect to the vertical line and the delay τ corresponds to a geotropic reaction time and a and b
some positive parameters. The corresponding linearized system with α = a/τ and β = b/τ is
given by:

ẍ + αẋ + βx(t − τ) = 0 (6)
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In [13] it is shown that equation (6) admits a spectral value at z with multiplicity 2 if and only if
(α, z) = (α+, z+) or (α, z) = (α−, z−) where:

α− = −

(
2 +

√
4 + τ2β2

)
e

1/2 τ
(
−β−

2+
√

4+τ2β2
τ

)
τ−2,

z− = −
β

2
−

2 +
√

4 + τ2β2

2τ

α+ =

(
−2 +

√
4 + τ2β2

)
e

1/2 τ
(
−β+

−2+
√

4+τ2β2
τ

)
τ−2,

z+ = −
β

2
+
−2 +

√
4 + τ2β2

2τ

(7)

It is also proven that if (z, α) = (z+, α+) (respectively (z−, α−)) and τβ > 2
√

3 (τβ < 2
√

3)
then z+ (respectively z−) is a the rightmost root and the corresponding steady state solution is
asymptotically stable. The next section enunciates the main contribution, which extends the
above results.

3. Rightmost Characteristic root assignment for the general second order equation with a
single constant delay: Maximal multiplicity based approach

On the one hand, second-order linear systems capture the dynamic behavior of many natu-
ral phenomena, and have found wide applications in a variety of fields, such as vibration and
structural analysis. On the other hand, it is shown in [17] the stabilizing effect of the delay in
the control, that is the closed-loop stability is guaranteed precisely due to the existence of the
delay. Here, we are concerned by the problem of the analytical characterization of the rightmost
root corresponding to the general second order time-delay systems where the control is a de-
layed state feedback. More precisely, we consider Time-delay system where the corresponding
characteristic function is written as:

∆(s, τ) = s2 + c1s + c0 + β e−τ s. (8)

Using the following change of variables

s =
c1 λ

2
, (9)

one obtains the corresponding normalized characteristic function:

∆̃(λ, τ̃) = λ2 + 2 λ + a0 + α e−λτ̃, where α =
4
c2

1

β, τ̃ =
c1

2
τ, a0 = 4

c0

c1
2 . (10)

It is well known that if all α = 0 and the problem of spectral abscissa minimization is considered
then a0 = 1 and the rightmost root is λ0 = −1, see for instance [18]. By exploiting the delay
effect, we are able to increase the solution’s convergence rate by decreasing the corresponding
rightmost root.

Let assume that a0 > 1, then the following Theorem holds.

Theorem 3.1.
4



i) The multiplicity of any given root of the quasipolynomial function (10) is bounded by 3.
ii) The quasipolynomial (10) admits a real spectral value at λ = λ0 with algebraic multiplicity

3 if and only if

τ̃ =

√
1

a0 − 1
, λ0 = −1 −

1
τ̃
, α = −

2 e−(1+τ̃)

τ̃2 . (11)

iii) If (11) is satisfied then λ = λ0 is the rightmost root of (10).

Proof. Assertion i) follows directly from Pólya-Szegö Theorem presented in Appendix, see also
[8, 9]. Indeed, setting α = β = 0 gives a bound of the number of real roots for (10), which
is nothing but the degree of the quasipolynomial. The maximal number of real roots is itself a
bound for the multiplicity of any real root. The vanishing of the corresponding quasipolynomial
∆̃(λ, τ̃) = 0 allows to isolate the exponential term

e−λ τ =
−a0 − 2 λ − λ2

α
. (12)

Since we are investigating the algebraic multiplicity three of roots of (10), one substites (12) in
the first two derivatives, which allows to the system of algebraic equations: 2 + τ1

2
(
−a0 − 2 λ − λ2

)
= 0

2 + 2 λ − τ1

(
−a0 − 2 λ − λ2

)
= 0

(13)

