
HAL Id: hal-01667823
https://centralesupelec.hal.science/hal-01667823

Submitted on 19 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Distributed PID-like Consensus Control for
Discrete-time Multi-agent Systems

Nicolo Gionfra, Guillaume Sandou, Houria Siguerdidjane, Damien Faille

To cite this version:
Nicolo Gionfra, Guillaume Sandou, Houria Siguerdidjane, Damien Faille. A Distributed PID-like Con-
sensus Control for Discrete-time Multi-agent Systems. 14th International Conference on Informatics in
Control, Automation and Robotics (ICINCO), Jul 2017, Madrid, Spain. �10.5220/0006420500720081�.
�hal-01667823�

https://centralesupelec.hal.science/hal-01667823
https://hal.archives-ouvertes.fr


A Distributed PID-like Consensus Control
for Discrete-time Multi-agent Systems
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Abstract:
The problem of discrete-time multi-agent systems governed by general MIMO dynamics is ad-
dressed. By employing a PID-like distributed protocol, we aim to solve two relevant consensus
problems, namely the leaderless consensus under disturbances and leader-follower under time-
varying reference state ones. Sufficient conditions for stability as well as two LMI approaches to
tune the controller gains are provided. The latter are either based on a H∞ formulation of the
problem or on fast response to a reference exogenous signal. Numerical simulations give some
insight of which tuning should be considered according to the problem addressed.

1 INTRODUCTION

In recent years much research effort has been
devoted to the area of multi-agent cooperative
control because of its wide range of applications
and potential benefits. Cooperation of a coor-
dinated multi-agent network is sought via dis-
tributed algorithms as they present some inter-
esting advantages over their centralized counter-
part, e.g. avoiding single point of failure, reducing
communication and computational burden, etc.
The main problem in distributed coordination,
known as consensus problem, is the one of achiev-
ing an agreement on some variables of interest
of each agent via local interactions. These vari-
ables evolve according to a prescribed dynamics
describing the physics of the problem, while inter-
actions among agents are defined by a given com-
munication graph. Finding a distributed proto-
col to solve the aforementioned problem has been
extensively treated for single and double integra-
tor dynamic agents, e.g. (Ren and Beard, 2008).
However, in a more general framework, general
dynamics need to be considered in order to de-
scribe the agents behavior.

The consensus problem for this latter case has
been discussed for both continuous and discrete-

time multi-agent systems. In addition, it can be
further divided in two main classes of problems,
namely leaderless and leader-follower ones. As
far as the former is concerned, the most employed
distributed protocol is given by a static state feed-
back law, also called P-like distributed control.
One can cite, for instance, (Xi et al., 2010), (Li
et al., 2013), (Yang-Zhou et al., 2014) for the
continuous-time framework, and (Li et al., 2013),
(You and Xie, 2011), (Su and Huang, 2012), (Ge
et al., 2013) for the discrete one, where the con-
sensus problem is led back to the one of simul-
taneously stabilizing multiple LTI systems. Ref-
erences (Li et al., 2013), and (Su and Huang,
2012) also solve a leader-follower problem where
the leader has an autonomous time-invariant dy-
namics. Another interesting problem is the one
of finding the optimal P-like protocol gain in or-
der to improve consensus under system uncertain-
ties, as in (Li et al., 2012), and disturbances as
in (Oh et al., 2014), (Li et al., 2011), for contin-
uous time systems, and (Wang and Gao, 2011)
for discrete-time ones. The proposed approaches
usually make use of some H2 or H∞ constraints
to be respected, and they are in general more in-
volved than the one of simultaneously stabilizing
multiple systems. For instance, (Li et al., 2011)



provide necessary and sufficient conditions, for
the continuous-time case to solve the consensus
problem while guaranteeing some properties on
the aforementioned norms. On the other hand,
for discrete-time systems only sufficient condi-
tions are provided using results from robust con-
trol as in (Wang and Gao, 2011). Dynamic dis-
tributed controllers are also proposed for consen-
sus achievement based on local output measure-
ments, e.g. (Li et al., 2013). In the continuous-
time framework, (Xi et al., 2012) provide a con-
troller with limited energy, while a general full or-
der one is presented in (Liu et al., 2009) to achieve
someH∞ performance. Other possible structures
have been explored too. Indeed, given the com-
mon P-like controller, one can easily think of a
more general PID-like structure. In continuous-
time, for instance, (Carli et al., 2008) propose a
PI-like distributed algorithm for single integra-
tor dynamic agents, and (Ou et al., 2014) pro-
vide a PID-like controller for general high-order
SISO systems. Similar control design is applied
to solve a leader-follower consensus under time-
varying reference state, as in (Ren, 2007), and in
its sampled-data counterpart (Cao et al., 2009),
where a PD-like protocol is given. Even though
the presented literature review is nowhere near
exhaustive, one can remark that poorer attention
has been devoted to discrete-time dynamic pro-
tocols for general LTI MIMO systems, and this is
where we wish to place our contribution.

