
HAL Id: hal-01667868
https://centralesupelec.hal.science/hal-01667868

Submitted on 19 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Novel Distributed Particle Swarm Optimization
Algorithm for the Optimal Power Flow Problem
Nicolo Gionfra, Guillaume Sandou, Houria Siguerdidjane, Philippe

Loevenbruck, Damien Faille

To cite this version:
Nicolo Gionfra, Guillaume Sandou, Houria Siguerdidjane, Philippe Loevenbruck, Damien Faille. A
Novel Distributed Particle Swarm Optimization Algorithm for the Optimal Power Flow Problem. 1st
IEEE Conference on Control Technology and Applications (CCTA 2017), Aug 2017, Kohala Coast,
United States. pp.1-8, �10.1109/ccta.2017.8062537�. �hal-01667868�

https://centralesupelec.hal.science/hal-01667868
https://hal.archives-ouvertes.fr


A Novel Distributed Particle Swarm Optimization Algorithm
for the Optimal Power Flow Problem

N. Gionfra1, G. Sandou1, H. Siguerdidjane1, P. Loevenbruck2, and D. Faille3

Abstract— The distributed optimal power flow problem is
addressed. No assumptions on the problem cost function,
and network topology are needed to solve the optimization
problem. A distributed particle swarm optimization algorithm
is proposed, based on Deb’s rule to handle hard constraints.
Moreover, the approach enables to treat a class of distributed
optimization problems in which the agents share a common
optimization variable. Under mild communication assumptions,
agents are only required to know local variables, cost function,
and constraints to solve a common optimization problem. A
simulation example is provided, based on a 5-bus electric grid.

I. INTRODUCTION

Optimal power flow (OPF) is a well-known engineering
problem that has a central role in the power dispatching and
planning of the electric grid. Since its first formulation [1],
the problem has been widely studied and a great number of
centralized algorithms have been proposed to solve it (see
for instance [2] and references therein). Such research effort
is motivated by the complexity of the problem itself, which
happens to be highly nonconvex, mainly due to the power
flow equations. Nonetheless, nowadays OPF is still object
of great attention. Distributed generation, free electricity
market as well as the increasing penetration of renewable
energy sources in the grid require the OPF solutions to
adapt to a definitely complexified electric network. In
particular, the requirements for scalability and efficiency
make centralized solutions no longer tractable and justify
the research for distributed ones [3].

In this regard, numerous solutions are available in the
literature. Generally speaking, the latter usually split the
problem in two steps. Firstly, it is reduced to a convex
one, either by approximation or exact relaxation. Secondly,
the obtained optimization problem is distributed among the
agents, i.e. the buses of the grid. This step usually capitalizes
on alternating direction method of multipliers because it
proved good convergence and scalability properties (e.g.
[4], [5], [6]). Moreover, typically, the optimization problem
is formulated in a distributed way via the introduction of
an additional constraint called consistency or consensus
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constraint, which is responsible for the consistency, or
agreement, of the variables which are shared among the
agents of the network (e.g. [5], [6], [3]). Considerable
attention has been devoted to exact convex relaxation
methods (e.g. [5], [4]) because they enable to find the OPF
global optimum in polynomial time. Unfortunately they
are restricted to special network classes, such as radial
ones. Other approaches (e.g. [7], [6]), even if removing the
assumptions on the network topology, are based on some
convex approximations of the original OPF. In [6], for
instance, the authors rely on convexification of nonconvex
constraints. Thus, neither optimality of the solution nor
feasibility of the original problem are guaranteed. In
[3] a consensus based distributed OPF is proposed by
employing available convex optimization tools. In addition
the consensus constraint is taken into account via the
method of the penalty function. Thus, it inherits the problem
of distortion of the original objective function [8].

In this paper, as in [6], we aim at scalability of the
solution and refer to an OPF problem formulation which
is as general as possible. To accomplish such goals we
capitalize on particle swarm optimization (PSO) algorithm
as it showed good performance for the centralized OPF
problem (e.g. [9], [10], [11]). In particular we suggest a new
distributed version of the aforementioned algorithm, leading
mainly to a two-fold contribution. On the one hand, to the
authors’ knowledge, PSO was never applied to solve OPF
in a distributed manner. On the other hand, the proposed
algorithm has a general formulation that makes it applicable
to a class of distributed optimization problems for which
such solution is not available yet. For instance, related
works to distributed PSO (DPSO) can be found in [12], and
[13]. Unfortunately these approaches cannot be applied to
OPF because they solve a problem in which the agents do
not share common variables. Approaches in [14] and, [15]
are based on considering each agent as a PSO particle of
a common optimization problem. On the one hand this in
turns implies that each agent has knowledge of the common
cost function, which is typically not the case in optimization
problems such as the OPF one. On the other hand, each
agent decides on the whole optimization variable, which
could be unnecessary, and computationally demanding for
the problem addressed in our work. Eventually, while [12]
makes use of a perturbed primal-dual method, and [13]
capitalizes on projection functions, we choose to handle
constraints by employing Deb’s rule [8], by following the
centralized PSO proposed by [16].