Solving (13) in λ and τ̃, gives the unique solution τ̃ =
√

1
a0−1 , λ0 = −1 − 1

τ̃
. Substituting

these values in (12) allows to the value of α. Simple computations shows that multiplicity four
is not possible since the incompatibility of the obtained solution with the vanishing of the third
derivative, which concludes ii). The proof of iii) is similar to the one proposed in [7] and [13].
By substituting the parameters’ values guaranteeing such a maximal multiplicity, one writes the
corresponding equation as:

∆̃(λ, τ̃) = (λ − λ0)2
(
1 +

∆̃(λ, τ̃) − (λ − λ0)2

(λ − λ0)2

)
= 0. (14)

Writing explicitly the expression of ∆̃ in (14) then substituting the parameter values from (11)
gives:

∆̃(λ, τ̃) = (λ − λ0)2
(
1 − 2

∫ 1

0

∫ s

0
e−τ̃ (λ−λ0)tdt ds

)
= 0. (15)

Let assume that λ1 = γ1 + jω1 is a root of (10) such that γ1 > z0, then λ1 should be a root of the
second factor of ∆̃ in . Thus,

1 = 2
∫ 1

0

∫ s

0
e−τ̃ (λ−λ0)tdt ds = 2 |

∫ 1

0

∫ s

0
e−τ̃ (λ−λ0)tdt ds |

≤ 2
∫ 1

0

∫ s

0
|e−τ̃ (λ−λ0)t |dt ds

(16)

But γ1 > z0 then |e−τ̃ (λ−λ0)t | < 1, which shows the inconsistency of such an assumption. This
concludes that z0 is the rightmost root of ∆̃.
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Remark 1.

• In terms of the initial equation (8) parameters’, the only admissible triple root in the
Laplace variable s is given by s0 = c1

2 λ0. Furthermore, if such a configuration holds then
s0 is the rightmost root corresponding to (8). If in addition the delay τ satisfy c1τ + 2 > 0
then the trivial solution corresponding to (8) is asymptotically stable.

• In the case of a real non semi-simple spectral value (with an algebraic multiplicity n greater
than 1 and a geometric multiplicity 1) corresponding to the complete regular splitting,
using a perturbation approach, it is shown in [19] that the behavior of a real eigenvalue with
multiplicity n, corresponds to a minimum of the spectral abscissa function, as a function
of a delay parameter.

• The use of the delayed feedback is in general motivated by the simplicity of the design
procedure as well as the controller implementation. Furthermore, in [17] the delay stabi-
lizing effect is emphasized where the explicit conditions on the pair (α, τ) are established
such that the delayed feedback stabilizes the plant, but the closed loop system would be
instable if the delay τ is set to zero.

4. Application to Vibration control

The problem of active vibration damping of thin mechanical structures is a topic that has re-
ceived great attention by the control community for several years [20], especially, when actuators
and sensors are based on piezoelectric materials. For mechanical structures that are deformable,
piezoelectric materials are used as strain sensors or strain actuators. With an appropriate con-
troller, they allow to achieve shape control [e.g. 21, 22]) or the active damping of multi-modal
vibrations thanks to their very large bandwidth. Moreover, their behavior is quite linear when
they work in a specific range of use. This explains in part the great interest of using piezoelectric
materials for the instrumentation of thin mechanical structures. In this area, the major challenge
is the design of controllers able to damp the most vibrating modes in a specified low-frequency
bandwidth while ensuring robustness against high-frequency modes, outside the bandwidth of in-
terest, often unmodelled or weakly modelled. The inherent feature of this kind of systems is that
they arise robustness issues when they are tackled with finite dimensional control tools. Many
works have concerned the vibration control problem of the “Euler-Bernoulli beam” equipped
with one rectangular piezoelectric actuator and sometimes, another one, identical and collocated,
but used as sensor, see for example [23], [24] where one edge of the beam is clamped whereas
the other remains free. Other works dealt with the problem of vibration control for laminated
rectangular plates [25] or complex plate like structures [26].