In this paper we propose a PID-like dis-
tributed controller for the aforementioned sys-
tems, where the agents can communicate on a
connected undirected graph, and we provide two
possible ways of tuning the controller parameters,
based on the solution of LMIs. To the best of our
knowledge this distributed control structure has
never been fully treated for the mentioned class
of dynamic systems. The approach we propose is
used to solve two different problems, namely the
leaderless consensus under the presence of distur-
bances, and the leader-follower consensus under
a time-varying reference state. Our main results
are based on the work of (Wu et al., 2011), which
we adapted for distributed coordination purposes.
The fundamental feature of the aforesaid work is
that MIMO PID parameter tuning can be per-
formed via LMIs, avoiding in this way, the need
for solving BMIs. Furthermore, in both the an-
alyzed consensus problems the measurement ma-
trix is kept general, allowing a more general prob-
lem formulation for the case in which the agents
cannot directly measure the variables on which

agreement is sought. Eventually, concerning the
leaderless consensus, agreement can be focused on
particular variables of interest via a proper selec-
tion of the controlled output matrix. As for clas-
sic control, the PID controller allows good perfor-
mance despite being rather simple. Concerning
the leaderless consensus problem, for instance, it
enhances the disturbance rejection, and achieves
results that a simple P-like protocol would not
permit if the dynamics of the agents are general.
Similar conclusions hold for the leader-follower
consensus problem with a time-varying reference
state, where a P-like control would undoubtedly
reach lower performance.

The reminder of this paper is organized as fol-
lows. In Section 2 some preliminaries on graph
theory are provided and the two main problems
are stated. In Section 3 we provide sufficient con-
ditions to solve a leaderless and a leader-follower
consensus problem, and we give an LMI approach
to tune the distributed PID controller gains. We
carry out simulations to test the effectiveness of
the proposed controller in Section 4. The paper
ends with conclusions and future perspectives in
Section 5.

2 PRELIMINARIES AND
PROBLEM STATEMENT

2.1 Graph Theory

An undirected graph G is a pair (V,E), where
V = {1, . . . ,N} is the set of nodes, and E ⊆V×V is
the set of unordered pairs of nodes, named edges.
Two nodes i, j are said to be adjacent if (i, j)∈ E .
Under the assumption of undirected graph, the
latter implies that (j, i) ∈ E too. An undirected
graph is connected if there exists a path between
every pair of distinct nodes, otherwise is discon-
nected. The adjacency matrix A= [aij ] ∈ RN×N
associated with the undirected graph G, consid-
ered in this paper, is defined by aii = 0, i.e. self-
loops are not allowed, and aij = 1 if (i, j) ∈ E .
The Laplacian matrix L ∈ RN×N is defined as
Lii =

∑
j 6=i aij and Lij =−aij , i 6= j. Considering

an undirected graph we make use of the following
Lemma 1. (Ren et al., 2005) The Laplacian ma-
trix has the following properties: (i) L is sym-
metric and all its eigenvalues are either strictly
positive or equal to 0, and 1 is the corresponding
eigenvector to 0; (ii) 0 is a simple eigenvalue of
L if and only if the graph is connected.



We will also make use of another Laplacian ma-
trix, according to the following
Lemma 2. (Lin et al., 2008) Let L̄ =

[
l̄ij
]
∈

RN×N be a Laplacian matrix such that l̄ij =
N −1
N

if i = j, and l̄ij = − 1
N

otherwise, then
the following hold: (i) the eigenvalues of L̄ are
1 with multiplicity N − 1, and 0 with multiplic-
ity 1. 1> and 1 are respectively the left and
right eigenvector associated to eigenvalue 0; (ii)
there exists an orthogonal matrix U ∈RN×N , i.e.
U : U>U = UU> = I, such that for any Lapla-
cian matrix L associated to any undirected graph
we have

U>L̄U =
[

IN−1 0(N−1)×1
01×(N−1) 0

]
, Λ̄,

U>LU =
[

L1 0(N−1)×1
01×(N−1) 0

]
where L1 ∈R(N−1)×(N−1) is symmetric and pos-
itive definite if the graph is connected.
In addition we employ the Kronecker product ⊗,
for which we have
Lemma 3. (Graham, 1981) Suppose that U ∈
Rp×p, V ∈ Rq×q, X ∈ Rp×p, and Y ∈ Rq×q.
The following hold: (i) (U ⊗V )(X⊗Y ) = UX⊗
V Y ; (ii) suppose U , and V invertible, then
(U ⊗V )−1 = U−1⊗V −1.