The remainder of this paper is organized as follows.
In Section II the optimization problem is stated in a general
way. The main result is presented in Section III, where the
main features of DPSO algorithm are detailed. Section IV
is concerned with the self-configuration of a finite-time
average consensus, which is needed in the proposed DPSO
algorithm. OPF and its formulation allowing a problem
solution via DPSO is addressed in Section V. We carry
out a simulation example to test the effectiveness of the
approach in Section VI. The paper ends with conclusions,
and future perspectives in Section VII.

II. PROBLEM STATEMENT

Let us provide a general formulation of the optimization
problem. The specific case of OPF is derived in Section V.
Consider a group of N agents, each of which disposes of
a private control variable xi ∈ Rni , i = 1, · · · ,N, private cost
function, inequality and equality constraints. By private we
mean that the latter are only known by the associated agent
i. We provide the following useful definition.

Definition 1: Agent i is physically coupled to agent j
if at least one among its private cost function, inequality
and equality constraints depend on agent j private control
variable. Agent j is thus said to be a physical neighbor of
agent i.
We then consider a graph Gp = (Vp,Ep) that keeps track
of the physical relations among the agents. In particular
Vp = {1, . . . ,N} is the set of the agents, i.e. the nodes of
the graph, and Ep ⊆ Vp × Vp is the set of edges among
them, where the edge (i, j) ∈ Ep if and only if agent j is
a physical neighbor of agent i. Note that according to the
given definition of physical neighbor, Gp generally defines
a digraph. The set of physical neighbors of agent i is
defined as N p

i ,
{

j ∈ Vp : (i, j) ∈ Ep
}

. By defining xxxi j ,{
x j ∈ Rn j : j ∈N p

i

}
as the set of physical neighbors vari-

ables of agent i, we are able to represent the generic agent i
cost function, inequality, and equality constraints respectively
as fi(xi,xxxi j), gi(xi,xxxi j) ≤ 000, and hi(xi,xxxi j) = 000, where fi :

R
ni+ ∑

j∈N p
i

n j

→ R, gi : R
ni+ ∑

j∈N p
i

n j

→ Rmi , hi : R
ni+ ∑

j∈N p
i

n j

→
Rqi , and where 000 is a vector of proper dimension with all
zero entries. Note that no assumptions were made concerning
these functions. We are now able to state the optimization
problem as

min
xxx,[x1···xN ]>

F(xxx), min
{xi,i=1,··· ,N}

N

∑
i=1

fi(xi,xxxi j)

subject to gi(xi,xxxi j)≤ 000, i = 1, · · · ,N
hi(xi,xxxi j) = 000, i = 1, · · · ,N

(1)

Thus, agents have to cooperatively minimize a common
cost function F : R∑

N
i ni → R while sharing the common

optimization variable xxx. In the next section we provide a
distributed way to solve (1).

III. DISTRIBUTED PSO

Before providing the DPSO algorithm we need to clarify
how we intend to handle constraints in (1), and how we need
to set the distributed communication among the agents.

A. Constraints Handling

As known, one of the major difficulties when employing
PSO to solve a constrained optimization problem is the
lack of an explicit method to direct the optimum search
towards the feasible region [16]. Having made no constraints
assumption we choose a generic method to handle them. In
particular, as previously stated, we make use of Deb’s rule,
which belongs to the penalty function approaches but it does
not require any penalty parameter. Moreover, the aforemen-
tioned rule allows avoiding any cost function distortion that
may occur when incorporating the constraints in the problem
via penalty functions. Deb’s rule consists of a tournament
selection in which, when comparing two solutions of (1), the
following criteria is adopted [8]: (i) any feasible solution is
preferred to any infeasible solution; (ii) among two feasible
solutions, the one having better objective function value
is preferred; (iii) among two infeasible solutions, the one
having smaller constraint violation is preferred. In addition,
equality constraints are handled via a transformation into
inequality constraints with the introduction of a positive
threshold ε ∈R+ such that gi+N(xi,xxxi j), |hi(xi,xxxi j)|−εεε ≤ 000,
i = 1, · · · ,N, where εεε is a vector of proper dimension with
all its entries equal to ε .
PSO is a population based algorithm in which a given
number of particles in the search space can evaluate the
cost function. In order to implement Deb’s rule, though, we
consider the following modified cost function, called fitness
function, which particles need to evaluate to decide on their
search direction [8].