In this work, we consider the flexible structure depicted in Fig. 1. It is an aluminium-based
beam, embedded in a mobile support. The mobile support is subjected to an acceleration, denoted
by w in the sequel, and it is moving along the z axis. This flexible beam is equipped with two
lead zirconate titanate piezoelectric patches (also called PZT): one of them is used as an actuator
and the other works as a sensor. These patches are supposed to be rigidly bounded on the beam,
one on each side, located at the clamped edge. The whole device is designated hereafter as a
piezo-actuated beam. It can be deformed by the application of a voltage, denoted by u, across
the actuator. The sensor delivers an electrical voltage which corresponds to a measure, denoted
by y, of the local deformation under the piezoelectric patch.
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Figure 1: Sketch of the piezo-actuated flexible beam, clamped at one edge.

Very often, this equipped mechanical structure is partly described by the in-plane Euler-
Bernoulli Partial Differential Equation (PDE) that suffers from the lack of precision in describing
the electro-mechanical interactions between the passive structure and the piezoelectric compo-
nents. Indeed, these latter are often withdrawn in the computation of the eigenfrequencies [27]
of the whole structure. Nevertheless, such a structure obeys to fundamental equations of contin-
uum mechanics in 3D space [28], involving computations of gradient of displacement vector and
divergence operator applied to strength tensor. When completed with Neumann and Dirichlet
boundary conditions, the fundamental equations give several PDEs that are coupled, thus that are
impossible to solve analytically. Then, engineers that need inputs-to-outputs dynamical models
naturally watch for numerical methods [29].

Finite Element Modelling (FEM) is a numerical method that approximates the displacement
field with a displacement vector of finite dimension, denoted q ∈ Rndo f , containing as many
components as needed to describe the displacement field in the 3D space, for both mechanical
and electrical variables [30]. This method leads to the following matricial Ordinary Differential
Equations (ODE), time invariant but coupled and linear [29]:

Mqqq̈(t) + Dqqq̇(t) + Kqqq(t) = Mqww(t) − Kquu(t) (17)
y(t) = Kqyq(t) (18)
z(t) = Fzww(t) − Fzuu(t) − Fzqq(t) − Fzvq̇(t) (19)

where w(t) ∈ R is the absolute acceleration (m/s2) of the movable support along axis z, z(t) ∈ R
is the relative acceleration (m/s2) of the free end, derived from the equations of motion, u(t) ∈ R
is the piezoelectric voltage (V) across the actuator (control signal), y(t) ∈ R is the piezoelectric
sensor voltage (V) across the sensor (measured output signal y(t)). Moreover, the terms Mqq, Dqq,
Mqw, Kqq, Kqu, Kqy, Fzw, Fzu, Fzq and Fzv are all matrices derived from the assembly step of the
FEM such that q(t) ∈ R1000, i.e. several thousands degrees of freedom. The dynamical model
given by equations (17)—(19) is not numerically tractable because of the very large number of
degrees of freedom ndo f ≈ 103 for our flexible system.

After producing a FEM, a modal analysis is performed to the undamped motion equation
(17). It consists in finding the eigenstructure of

Mqqq̈(t) + Kqqq(t) = 0,

in order to use the eigenvectors as a new basis in which equations (17)—(19) form a new system
7



of ODEs, still linear but decoupled, involving a new state vector, called vector of modes. The
advantage of this framework is that it allows to build a model in state-space form devoted to the
analysis of (20) with an order sufficiently small to describe the dynamical behavior within a low-
frequency bandwidth. Furthermore, a reduced order system, devoted to the synthesis step, is also
available and differs from (20) by the presence of feedthrough terms between output y and inputs
w and u. On the one hand, the analysis model is of order 12, containing two uncontrollable and
unobservable modes, and describing the inputs-outputs behavior in the bandwidth [0− 3500Hz].
On the other hand, the reduced system is of order 2, including the first bending mode. This mode
is controllable and observable. Let xp ∈ Rnp be the state vector of the system, whatever its order,
meaning either np = 12 for the analysis model or np = 2 for the synthesis model. The frequency
responses are shown in Fig. 2 and the shapes of the first bending modes in Fig. 3.