2.2 Problems Formulation

Problem 1. We consider N identical agents gov-
erned by general discrete-time linear dynamics,
according to

x+
i =Axi+B2ui+B1ωi, i= 1, · · · ,N
zi = C1xi
yi = C2xi

(1)
where A ∈ Rn×n, B2 ∈ Rn×l, B1 ∈ Rn×h, C1 ∈
Rr×n, C2 ∈ Rm×n, xi , xi(k) ∈ Rn and x+

i ,
xi(k+ 1) ∈ Rn are respectively the agent state at
the current step k, and at the next step k+ 1,
ui , ui(k) ∈ Rl is the agent control, ωi , ωi(k) ∈
Rh its disturbance, zi , zi(k)∈Rr the variable on
which agreement among the agents is sought, and
yi , yi(k) ∈ Rm is the measured output. For the
sake of leaderless consensus, a priori we do not
require A to be Schur stable. Indeed, as shown by
(Ge et al., 2013), A has a role in determining the
consensus function to which the agents converge
under proper control. Here it can be thought to be

assigned by a previous control design step. The
agents can communicate on an undirected con-
nected graph whose Laplacian matrix L has posi-
tive minimum nonzero and maximum eigenvalues
respectively equal to λL, and λ̄L. At this point,
we can state the problem in a general way as the
one of finding a distributed control law for ui such
that ‖zi−zj‖ is minimized for i, j = 1, · · · ,N with
respect to the disturbance ω , [ω>1 , · · · ,ω>N ]>. In
this work though, as previously stated, we focus
on local controllers of the form{

x+
ci

=Acxci +Bcsi, i= 1, · · · ,N
ui = Ccxci +Dcsi

(2)

where xci , xci(k) ∈ R2l is the agent controller
state, and

Ac =
[

Il Il
0l×l 0l×l

]
2l×2l

Bc =
[

(Ki−Kd)
Kd

]
2l×m

Cc =
[
Il 0l×l

]
l×2l Dc = [(Kp+Ki+Kd)]l×m

(3)

where Kp,Ki,Kd ∈ Rl×m are gain matrices to be
tuned, and where si , si(k) ∈ Rm :

si ,
N∑
j=1

aij(yi−yj) (4)

Thus the closed-loop system for agent i has di-
mension n̄ , n+ 2l. As shown by (Wu et al.,
2011), system (2) is a state representation of
the discrete-time PID MIMO controller, whose z-
transform is

ui(z)
si(z)

=Kp+Ki
z

z−1 +Kd
z−1
z

(5)

The problem can now be restated as the one of
finding matrices Bc, and Dc such that the effect
of disturbance ω on the consensus is minimized.

The second problem studied in this paper is
the following
Problem 2. Consider N+1 discrete-time linear
agents, whose dynamics are described by

x+
0 =Ax0 +B1u0
z0 = C1x0
y0 = C2x0
x+
i =Axi+B2ui, i= 1, · · · ,N
zi = C1xi
yi = C2xi

(6)

where A ∈ Rn×n, B1 ∈ Rn×h, B2 ∈ Rn×l, C1 ∈
Rr×n C2 ∈Rm×n, x0 , x0(k)∈Rn is the state of



the N+1 agent, called leader, y0 , y0(k)∈Rm is
its measured output, u0 , u0(k) ∈ Rh is a time-
varying unknown control acting on the leader dy-
namics, and z0 , z0(k) ∈ Rr is the variable on
which we want the follower controlled outputs zi
to converge. Concerning the remaining N fol-
lower agents, system description similar to (1)
holds. The followers are assumed to communicate
on an undirected connected graph whose Lapla-
cian matrix is L. The leader can pass infor-
mation to a subset of followers. If agent i re-
ceives information from the leader, then we set
ai0 to 1, and 0 otherwise. Thus we define M ,
L− diag(a10, · · · ,aN0), which is symmetric and
positive definite, and we name λM, and λ̄M re-
spectively its minimum and maximum eigenvalue.
Without loss of generality we consider A to be
Schur stable. The aim of the present problem is
indeed not the one of stabilizing each single agent,
but rather to steer the follower agents state to
the leader one despite the presence of u0, which
makes the leader dynamics time-varying. In order
to accomplish such objective we aim to employ the
controller of form (2), (3), where we consider a
modified variable si to take into account the com-
munication with the leader agent, according to

si =
N∑
j=1

aij(yi−yj) +ai0(yi−y0) (7)

Intuitively such a controller is not capable of
solving the leader-follower tracking problem, i.e.
limk→∞ ‖zi−z0‖ 6= 0 for i= 1, · · · ,N , and for any
vector signal u0, because the latter acts as an un-
known exogenous signal for the overall system in-
cluding the N +1 agents. This is why we will fo-
cus on tuning the controller matrices Bc, and Dc
such that ‖zi−z0‖ is minimized for i= 1, · · · ,N .

3 MAIN RESULT

3.1 H∞ Output Consensus

In order to state our main result we introduce
the following definition, similar to the one given
in (Wang and Shao, 2015).
Definition 1. System (1) is said to achieve an
H∞ output consensus with a performance index
γ ∈R+ if, for any initial condition, limk→∞ ‖zi−
zj‖ = 0 for i, j = 1, · · · ,N when ω = 0, and the
H∞ norms of the transfer function matrices, for
i = 1, · · · ,N , between ω and zi−

1
N

∑N
j=1 zj are

inferior to γ.

The following result is based on Theorem 3 in
(Wu et al., 2011), reported in Theorem 4 in the
Appendix.