F̃(xxx),F(xxx) if gi(xxx)≤ 000 i = 1, · · · ,2N

fmax +
N
∑

i=1

(
mi
∑

k=1
χ
(
gi,k(xxx)

)
+

qi
∑

k=1
χ
(
gi+N,k(xxx)

))
otherwise

(2)

being χ : R→ R the function

χ(y) =

{
y if y > 0
0 otherwise

and where gi,k(xxx), gi+N,k(xxx) are respectively the k-th compo-
nent of gi(xxx), and gi+N(xxx). Constraint violation is evaluated
via the sum of violated constraints appearing in the second
equation of (2). fmax is the maximum value of F among
the available feasible solutions. If some information about
the common cost function is known a priori, for ease of
implementation, fmax can be set as a sufficiently high positive
value.

B. Communication Settings

Assumption 1: There exists a communication graph G 1
c =

(V 1
c ,E 1

c ) such that G 1
c = Gp.



This basically means that each agent being a physical
neighbor of another one can directly communicate to it. We
now consider the undirected graph associated to it: Ḡ 1

c =
(V̄ 1

c , Ē 1
c ), where V̄ 1

c = V 1
c , and Ē 1

c is such that if (i, j) ∈ E 1
c

then (i, j),( j, i)∈ Ē 1
c . Ḡ 1

c is not necessarily connected. Thus,
it can be divided in M connected undirected subgraphs Ḡ 1

c,m,
m = 1, · · · ,M, such that ∪M

m=1Ḡ
1
c,m = Ḡ 1

c , and Ḡ 1
c,m ∩ Ḡ 1

c,r =
( /0, /0), ∀m,r = 1, · · · ,M, m 6= r.

Assumption 2: There exist M undirected connected graphs
Ḡ 2

c,m, m = 1, · · · ,M such that Ḡ 2
c,m ∩ Ḡ 2

c,r = ( /0, /0), ∀m,r =

1, · · · ,M, m 6= r, and Ḡ 2
c ,∪M

m=1Ḡ
2
c,m =(V̄ 2

c , Ē 2
c ) where V̄ 2

c =
V̄ 1

c .
The latter assumption simply states that the communication
among the M groups of agents defined via Ḡ 1

c,m, m =
1, · · · ,M, are not required to communicate via Ḡ 1

c itself, as
long as the considered communication Ḡ 2

c keeps the same
M groups of agents connected within each group. A graph
example is reported in Fig. 1.

Remark 1: For ease of implementation one can simply
consider only one communication graph Gc = (Vc,Ec) such
that Vc = V 1

c , E 1
c ⊆ Ec, and there exist M subgraphs Gc,m,

m = 1, · · · ,M such that ∪M
m=1Gc,m = Gc, Gc,m ∩Gc,r = ( /0, /0),

∀m,r = 1, · · · ,M, m 6= r.
Remark 2: The considered graphs of communication keep

two different groups of agents disconnected whenever there
is no physical coupling among them. If the disconnected
groups are M, it basically implies that (1) can be split in M
separate optimization subproblems, whose solutions can be
found separately with no inter-group communication.

C. Variables Settings

Each agent has Np particles associated to its private
variable, xi,p ∈ Rni , p = 1, · · · ,Np. Moreover, to each of
them we associate a variable that keeps memory of the
personal best position visited in the search space, named
bi,p ∈ Rni , p = 1, · · · ,Np. Each xi,p (resp. bi,p) has a spy
copy in each agent for which it is a physical neighbor, x j

i,p

(resp. b j
i,p) ∈ Rni∀ j : i ∈N p

j , p = 1, · · · ,Np. The role of the
spy variables is to allow evaluation of the private cost func-
tions, and constraints. In addition, each agent particle (resp.
personal best) has its personal estimate of the average com-
mon cost function, and average sum of violated constraints
evaluated in the optimization variable xxxp = [x1,p · · ·xN,p]

>

(resp. bbbp , [b1,p · · ·bN,p]
>), i.e composed by all agents

particles (resp. personal bests) having the same p index.
Respectively we name the former h1

i,p , 1/N ∑
N
l=1 fl(xl,p,xxxl j,p)(

resp. hb,1
i,p , 1/N ∑

N
l=1 fl(bl,p,bbbl j,p)

)
, the latter

h2
i,p ,

1
N

N

∑
l=1

(
1

ml

ml

∑
k=1

χ
(
gl,k(xl,p,xxxl j,p)

)
+

1
ql

ql

∑
k=1

χ
(
gl+N,k(xl,p,xxxl j,p

))
resp. hb,2

i,p ,

1
N

N

∑
l=1

(
1

ml

ml

∑
k=1

χ
(
gl,k(bl,p,bbbl j,p)