P


ẋp(t) = Apxp(t) + Bp,ww(t) + Bp,uu(t)

z(t) = Cp,zxp(t) + Dp,zww(t) + Dp,zuu(t)
y(t) = Cp,yxp(t) + Dp,yww(t) + Dp,yuu(t)

(20)

It is worth mentioning that the piezo-actuated beam is a SISO system, i.e. with only one actuator,
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Figure 2: Analysis (-) and synthesis (.-) models’ frequency responses

driven by the controlled electrical voltage u, and only one measured output signal correspond-
ing to the electrical voltage y. The perturbation input w is the total acceleration applied to the
clamped edge of the structure. The vertical total acceleration of the free edge is our controlled
output z. An interesting control objective would be to damp the peak of resonance of the first
bending mode, by using an output feedback controller of low gain, in order to avoid the control
signal saturation in closed-loop.

5. Vibration damping

The transfer function corresponding to the first mode of vibration is given by:

G(s) =
N(s)
D(s)

, (21)
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Mode 1 at 37.15 Hz

Mode 3 at 227.3 Hz Mode 4 at 621.2 Hz

Figure 3: Three first controllable and observable modes.

with the following numerical expressions of N and D which are derived from the reduced-order
state-space model briefly described in Section 2: N(s) = 0.0824705565013658 s2 + 0.0402320642368774 s + 5472.41008648971

D(s) = s2 + 0.487835488732404 s + 59495.8660165543
(22)

Since we are considering the configuration where the sensor and the actuator are collocated, then
the roots of the second order polynomial N(s) are with negative real parts as indicated in [31].

G(z)
r ε u

b

ν y

η

+

+

+

+

+

−

C(z)

Figure 4: Feedback control structure for active vibration
damping.

Consider now the piezo-actuated system in-
serted in the typical output feedback control
structure of Fig. 4, with a reference signal r
equal to zero, no additive input disturbance
b and no additive output disturbance η. We
define the following controller given in the
Laplace domain by

C(s) =
β e−τ s

N(s)
.

Using the normalization (9), the closed-loop characteristic function takes the form (10). Fol-
lowing Theorem 3.1, one has, a dominant root of multiplicity 3 at λ0 = −1000.999500 for an
admissible delay value τ̃ = 0.001000000500 and the gain value α = −735022.75582638422906.

6. Comparison with a linear pole placement controller

In order to show the effectiveness of the approach, we propose to design a linear controller
derived from the pole placement approach and compare the time responses of both controllers,
in closed-loop, to a disturbance w corresponding to a square tooth signal. To have a relevant
comparison, the Pole-Placement (PP) linear controller is designed to assign all the closed-loop
poles in the same location of the complex plane, and with the same algebraic multiplicity, as
the multiple pole obtained with the Filtered Delayed Proportional (FDP) controller. Let us set
N(s) = b2 s2 + b1 s + b0 and D(s) = s2 + c1 s + c0 and define the desired closed-loop characteristic
function with the pole-placement controller as

Πd(s) = (s − s0)3 (23)

9



where s0 = λ0 c1/2 is the multiple pole obtained with the filtered delayed proportional controller.
The pole-placement controller is sought as the following rational fraction

Cpp(s) =
S (s)
R(s)

(24)

where the degrees of the polynomials S (s) and R(s) respectively σ and ρ satisfy σ ≤ ρ. Now
define R̃(s) := R(s) + b2 S (s) as a monic polynomial of degree ρ̃. So that the pole-placement
controller which is obtained by solving the following Diophante equation, in the unknown poly-
nomials S and R,

D(s) R(s) + N(s) S (s) = Πd(s) (25)

is equivalent to this solving other Diophante equation, in the unknown polynomials S and R̃

D(s) R̃(s) + Ñ(s) S (s) = Πd(s), (26)

where Ñ(s) := N(s) − b2 D(s) := b̃1 s + b̃0 is of degree 1. Since the degrees of N(s) and D(s) are
both equal to 2, it can be shown that the minimal value of ρ and σ that fulfills the constraint is
ρ = σ = 1. In that case, we set R̃(s) = s + r̃0 and S (s) = s1 s + s0 and (26) is equivalent to the
following linear system  1 b̃1 0

c1 b̃0 b̃1

c0 0 b̃0


r̃0
s1
s0

 =

−3s0 − c1
3s0

2 − c0
−s0

3

 . (27)