Theorem 1. Given N agents described by (1) on
an undirected connected graph; consider the dis-
tributed protocol of equations (2),(3),(4); then the
agents achieve H∞ output consensus with perfor-
mance index γ if there exist two symmetric posi-
tive definite matrices P ,P̄ ∈ Rn̄×n̄ such that the
LMI conditions of Theorem 4 are simultaneously
satisfied for two LTI systems whose matrices
are respectively (A,B2,λLC2), and (A,B2, λ̄LC2),
and they both have controlled output matrix C1,
and disturbance input matrix B1.

Proof. The closed-loop dynamics for the generic
agent i, by using (1),(2), and by defining the
augmented state ξi ,

[
x>i ,x

>
ci

]> ∈ Rn̄, and ma-
trices C̄2 , [C2 0m×2l], C̄1 , [C1 0r×2l], B̃ ,[
B>1 0h×(2l)

]> is given by{
ξ+
i = Âξi+ B̂

∑N
j=1 aij (ξi− ξj) + B̃ωi

zi = C̄1ξi

where

Â=
[
A B2Cc
0 Ac

]
, B̂ =

[
B2DcC̄2
BcC̄2

] (8)

Similar to ((Liu et al., 2009)), and ((Wang and
Gao, 2011)), we define ζi , zi−

1
N

∑N
j=1 zj , and

δi , ξi−
1
N

∑N
j=1 ξj , thus ζi = C̄1δi. Note that

if ζi = 0 for i = 1, · · · ,N then zi = zj , i.e. out-
put consensus is achieved. If now we name
ξ ,

[
ξ>1 , · · · , ξ>N

]>, δ ,
[
δ>1 , · · · , δ>N

]>, and ζ ,[
ζ>1 , · · · , ζ>N

]>, we have that ζ =
(
IN ⊗ C̄1

)
δ, and

δ = ξ−1⊗ 1
N

∑N
j=1 ξj =

(
L̄⊗ In̄

)
ξ, where L̄ sat-

isfies the conditions of Lemma 2. Gathering to-
gether the equations of the closed-loop agents dy-
namics, we obtain{

ξ+ =
(
IN ⊗ Â+L⊗ B̂

)
ξ+
(
IN ⊗ B̃

)
ω

ζ =
(
IN ⊗ C̄1

)(
L̄⊗ In̄

)
ξ =

(
L̄⊗ C̄1

)
ξ

We now consider the following change of coordi-
nates δ =

(
L̄⊗ In̄

)
ξ, which yields

δ+ =
(
L̄⊗ In̄

)(
IN ⊗ Â+L⊗ B̂

)
ξ+(

L̄⊗ In̄
)(
IN ⊗ B̃

)
ω =



=
(
L̄⊗ Â+ L̄L⊗ B̂

)δ+1⊗ 1
N

N∑
j=1

ξj

+

(
L̄⊗ B̃

)
ω

=
(
L̄⊗ Â+ L̄L⊗ B̂

)
δ+
(
L̄⊗ B̃

)
ω

where we used points (i) of Lemma 2, and 3. Ac-
cording to the (ii) point of the former, we em-
ploy the orthogonal matrix U ∈ RN×N to de-
fine the change of coordinates: δ̂ ,

(
U>⊗ In̄

)
δ,

ω̂ ,
(
U>⊗ Ih

)
ω, ζ̂ ,

(
U>⊗ Im

)
ζ, so that the

system equations in the new coordinates are given
by

δ̂+ =
(
U>⊗ In̄

)(
L̄⊗ Â+ L̄L⊗ B̂

)
(U ⊗ In̄) δ̂

+
(
U>⊗ In̄

)(
L̄⊗ B̃

)
ω

=
(

Λ̄⊗ Â+Λ̄U>LU ⊗ B̂
)
δ̂+
(
Λ̄⊗ B̃

)
ω̂

ζ̂ =
(
U>⊗ Im

)(
IN ⊗ C̄1

)
(U ⊗ In̄) δ̂ =(

IN ⊗ C̄1
)
δ̂

(9)

As shown in Lemma 2, being the last rows of Λ̄,
and U>LU zeros, we can split the dynamics (9) in
two parts by dividing the system variables as δ̂ =
[δ̂>1 , δ̂>2 ]>, ω̂= [ω̂>1 , ω̂>2 ]>, and ζ̂ = [ζ̂>1 , ζ̂>2 ]>. The
dynamic equation of the second variable is then
δ̂+
2 = 0, and it does not influences δ̂1. It follows

that we can study the reduced order system{
δ̂+
1 =

(
IN−1⊗ Â+L1⊗ B̂

)
δ̂1 +

(
IN−1⊗ B̃

)
ω̂1

ζ̂1 =
(
IN−1⊗ C̄1

)
δ̂1

From Lemma 2, it exists an orthogonal
matrix V ∈ R(N−1)×(N−1) : V >L1V , Λ =
diag(λ1, · · · ,λN−1), where 0 < λL ≤ λi ≤ λ̄L
for i = 1, · · · ,N − 1. Thus we can define
a further change of coordinates, such that
δ̄1 ,