)
+

1
ql

ql

∑
k=1

χ
(
gl+N,k(bl,p,bbbl j,p

))

Fig. 1. Communication graphs example.

for i = 1, · · · ,N, p = 1, · · · ,Np, and
we named xxxl j,p ,

{
xl

j,p ∈ Rn j : j ∈N p
l

}(
resp. bbbl j,p ,

{
bl

j,p ∈ Rn j : j ∈N p
l

})
. We keep index

i of h1
i,p, h2

i,p, (resp. hb,1
i,p , hb,2

i,p ) to stress that agent i estimate
of the average value can have a small difference with
respect to the other agents one. Furthermore, each particle
is endowed with a speed value vi,p, and it has access to
the global best position, gi,p, among a subset of particles
Si

p, i.e. the subset of particles from which xi,p can retrieve
information about their personal best. We additionally
require such subset to be the same for each particle among
the agents having same p index. Thus we can drop its
index i: Si

p = Sp, i = 1, · · · ,N. Note that Sp can be simply
chosen as the set of all agent particles, so that gi = gi,p
would be agent i best visited position. Nonetheless it might
be convenient to choose Sp as a smaller set of particles to
prevent the algorithm from premature convergence.

D. PSO Update Law

PSO equations determine the particle motion in the search
space in order to find the global optimum. The latter is a well-
known system of stochastic difference equations. For ease of
notation, at iteration k of the algorithm we note xi,p , xi,p(k),
and x+i,p , xi,p(k+1). Same notations hold for vi,p, bi,p, and
gi,p. PSO equations, for each particle, are given by{

v+i,p = ωvi,p +φ1i,p(gi,p− xi,p)+φ2i,p(bi,p− xi,p)

x+i,p = xi,p + v+i,p
(3)

(b+i,p,h
b
i,p) =

{
(x+i,p,h

+
i,p) if h+i,p < hb

i,p

(bi,p,hb
i,p) otherwise

(4)

g+i,p = arg min{
b+i,p:p∈Sp

}{hb
i,p} (5)

where

hi,p , hi,p(k) =

{
h1

i,p if h2
i,p = 0

fmax +h2
i,p otherwise

and h+i,p = hi,p(k + 1). A similar definition holds for hb
i,p,

hb,1
i,p , hb,2

i,p . Equation (4) is the decision step of the algorithm
in which the new particles are compared to the according
personal best in terms of average fitness function evaluation.
φ1i,p , φ1i,p(k)∼U(0,c1), φ2i,p , φ2i,p(k)∼U(0,c2), i.e. they
are two aleatory variables with uniform distribution of prob-
ability in the respective intervals [0,c1], and [0,c2], where
c1,c2 ∈ R+. Exhaustive works in the literature show how to
set parameters c1, c2, and ω , called inertial factor, in order
to ensure convergence of the algorithm, (e.g. [17]). Here,
convergence is meant as ∀i = 1, · · · ,N: limk→∞ ‖xi,p(k)−



xi,t(k)‖ = 0, ∀p, t = 1, · · · ,Np, as convergence to the global
optimum is not guaranteed.

Remark 3: In this paper we additionally consider lower
and upper bounds of the variables of the form: xi ≤ xi ≤ x̄i,
xi, x̄i ∈ Rni , i = 1, · · · ,N, by limiting the maximal speed
of each particle, and forcing xi,p to stay within the afore-
mentioned bounds. This is simply obtained by adding the
following equations to (3)

v+i,p = max{min{v+i,p, v̄i},−v̄i} (6)

x+i,p = max{min{x+i,p, x̄i},xi} (7)

where we place respectively (6) right after the first equation
in (3), and (7) after the second equation in (3), and where
v̄i , 1/2(x̄i− xi).

E. Diversity and Dynamic Tolerance

For the case of OPF we consider two additional features
of PSO algorithm that enhance the optimality of the solution.
These are descripted in [16]. The reader may refer to it for
further details. The first one consists in keeping diversity
of the flock of particles, which prevents from premature
convergence. This is obtained by applying two perturbation
operators to the particle personal bests bi,p, namely the
C-Perturbation, and the M-Perturbation, which will not be
described in this paper. However, in order to reduce the
communication burden we consider a unique perturbation,
obtained by sequential composition of the aforementioned
ones, and we name it CM-Perturbation. Eventually, we
employ an additional constraint handling technique, named
dynamic tolerance. It consists in letting the threshold ε ,
defined in Subsection III-A, be iteration-varying, typically
linearly decreasing from an initial value ε̄ to a final target
value ε .