Numerically, we obtain R(s) ' −16.34556626 s + 4958.655183 and S (z) ' 210.3243509 s −
51250.51385. Figure 5 shows the time responses of the measured output y when the beam system
is submitted to a disturbance w similar to a shock applied at the clamped end. Three responses are
shown: the gray one is the response when no controller is applied (open-loop response); the red
one is the response when the PP controller is applied and the blue one is the response when the
FDP controller is applied. Firstly, both controllers PP and FDP manage to suppress the vibrations
quickly with roughly the same dynamic. Secondly, one notes that the peak at the beginning of the
response is higher in the case of the PP controller, meaning that the FDP controller enhance this
behavior with respect to the PP controller. Figure 6 shows the time responses of the closed-loop
voltage across the piezoelectric actuator (control signal), when the beam system is still submitted
to the same disturbance w. One notes that the PP controller develops a peak of voltage higher
than the FDP controller, whereas this last one oscillates longer in time.

7. Conclusion

In this paper, we illustrated the interest of using time-delay in the controller design as a con-
trol parameter. The applicability of the rightmost root assignment in the problem of vibration’s
attenuation in the case of a single vibrating mode was also emphasized. In future works, the pro-
posed controller design will be applied to further vibrating modes and it will therein be compared
with other optimal controllers of finite dimension.
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Figure 5: Time responses of the piezoelectric sensor in open and closed-loop.

Figure 6: Time responses of the voltage across the piezoelectric actuator in closed-loop.
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We warmly thank Professor Gábor Stépán (Budapest University of Technology and Economics,
Hungary) for stimulating discussions on delay topics. Last but not least, we thank Karim L.
Trabelsi (IPSA Paris, France) for careful reading of the manuscript and for valuable remarks. IB
and SIN are partially financially supported by a grant from Hubert Curien (PHC) BRANCUSI
2017, project number 38390ZL.

References

[1] R. Bellman, K. Cooke, Differential-difference equations, Academic Press, New York, 1963.
[2] B. Levin, Distribution of zeros of entire functions, Translations of Mathematical Monographs, AMS, Providence,

Rhode Island, 1964.
[3] W. Michiels, S.-I. Niculescu, Stability and stabilization of time-delay systems, Vol. 12 of Advances in Design and

Control, Society for Industrial and Applied Mathematics (SIAM), 2007.
[4] W. Govaerts, J. Guckenheimer, A. Khibnik, Defining functions for multiple hopf bifurcations, SIAM Journal on

Numerical Analysis 34 (3) (1997) 1269–1288.
[5] M. Dellnitz, B. Werner, Computational methods for bifurcation problems with symmetries-with special attention

to steady state and hopf bifurcation points, Journal of Computational and Applied Mathematics 26 (1-2) (1989) 97
– 123.

11



[6] J. Vanbiervliet, K. Verheyden, W. Michiels, S. Vandewalle, A nonsmooth optimisation approach for the stabilisation
of time-delay systems, ESAIM: COCV 14 (3) (2008) 478–493.

[7] I. Boussaada, S. I. Niculescu, Tracking the algebraic multiplicity of crossing imaginary roots for generic quasipoly-
nomials: A Vandermonde-based approach, IEEE Transactions on Automatic Control 61 (2016) 1601–1606.

[8] I. Boussaada, S.-I. Niculescu, Characterizing the codimension of zero singularities for time-delay systems, Acta
Applicandae Mathematicae 145 (1) (2016) 47–88.

[9] I. Boussaada, S.-I. Niculescu, Computing the codimension of the singularity at the origin for delay systems: The
missing link with Birkhoff incidence matrices, 21st International Symposium on Mathematical Theory of Networks
and Systems (2014) 1 – 8.

[10] G. Pólya, G. Szegő, Problems and Theorems in Analysis, Vol. I: Series, Integral Calculus, Theory of Functions,
Springer-Verlag, New York, Heidelberg, and Berlin, 1972.

[11] A. Ramirez, S. Mondie, R. Garrido, R. Sipahi, Design of proportional-integral-retarded (pir) controllers for second-
order lti systems, IEEE Transactions on Automatic Control (99) (2015) 1–6.