(
V >⊗ In̄

)
δ̂1, ω̄1 ,

(
V >⊗ Ih

)
ω̂1, and ζ̄1 ,(

V >⊗ Im
)
ζ̂1. The latter yields{

δ̄+
1 =

(
IN−1⊗ Â+ Λ⊗ B̂

)
δ̄1 +

(
IN−1⊗ B̃

)
ω̄1

ζ̄1 =
(
IN−1⊗ C̄1

)
δ̄1

(10)
It is easy to see that the transfer function matrix
of (10) satisfies

‖Tζ̄1ω̄1
(z)‖∞ = ‖Tζ̂1ω̂1

(z)‖∞ =
‖Tζ̂ω̂(z)‖∞ = ‖Tζω(z)‖∞

(11)

It follows that we can impose an H∞ constraint
on transfer function matrix Tζω(z) by acting on
Tζ̄1ω̄1

(z). We can now separate equation (10) in

N − 1 subsystems, each of them being governed
by
δ̄+
1i

=
[

(A+B2Dc(λiC2)) B2Cc
Bc(λiC2) Ac

]
δ̄1i

+
[
B1
0

]
ω̄i

ζ̄1i = C1x̄1i

(12)

where δ̄1i , [x̄>1i
x̄>1,ci

]>. System (12) can be
equivalently seen as the closed-loop form of the
two following systems

x̄+
1i

=Ax̄1i +B2ūi+B1ω̄i
ȳ1i , (λiC2)x̄1i

ζ̄1i = C1x̄1i{
x̄+

1,ci
=Acx̄1,ci

+Bcȳ1i

ūi , Ccx̄1,ci
+Dcȳ1i

(13)

Thus, we can reformulate the problem as the
one finding matrices Bc, and Dc such that for
i = 1, · · · ,N − 1 the closed-loop system of (13) is
Schur stable when ωi = 0, and to guarantee that
‖Tz̄iω̄i(z)‖∞ < γ. A sufficient condition to prove
the existence of such a solution and a relatively
simple way to calculate the controller matrices are
obtained by employing Theorem 4. In the latter
it is proved that if it exists a symmetric positive
definite matrix Pi ∈ Rn̄×n̄ such that if a given
LMI condition is satisfied, then closed-loop sys-
tem (12) using controller (2),(3),(4) is such that

δ̄>1i
(k+ 1)Piδ̄1i(k+ 1)− δ̄>1i

(k)Piδ̄1i(k)
< γ2ω̄>i (k)ω̄i(k)− z̄>i (k)z̄i(k)

It is important to stress that such LMI condition
is affine in the system matrices, variables and ma-
trix Pi. We make use of this fact to provide suf-
ficient conditions for which it exists a controller
of the considered form such that the mentioned
LMI is simultaneously verified for i= 1, · · · ,N−1.
Since the generic eigenvalue of L1 : λi is such that
λL ≤ λi ≤ λ̄L, then it always exists αi ∈ R : 0 ≤
αi≤ 1 so that λi =αiλL+(1−αi)λ̄L. Notice that
the systems to be stabilized, appearing in the first
set of equation in (13), can be seen as one single
system with an uncertain measurement matrix,
whose parameter is λi. In other words, C2i ,
λiC2, and ∃αi : C2i = αiC2min + (1−αi)C2max ,
where C2min , λLC2, and C2mix , λ̄LC2, i.e. it
can be written as a convex combination of the
extreme matrices C2min , and C2max . Thus, as



in (Wang and Gao, 2011), the proof makes use of
classic results of robust linear control, and in par-
ticular by introducing an affine parameter depen-
dent Lyapunov matrix P (αi) , αiP + (1−αi)P̄ ,
where P , P̄ are Lyapunov matrices solution of
simultaneous LMI of Theorem 4 written for re-
spectively C2min , and C2max . Eventually, it is
easy to show that if P , P̄ exist, then the con-
troller solves the problem ∀λ ∈ R : λL ≤ λ ≤ λ̄L,
and in particular for λ = λi, for i = 1, · · · ,N − 1.
Such a controller is easily found from the solu-
tion of the aforementioned LMI condition. In-
deed among the LMI variables there are matrices
Bc, and Dc, from which it is easy to calculate the
PID gains Kp, Ki, and Kd by employing relations
in (3).

Remark 1. Note that the mentioned LMI con-
ditions, if satisfied, guarantees that the consensus
error is minimized with respect to the disturbance.
However the latter still have a role in determining
the consensus function to which the agents con-
verge.

3.2 Leader-Follower Consensus
under time-varying reference

The result of Subsection 3.1 can be easily adapted
for the sake of leader-follower consensus via an
H∞ formulation of the problem. Thus, we give
the following

Definition 2. System (6) is said to achieve an
H∞ output leader-follower consensus with a per-
formance index γ ∈ R+ if, for any initial condi-
tion, limk→∞ ‖zi− z0‖ = 0 for i = 1, · · · ,N when
u0(k) = 0 ∀k ∈ N, and the H∞ norms of the
transfer function matrices, for i = 1, · · · ,N , be-
tween u0 and zi−z0 are inferior to γ.