F. Distributed Algorithm

Before providing the overall algorithm we need to intro-
duce a distributed subroutine that allows the evaluation of the
average common cost function and sum of constraints, and
that has to be run each time that a decision step, as in (4),
has to be performed. Whenever the latter is required, we
refer to Algorithm 1 to evaluate the problem functions in the
generic point x̂xxp , [x̂1,p · · · x̂N,p]

>, introduced to be consistent
with the notation. Via the aforementioned subroutine, each
of its component x̂i,p is associated with the estimation of
the average fitness function ĥi,p. It is important to notice
that its value is dependent on the chosen value of equality
constraints threshold ε . In general, when the chosen point to
be evaluated is one of the particles we refer to the notation
hi,p to indicate the corresponding function estimation. In all
the other cases we introduce a superscript to the associated
function evaluation with the same name of the considered
point, for instance bi,p↔ hb

i,p.
The overall distributed algorithm to be run by each agent
on each of its particles xi,p is shown in Algorithm 2,
where iterations are performed until a prescribed number
max iter, and where we introduced r, and s, respectively
an aleatory variable r ∼ U(0,1), and a linearly decreasing

Algorithm 1 Subroutine for distributed average fitness func-
tion evaluation
Input: i component of x̂xxp
Output: average fitness function value: ĥi,p

1: x̂ j
i,p = x̂i,p∀ j : i ∈N p

j , via G 1
c

2: wait physical neighbors to update x̂i
j,p, via G 1

c
3: ĥ1

i,p = fi(x̂i,p, x̂xxi j,p)

4: ĥ2
i,p =

1
mi

mi
∑

k=1
χ
(
gi,k(x̂i,p, x̂xxi j,p)

)
+

1
qi

qi
∑

k=1
χ
(
gi+N,k(x̂i,p, x̂xxi j,p

)
5: run average consensus on variables ĥ1

i,p, p = 1, · · · ,Np,
and on ĥ2

i,p, p = 1, · · · ,Np, via Ḡ 2
c (see Section IV)

6: if (ĥ2
i,p = 0) then

7: ĥi,p = ĥ1
i,p

8: else
9: ĥi,p = fmax + ĥ2

i,p
10: end if
11: return ĥi,p

Algorithm 2 Distributed PSO
Output: global best among Sp: gi,p

Initialization :
1: randomly initialize xi,p ∈ [xi, x̄i], vi,p ∈ [−v̄i, v̄i]
2: bi,p = xi,p
3: set ε = ε̄

4: run Algorithm 1 on xi,p
5: perform (5), and set gi,p = g+i,p

LOOP Process
6: for k = 1 to max iter do
7: perform (3)
8: run Algorithm 1 on x+i,p
9: perform (4)

10: if (r(k)< s(k)) then
11: ti,p = CM-Perturbation(b+i,p)
12: run Algorithm 1 on ti,p
13: if (ht

i,p < hb
i,p) then

14:
(

b+i,p,h
b
i,p

)
=
(

ti,p,ht
i,p

)
15: end if
16: end if
17: set ε = ε(k)
18: run Algorithm 1 on b+i,p
19: if (h+i,p < hb

i,p) then
20:

(
b+i,p,h

b
i,p

)
=
(

x+i,p,h
+
i,p

)
21: end if
22: perform (5)
23: set xi,p = x+i,p, bi,p = b+i,p, and gi,p = g+i,p
24: end for
25: return gi,p



value from 1 to 0. In Algorithm 2, lines 10−16 are used to
keep diversity of the flock. In particular ti,p is a temporary
value obtained by perturbation of the new computed personal
best b+i,p. Lines 17−21 are only necessary if ε is iteration-
varying. Indeed if ε decreases at each algorithm step, then
the personal bests need to be reevaluated to see how they fit
the new, ε-dependent, fitness function. If not performed, a
bi,p computed at the beginning of the iterations has higher
probability to have better fitness function value with respect
to one computed afterwards. Because of the structure of the
proposed algorithm we are able to conclude the following

Proposition 1: Consider the centralized PSO algorithm
obtained by substitution of Algorithm 1 with direct computa-
tion of ĥi,p. If it converges, so Algorithm 2 does. In addition,
they converge with same performance.

Remark 4: It is important to note that thanks to Assump-
tion 1 we are able to update the spy variables with one
communication step (line 1 in Algorithm 1). Moreover we are
able to avoid adding any consensus or consistency constraint
to (1).

Remark 5: Proposition 1 is essentially verified thanks to
the average consensus step in Algorithm 1, and to assump-
tion 1. The latter can be relaxed by requiring that each agent
that is a physical neighbor to another one has at least a
communication path to it. Each of the agents belonging to
this path is required to have spy variables of the mentioned
physical neighbor. Then, for instance, line 1 of Algorithm 1
can be modified by considering a leader-follower consensus
algorithm to allow the update of the spy variables.