[12] T. Vyhlidal, P. Zitek, Mapping based algorithm for large-scale computation of quasi-polynomial zeros, IEEE Trans-
actions on Automatic Control 54 (1) (2009) 171–177.

[13] I. Boussaada, H. Unal, S.-I. Niculescu, Multiplicity and stable varieties of time-delay systems: A missing link, in:
Proceeding of the 22nd International Symposium on Mathematical Theory of Networks and Systems, 2016, pp.
1–6.

[14] I. Boussaada, S.-I. Niculescu, S. Tliba, T. Vyhlidal, On the coalescence of spectral values and its effect on the
stability of time-delay systems: Application to active vibration control, Procedia IUTAM 22 (Supplement C) (2017)
75 – 82, IUTAM Symposium on Nonlinear and Delayed Dynamics of Mechatronic Systems.

[15] K. L. Cooke, Stability analysis for a vector disease model, Rocky Mountain J. Math. 9 (1979) 31–42.
[16] S. Ruan, Delay differential equations in single species dynamics, in: Delay Differential Equations and Applications,

Vol. 29 of Fields Inst. Commun., Springer, Berlin, 2006, pp. 477–517.
[17] S.-I. Niculescu, W. Michiels, K. Gu, C. T. Abdallah, Delay Effects on Output Feedback Control of Dynamical

Systems, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010, pp. 63–84.
[18] O. Kirillov, M. Overton, Robust stability at the swallowtail singularity, Frontiers in Physics 1 (2013) 24.
[19] W. Michiels, I. Boussaada, S. Niculescu, An explicit formula for the splitting of multiple eigenvalues for nonlinear

eigenvalue problems and connections with the linearization for the delay eigenvalue problem, SIAM J. Matrix
Analysis Applications 38 (2) (2017) 599–620.

[20] S. Tliba, Control of a Vibrating Axisymmetric Membrane Using Piezoelectric Transducers, in: 18th IFAC World
Congress, Milano, Italy, 2011, p. 7713 (6 pages).

[21] E. Park, J. Mills, Static shape and vibration control of flexible payloads with applications to robotic assembly,
IEEE/ASME Trans. on Mechatronics, 10 (6) (2005) 675–687.

[22] W. Juan, H. Hongsheng, Q. Suxiang, Q. Linfang, Research on shape control and active vibration control of piezo-
electric composite laminated shell, in: ICEMI ’07. 8th International Conference on Electronic Measurement and
Instruments, 2007., 2007, pp. 4–569 –4–576.

[23] W. Chen, M. Buehler, G. Parker, B. Bettig, Optimal sensor design and control of piezoelectric laminate beams,
IEEE Trans. on Control Systems Technology, 12 (1) (2004) 148–155.

[24] H. Banks, R. del Rosario, H. Tran, Proper orthogonal decomposition-based control of transverse beam vibrations:
experimental implementation, IEEE Trans. on Control Systems Technology, 10 (5) (2002) 717–726.
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Appendix A: Pólya-Szegö Theorem

Theorem 7.1 (Pólya-Szegö, [10], pp. 144). Let τ1, . . . , τN denote real numbers such that

τ1 < τ2 < . . . < τN ,

and d1, . . . , dN positive integers satisfying

d1 ≥ 1, d2 ≥ 1 . . . dN ≥ 1, d1 + d2 + . . . + dN = D + N.

Let ] be the number of zeros of the function

f (s) =
∑

1≤i≤N,1≤ j≤di

ci, j fi, j(s),

that are contained in the horizontal strip α ≤ I(z) ≤ β where fi, j(s) = s j−1 eτi s, for 1 ≤ j ≤ di

and 1 ≤ i ≤ N.
Assuming that ∑

1≤k≤d1

|c1,k | > 0, . . . ,
∑

1≤k≤dN

|cN,k | > 0,

then
(τN − τ1) (β − α)

2 π
− D + 1 ≤ ] ≤

(τN − τ1) (β − α)
2 π

+ D + N − 1.

Setting α = β = 0, the above theorem yields ]PS ≤ D + N − 1 where D stands for the sum of
the degrees of the polynomials involved in the quasipolynomial function f and N designates the
associated number of polynomials. This gives a sharp bound for the number of f ’s real roots.
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