Theorem 2. Given the system described by (6),
where N follower agents can communicate on
an undirected connected graph, and one leader
can communicate with a non-empty subset of
followers; consider the distributed protocol of
equations (2),(3),(7); then the systems achieve
H∞ output leader-follower consensus with perfor-
mance index γ if there exist two symmetric posi-
tive definite matrices P ,P̄ ∈ Rn̄×n̄ such that the
LMI conditions of Theorem 4 are simultaneously
satisfied for two LTI systems whose matrices are
respectively (A,B2,λMC2), and (A,B2, λ̄MC2),
and they both have controlled output matrix C1,
and disturbance input matrix −B1.

Proof. The proof is similar to proof of Subsec-
tion 3.1. By defining error ei , xi − x0, ξ ,
[e>i ,x>ci

]>, and ζi , C1ei the closed-loop system
for the generic follower agent i is given by{
ξ+
i = Âξi+ B̂

(∑N
j=1 aij (ξi− ξj) +ai0ξi

)
+ B̃u0

ζi = C̄1ξi

where Â, B̂, C̄1 are defined in (8), and B̃ ,
[−B>1 0h×2l]>. Defining u0 , 1⊗u0, we then
gather the N agent equations together{

ξ+ =
(
IN ⊗ Â+M⊗ B̂

)
ξ+
(
IN ⊗ B̃

)
u0

ζ =
(
IN ⊗ C̄1

)
ξ

(14)
From the definition of M in Section 2, there
exists a orthogonal matrix U : U>MU , Λ =
diag(λ1, · · · ,λN ), where λi ∈ R : λi > 0 for i =
1, · · · ,N , so that we can define the change of co-
ordinates ξ , (U ⊗ In̄)ξ̂, u0 , (U ⊗ Il)û0, ζ ,
(U ⊗ Ir)ζ̂. By applying similar calculation as in
the previous subsection, the global system in the
new coordinates{

ξ̂+ =
(
IN ⊗ Â+ Λ⊗ B̂

)
ξ̂+
(
IN ⊗ B̃

)
û0

ζ̂ =
(
IN ⊗ C̄1

)
ξ̂

(15)
As in (11), it results that ‖Tξ̂û0

(z)‖∞ =
‖Tξu0(z)‖∞, i.e. we can minimize the effect
of u0 on the consensus error by acting on sys-
tem (15). Similar to the passage from equa-
tions (10) to (12), splitting (15) in N subsystems
yields the following equation for subsystem i

ξ̂+
i =

[
(A+B2Dc(λiC2)) B2Cc

Bc(λiC2) Ac

]
ξ̂i

+
[
−B1

0

]
û0

ζ̂i = C1êi
(16)

where ξ̂i , [ê>i x̂>ci
]>. Equivalently, it can be

described as the connection of the two following
systems 

ê+
i =Aêi+B2ûi−B1û0
ŷi , (λiC2)êi
ζ̂i = C1êi{
x̂+
ci

=Acx̂ci +Bcŷi
ûi , Ccx̂ci +Dcŷi

(17)

The rest of the proof is equivalent to the last part
of Subsection 3.1, and it is concluded by invok-
ing Theorem 4, whose LMI conditions have to



be simultaneously satisfied for the two systems
at the vertices of the polytope having matrices
respectively (A,B2,λMC2), and (A,B2, λ̄MC2),
and same controlled output, and disturbance in-
put matrices C1, −B1. From the solution of
the aforementioned LMIs the controllers gains are
easily found as in the proof of Theorem 1. If such
a solution exists, then the system is stable.

Having employed a PID structure for the dis-
tributed controller suggests that consensus should
be reached for any u0(k) = ū0, where ū0 is any
constant vector. However this is not automati-
cally guaranteed in the MIMO case by the men-
tioned LMI conditions, and in this framework it
is verified a posteriori. Nonetheless, if such LMI
has a solution then, according to the well-known
Francis equation, a necessary conditions for the
proposed controller to reject constant exogenous
signals is that l ≥ r.

In the leader-follower consensus framework a
different tuning of the PID controller gains with
respect to Theorem 2 could lead to better perfor-
mance, as shown in section 4. Thus, by proposing
the following definition we aim to focus on system
fast response rather than imposing someH∞ con-
straint. For this last development, we further con-
sider r =m, thus we simply name C , C1 = C2.
Definition 3. System (6) is said to achieve fast
leader-follower consensus with performance index
τ ∈R+ if for u0(k) = 0, and any initial condition,
limk→∞ ‖yi− y0‖ = 0 for i = 1, · · · ,N , and (1−
e−1)% of consensus is achieved in a maximum
number of steps equal to dτe.
Note that the same kind of definition can be con-
sidered for sampled-data systems, by saying that
system (6) achieves fast leader-follower consensus
with a time constant inferior to τTs, where Ts is
the system sampling time. The result we present
in the following is based on Theorem 2 in (Wu
et al., 2011), reported in Theorem 5 in the Ap-
pendix.
Theorem 3. Given the system described by (6),
where N follower agents can communicate on
an undirected connected graph, and one leader
can communicate with a non-empty subset of fol-
lowers; consider the distributed protocol of equa-
tions (2),(3),(7); then the systems achieve fast
leader-follower consensus with performance in-
dex τ = − 1

log(R) , where R ∈ R : 0 ≤ R < 1, if

there exist two symmetric positive definite ma-
trices P ,P̄ ∈ Rn̄×n̄ such that the LMI conditions
of Theorem 5 are simultaneously satisfied for

two LTI systems whose matrices are respectively
(A,B2,λMC), and (A,B2, λ̄MC), and where the
real constants (a,b) to be set in Theorem 5 are
chosen to be (a,b) = (0,R).