IV. FINITE-TIME AVERAGE CONSENSUS

The main communication burden is due to the need for
performing the average consensus in Algorithm 1 to evaluate
the problem functions. Unfortunately this step cannot be
approximated as a one-step communication as shown in [13],
for the accuracy of consensus would not be sufficient to
perform decision steps on particles, as (4). Nonetheless we
employ a finite-time average consensus algorithm to reduce
the communication burden as much as possible. In addition,
being interested in a whole-distributed solution, we capitalize
on a distributed self-configuration of the aforementioned
algorithm. Thus, in this section we aim at providing the con-
figuration approach to tune the average consensus appearing
in step 5 of Algorithm 1. The following has to be performed
once, and offline.

A. Self-configuration

We consider the self-configuration problem for the generic
undirected graph Ḡ 2

c,m = (V̄ 2
c,m, Ē

2
c,m), associated to the m-

subproblem of (1), defined in Subsection III-B. We rename
it G = (V ,E ) for ease of notation, where V = 1, · · · ,Nm. Let
us state the following graph features.
• The distance between two nodes (i, j) ∈ V : dist(i, j) is

the length of the shortest path between i, and j.
• The eccentricity of a node i ∈ V : ecc(i) ,

max j∈V dist(i, j).
• The radius of G : r(G ), mini∈V ecc(i).

• The diameter of G : d(G ), maxi∈V ecc(i).
• The neighborhood of agent i: Ni = { j ∈ V : (i, j) ∈ E }.

The state at time t associated to each agent in V is hi(t)∈R,
i = 1, · · · ,Nm. The overall network state is hhh , [h1 · · ·hNm ] ∈
RNm . Each agent updates its own state according to

hi(t) = wt
iihi(t−1)+ ∑

j∈Ni

wt
i jh j(t−1) (8)

where wt
ii,
{

wt
i j : j ∈Ni

}
∈R, i = 1, · · · ,Nm, ∀t > 0, are the

weights at time t to be chosen. Equation (8) in matrix form
can be written as hhh(t) = Wthhh(t − 1). It is well-known that
finite-time average consensus in D steps can be solved if we
are able to find D matrices Wt , t = 1, . . . ,D such that the
following is verified

1

∏
t=D

Wt =
1

Nm
111111> (9)

where 111 ∈RNm has all its entries equal to 1. In general D is
known to be a value in [d(G ),2r(G )]. In this paper we refer
to the work of [18], where the authors suggest a gradient
back-propagation method to solve the factorization prob-
lem (9) in a distributed way. Please refer to the mentioned
reference for details. This is done by solving the following
optimization problem

min
{W1,··· ,WD}

Nm

∑
i=1

Q

∑
q=1

(hi,q(D)− yq)
2 (10)

where hi,q(D) is obtained via iteration of (8), and{
hi,q(0),yq

}
, i= 1, · · · ,Nm, q= 1, · · · ,Q are the chosen learn-

ing sequences. Nonetheless, being the approach gradient-
based, and the optimization problem (10) nonconvex, the
solution is strongly dependent on the algorithm initialization
of matrices Wt . We notice that (10) can be written as (1), with
no constraints, by taking the agent i private cost function as
∑

Q
q=1 (hi,q(D)− yq)

2, and common cost function as the objec-
tive function of (10). Thus, we propose to use Algorithm 2 to
provide an initial point to the algorithm shown in [18], as it
could help finding a better solution. In this self-configuration
step, clearly, average consensus in Algorithm 1 cannot be
performed via the finite-time algorithm, which is the aim of
this stage. For this reason we consider the following update
law for ĥi,p variables at step 5 in Algorithm 1.

ĥ+i,p = ϕiiĥi,p + ∑
j∈Ni

ϕi jĥ j,p (11)

ϕi j =


1

max{di,d j}+1
if (i, j) ∈ E

1− ∑
j∈Ni

1
max{di,d j}+1

if i = j
(12)

where (12) are Metropolis-Hastings weights, and di , |Ni| is
the degree of node i in G . Equation (11) only requires each
agent to know little information about its neighbors, and it
has to be run for a sufficient number of steps in order to
ensure proper convergence of Algorithm 2. In addition, for
the particular problem of (10), there is no need to use spy



Fig. 2. Bucky communication graph.

Fig. 3. Finite-time average consensus. (up): combined DPSO-gradient
back-propagation solution; (down): gradient back-propagation solution.

variables neither. Agents do share common variables, but this
link is kept implicit in the computation of hi,q(D), appearing
in (10), via (8).