Proof. The proof employs the same change of
coordinates as in the previous one, so that we
can restate the problem as the one of stabiliz-
ing the top system of equation (17), for i =
1, · · · ,N , with the bottom system in (17), i.e.
a PID controller whose matrices are defined
in (3). Unlike Theorem 2, as previously men-
tioned, we invoke Theorem 5, where it is stated
that given two real constants (a,b), if there ex-
ists a symmetric positive definite matrix Pi such
that a given LMI condition is satisfied, then sys-
tem (16) is stable with all its eigenvalues λ lay-
ing in the complex plane region defined by FD ,{

(<[λ],=[λ]) : (<[λ] +a)2 +=[λ]2 < b2
}

. As for
the two previous proofs, we employ classic results
of linear robust control to impose that this con-
dition is simultaneously satisfied for two systems
at the vertices of the polytope whose matrices are
respectively (A,B2,λMC), and (A,B2, λ̄MC). If
such a solution exists then the eigenvalues of sys-
tem (14) are guaranteed to lie in FD. In this
framework we are interested in speeding up the
system response to u0. For this reason we set
a = 0, and b = R, where R : 0 ≤ R < 1. Thus,
all system eigenvalues are guaranteed to have a
module inferior to R. As a result, the system has
the slowest time-constant inferior to − Ts

log(R) . In

terms of number of iterations it is easy to see that
such performance is equal to a maximum value⌈
− 1

log(R)

⌉
of iterations. Eventually, from the

LMI solution, the PID gains are found as in the
two previous proofs.

Remark 2. In this latter problem too, having im-
posed a PID structure does not directly guarantee
achievement of consensus for any constant u0(k)
in the general MIMO case. According to Francis
equations, if the mentioned LMI has a solution, a
necessary condition though is given by l ≥m.

4 Simulation Examples

First of all we carry out a numerical simulation
to test the H∞ output consensus control. We
consider a network of 5 agents as show in Fig. 1.a.



Each of them is governed by (1), where

A=

 0.8182 0.0452 −0.0034
0 0.9888 −0.1492
0 0.1492 0.9888

 ,C1 =

 0
1
0

>

B2 =

 1 0.4
0 1

0.5 0.5

 ,B1 =

 0.1
0.05

0

 ,
C2 =

 1.2 0.8 1.4
1.4 −1.2 0.8
−0.5 0.7 1.2


(18)

Note that (18) is not Schur stable because two
of its eigenvalues lay on the unit circle. Each
agent is perturbed by a disturbance of the form
ωi(k) = 0.8νi(k)+ci, where νi is an aleatory vari-
able with uniform distribution of probability in
[0,1], and ci is some constant value. The PID
gains found via LMIs allow an H∞ performance
index of γ = 0.18. Fig. 2 shows the 5 agents tra-
jectories (colored dashed lines) as well as their
average (blue continuous line). Then we compare
the two proposed PID gain tuning for a leader-
follower consensus problem. For this example we
consider the graph of Fig. 1.b, where agent 0 is
the leader. The system dynamics is governed by
equation (6), where

A=

 0.7711 0.4744 0.2475
0.1646 0.4487 0.1036
−0.8959 −0.8534 −0.2198

 ,
B2 =

 0.5 0.3 0.4
0.7 0 1
0.4 0.9 0.3

 ,B1 =

 0.2
0.5
0.3


C1 =

[
1 0 0

]
and C2 as in (18). The controller tuned follow-
ing Theorem 2 allows an H∞ performance in-
dex of γ = 2, while the one tuned according to
Theorem 3 guarantees a performance index of
τ = 6.1531. In Fig. 3 we simulate the system
step response for a value of u0 = 3. For ease of
comparison, we plot here the only output asso-
ciated to matrix C1. As mentioned in section 3,
fast consensus (green dashed lines) outperforms
the H∞ one (red dashed-dotted lines). Indeed,
even if the latter respects Theorem 2, its consen-
sus error goes slowly to zero with respect to the
former one. Eventually, in Fig. 4 it is shown the
system behavior for fast consensus tuning of PID
gains when u0 is a time-varying vector signal, and

where we set C = C1 = C2 =
[

1 0 0
0 1 0

]
. The

Figure 1: (a): leaderless communication graph (left);
(b): leader-follower communication graph (right).

Figure 2: H∞ output consensus.

blue and the dark green continuous signals are re-
spectively leader states x1, and x2, while the fol-
lowers states are represented respectively by the
dashed green and red signals for x1, and x2.