B. Example

We consider MATLAB®bucky graph in Fig. 2, to show
the effectiveness of the approach. This graph has radius, and
diameter r = d = 9, and a total number of agents equal to 60.
Good results were found for a value of D = 11, i.e. 11 steps
are needed to find the average consensus on the network with
an acceptable small error. Fig. 3 shows the results of the
combined DPSO and gradient back-propagation algorithm
versus the solution provided by the only gradient back-
propagation, where the dashed-dotted black line represents
the average of the initial network state 1/Nm ∑

Nm
i=1 hi(0). From

this example it is clear that DPSO not only can enhance the
optimality of the solution of (10), but it also helps finding
one when gradient back-propagation fails. Indeed, in this
example, weights found via gradient back-propagation do
not let convergence to the average consensus value (black
dashed-dotted line) as it shows a steady state constant
error. On the other hand, this is attained by employing the
algorithm initialization provided by DPSO.

V. OPF MODEL AND PROBLEM FORMULATION

OPF is concerned with minimizing a given cost function
while satisfying the electric grid constraints. These are
mainly given by the limits on the voltage value, typically
allowed in the interval [0.95,1.05]p.u., and by the power

flow equations

Pi =Ui ∑
j∈N p

i

U j (Gi j cos(θi−θ j)+Bi j sin(θi−θ j))

Qi =Ui ∑
j∈N p

i

U j (Gi j sin(θi−θ j)−Bi j cos(θi−θ j))
(13)

which show how active power P, and reactive power Q at
every bus i of the considered electric grid are function of its
own voltage values of amplitude Ui, and phase θi, and of its
physical neighbors voltages (U j,θ j) : j ∈N p

i . Gi j, Bi j are
parameters depending on the impedance of the line between
buses i, and j. If we consider (Ui,θi) to be the private variable
of bus i, then it is easy to see that (13) are already written
in the form of the constraint functions of (1). Among the
possible cost functions usually employed for OPF, in this
paper we choose to minimize the sum of power losses in the
transmission lines

min
{(Ui,θi),i=1,··· ,N}

1
2

N

∑
i=1

∑
j∈N p

i

(
Pi j

loss +Qi j
loss

)
, where (14)

Pi j
loss = gi j

(
U2

i +U2
j −2UiU j cos(θi−θ j)

)
Qi j

loss =−bsh
i j
(
U2

i +U2
j
)
−bi j

(
U2

i +U2
j −2UiU j cos(θi−θ j)

)
(15)

where N is the number of buses, gi j, bi j, bsh
i j are other

parameters depending on the impedance of the line between
i, and j, and gii = bii = bsh

ii = 0, i = · · · ,N . The reader may
refer to [19] for a detailed explanation of (13),(15). In the
sequel we neglect the shunt susceptance bsh

i j , for it is usually
verified that |bsh

i j | � |bi j|. Note that considering a weighted
sum of the kind of Pi j

loss+αQi j
loss, α ∈R+, would not change

the solution of the optimization problem, as Pi j
loss, and Qi j

loss
are basically the same function (being gi j, −bi j > 0). For the
same reason one could only consider Pi j

loss, or Qi j
loss and obtain

the same solution. We can restate (14),(15), allowing the
formulation of the problem in the form of (1), by considering
the following

min
{(Ui,θi),i=1,··· ,N}

N

∑
i=1

(
Pi

loss +Qi
loss
)

, where (16)

Pi
loss , ∑

j∈N p
i

(
gi jU2

i −gi jUiU j cos(θi−θ j)
)

Qi
loss , ∑

j∈N p
i

(
−bi jU2

i +bi jUiU j cos(θi−θ j)
) (17)

Clearly (16),(17) are equivalent to (14),(15). We are now able
to formulate the chosen OPF problem. Consider an electric
grid of N buses, NG of which are generators, here considered
PU buses, NL are loads, here considered PQ buses, and one
is a Uθ bus, used to balance generation, load and losses.
Each bus has the private cost function: Pi

loss +Qi
loss. Thus,

the common cost function is the objective function of (16).
Moreover they all have their voltage amplitude constrained
in the previously mentioned allowed interval. This kind of
constraint is treated via (6),(7). The Uθ bus also gives its
θ as a reference to the grid, and it is simply set as 0◦.



Fig. 4. 5-bus electric grid, and its communication graph Gc.

Fig. 5. Particles cost function, and sum of constraints during iterations of
Algorithm 2.