5 Conclusion

We presented a PID-like distributed protocol for
general LTI MIMO discrete-time agents commu-
nicating on an undirected connected graph. By
employing LMIs we showed how the controller
gains can be tuned to solve two different, yet sim-
ilar, problems, namely a leaderless under system
disturbances and a leader-follower under time-
varying reference state consensus problem. Treat-
ing the system disturbances in theH∞ framework
revealed good performance, whereas a gain tun-
ing based on fast response seems to be preferable
when dealing with a leader-follower problem.
Our results are based on robust control to deal
with the problem of simultaneous stabilization
of a given number of systems. The given condi-
tions are sufficient and therefore conservative. In
near future work we are interested in studying less
restrictive conditions when treating the discrete-
time consensus problem in the H∞ framework.

Figure 3: Step response comparison for H∞ output
and fast leader-follower consensus.



Figure 4: Leader-follower consensus under time-
varying reference.
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APPENDIX

In the following we report the two cited theorems
in (Wu et al., 2011). Consider the system of equa-
tions {

x+ =Ax+B1ω+B2u

z = C1x, y = C2x
(19)

where A ∈ Rn×n, B2 ∈ Rn×l, B1 ∈ Rn×h, C1 ∈
Rr×n, C2 ∈ Rm×n, x , x(k) ∈ Rn and x+ ,
x(k+1)∈Rn are respectively the system state at
the current step k, and at the next step k+1, u,
u(k) ∈ Rl is the control input, ω , ω(k) ∈ Rh is
an exogenous input signal, z , z(k) ∈Rr the con-
trolled output, and y, y(k)∈Rm is the measured
one. Define the matrices Ccl ,

[
C1 0r×(2l)

]
,

B̃ ,
[
B>1 0h×(2l)

]>, K ,
[
D>c B>c

]>, and

Ã,

[
A B2Cc

02l×n Ac

]
where Ac, Bc, Cc, and Dc are defined in (3).
Assuming B2 to be of full column rank with-
out loss of generality, there exists an invertible
Tb ∈ Rn×n : TbB2 =

[
0l×(n−l) Il×l

]>. Finally
define

T ,

[
Tb 0n×2l

02l×n I2l×2l

]
Thus, we have the following theorems
Theorem 4. Consider system (19). If there ex-
ists a positive definite matrix P ∈ Rn̄×n̄, where
n̄, n+ 2l, matrices

F =
[
F11 0(n̄−q)×3l
F21 F22

]
F22 ∈ Rq×3l, 1 ≤ q ≤ 3l, G1 , [G11 0] ∈
Rn̄×n̄, G11 ∈ Rn̄×(n̄−3l), G2 , [G21 0] ∈ Rh×n̄,
G21 ∈ Rh×(n̄−3l), G3 , [G31 0] ∈ Rr×n̄, G31 ∈
Rr×(n̄−3l), H1 ∈ Rn̄×r, H2 ∈ Rn̄×r, H3 ∈ Rh×r,
H4 ∈ Rr×r, Y ∈ Rq×m, and

N1 =
[

0(n̄−q)×n 0(n̄−q)×2l
Y C2 0q×2l

]

and we further name Ψ11 , P − FT − (FT )>,
Ψ21 , N>1 + (FTÃ)>−G1T + (H1Ccl)>, Ψ22 ,
−P + G1TÃ + (G1TÃ)> + H2Ccl + (H2Ccl)>,
Ψ31 , (FTB̃)>−G2T , Ψ32 , G2TÃ+H3Ccl +
(G1TB̃)>, Ψ33 , −γ2I + G2TB̃ + (G2TB̃)>,
Ψ41 ,−G3T −H>1 , Ψ42 ,G3TÃ+H4Ccl−H>2 ,
Ψ43 ,G3TB̃−H>3 , and Ψ44 , I−H4−H>4 , such
that the following LMI has a solution Ψ11 ∗ ∗ ∗

Ψ21 Ψ22 ∗ ∗
Ψ31 Ψ32 Ψ33 ∗
Ψ41 Ψ42 Ψ43 Ψ44

< 0 (20)

and if exists K such that F22K = Y , then the H∞
norm of the closed-loop system given by (19) and{

x+
c =Acxc+Bcy

u= Ccxc+Dcy
(21)

satisfies ‖Tzω‖∞ < γ.
Theorem 5. Consider system (19). If there ex-
ists a positive definite matrix P ∈ Rn̄×n̄, and a
matrix

J =
[
J11 0(n̄−q)×3l
J21 J22

]
J22 ∈ R3l×3l, and X ∈ R3l×m, and we further
name

Ω ,

[
0(n̄−3l)×n 0(n̄−3l)×2l
XC2 03l×2l

]
(22)

such that the following LMI has a solution[
bP ∗

Ω +JTÃ+aJT b(JT + (JT )>−P )

]
> 0

(23)
and if J is nonsingular, then by choosing K =
J−1

22 X, the eigenvalues of the following matrix

Acl ,

[
(A+B2DcC2) B2Cc

BcC2 Ac

]
lie in the region FD ,{

(<[λ],=[λ]) : (<[λ] +a)2 +=[λ]2 < b2
}

.