Every generator bus i presents an equality constraint on Pi,
set as P̄i, which is a problem data, via the first equation
of (13), and an inequality constraint on Qi, Qimin ≤Qi≤Qimax ,
employing the second equation of (13). Eventually, every
load bus j presents two equality constraints given by P̄j,
and Q̄ j, data of the problem, via (13). Overall, each bus
of the network presents two generalized nonconvex private
inequality constraints. Thus the optimization problem is

(16),(17) subject to
for i = 1, · · · ,N

0.95≤Ui ≤ 1.05

via (13) :

{
Pi = P̄i, Qi = Q̄i if i is a PQ bus
Pi = P̄i, Qimin ≤ Qi ≤ Qimax if i is a PU bus

VI. SIMULATIONS

We illustrate the performance of the proposed algorithm on
a 5-bus grid shown in Fig. 4, which is a modified scheme of a
grid example in [19]. The chosen communication graph (red
dashed-dotted lines) simply traces the electric lines among
the buses. The considered grid has nominal voltage equal to
63 kV, and the grid cables impedance are set to be R = 0.15
Ω/km, and X = 0.21 Ω/km. Bus 5 is the Uθ bus, and it
can be considered as a source substation. The generators
are prescribed to produce P̄1 = 50 MW, P̄3 = 70 MW, and
load buses require P̄2 = 60 MW, P̄4 = 85 MW. As far as
the reactive power is concerned, load buses are operated
at constant power factor, cosϕ , equal to 0.97. Generators
have to keep the reactive power within given limits with
respect to their active power production. Indeed the reactive
power supplied above a Q/P ratio of (tanϕ)max or absorbed
under (tanϕ)min is subject to the application of a charge. In
France, for instance, it amounts to 16.3 e/MVARh for electric
grids whose nominal voltage is in [50,130] kV. In particular

(tanϕ)max, (tanϕ)min are set respectively as 0.4, and −0.35.
According to the TURPE 41, the cost for the active power
losses is set to 53 e/MWh.
As far as the DPSO set-up is concerned, we chose Np =
70 particles for each bus, and max iter = 600. Having
normalized the power and voltage values, we considered a
threshold linearly decreasing from ε̄ = 1 to ε = 10−5 until
the 90% of the iterations. For the considered graph, finite-
time average consensus algorithm to be run in Algorithm 1,
only requires 2 steps to be solved. Fig. 5 shows the particles
behavior during the iterations. A particle is assigned with
a sum of constraints value whenever it is not feasible,
and with a common cost function value otherwise. At the
beginning, being randomly initialized, they are very likely
to be infeasible. Nonetheless they reach feasibility quite
quickly since ε is still enough large. As iterations grow, ε

becomes smaller, thus, the common cost function respecting
constraints is updated, and this explains its increasing pace
from about iteration 100. At the very end all particles
move according to their sum of constraints value since ε

reaches a very small value. However, this fact does not
have to be interpreted as nonconvergence. Indeed, at this
point, the particles would only adjust their position in a
small neighborhood of their last feasible visited position. By
naming gbest the best among all gi,p found at the end of the
iterations, this fact is confirmed by a maximum convergence
quadratic error: maxi,p ‖xi,p(max iter)−gbest‖2 ' 3 ·10−7,
which shows convergence of the algorithm. Optimal variables
are shown in Table I. Equality constraints are presented in
Table II. This shows that good performance is achieved since
the ideal ratio P̄/Pd pso, and Q̄/Qd pso should be 1. The total
active power losses are 5.95 MW, and the total reactive power
losses are 8.34 MVAR. Eventually, in order to evaluate the
optimality of the given solution, we compare it with the
solution to the OPF problem having another common cost
function. For instance, let us consider minUi ∑

N
i=1(Ui− 1)2,

i.e. we want to keep voltages at every bus as close as possible
to 1 p.u.. In this case, the active power losses amount to
6.57 MW, and reactive ones to 9.19 MVAR, which shows the
effectiveness of the optimal solution of Table I.

TABLE I
OPTIMAL VARIABLES

bus n◦ 1 2 3 4 5
U (p.u.) 1.0457 1.0090 1.0338 0.9668 1.0227

θ (◦) 1.4467 -0.4259 0.7902 -2.4702 0

TABLE II
EQUALITY CONSTRAINTS

bus n◦ 1 2 3 4
P̄/Pd pso 1.000016 1.000003 1.000021 0.999996
Q̄/Qd pso – 1.000026 – 0.999872

1Tarifs d’Utilisation du Réseau Public de Distribution d’Électricité



VII. CONCLUSIONS

A novel distributed approach to solve OPF was presented.
Being based on a population algorithm, no assumptions
were made concerning either the cost function of the
optimization problem, and the network topology. Moreover
the presented algorithm enables to solve general distributed
optimization problems that can be written in the form of (1).
Potentiality of the algorithm was also shown when solving
a distributed factorization problem to tune the finite-time
average consensus algorithm.

The main drawback of the approach is due to the
communication burden, in turns due to the need for
performing a finite-time average consensus algorithm for
each step of DPSO. This basically raises the time for
convergence especially for communication graph having
high diameter, and radius. We are currently investigating
an algorithm modification to avoid performing the average
consensus step.
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