Supplementary material for Proposition 3.1

1 Notations and preliminaries

The functions log and ln denote respectively the base 2 and the natural logarithms. By convention, $0 \log 0 = 0 = 0 \ln 0$. For $x \in \mathbb{R}$, $\lfloor x \rfloor$ (resp. $\lceil x \rceil$) denotes the greatest (resp. smallest) integer not greater (resp. not smaller) than x. For integers $a \leq b$, $\llbracket a, b \rrbracket$ denotes the set of integers between a and b, bounds included. Let $\mathbb{D} = \{2^{\mu} : \mu \in \mathbb{N}\}$.

Let $(X, Y) \simeq P_{X,Y}$ be an arbitrary pair of random variables over $\mathcal{B} \times \mathcal{Y}$ with $\mathcal{B} = \{0, 1\}$ and \mathcal{Y} an arbitrary countable set. We regard (X, Y) as a memoryless source S, with X as the part to be compressed and Y in the role of "side-information" about X. We consider a sequence $S = \{(X_i, Y_i) : i \in \mathbb{N}^*\}$ of independent drawings from (X, Y) – which can be interpreted as a representation of the source S – and we introduce the two transformations – and + applied to the source S and defined by

$$S^{-} = \left\{ \left(X_{2i-1} \oplus X_{2i}, (Y_{2i-1}, Y_{2i}) \right) : i \in \mathbb{N}^{*} \right\}$$
(1)

$$S^{+} = \{ (X_{2i}, (Y_{2i-1}, Y_{2i}, X_{2i-1} \oplus X_{2i})) : i \in \mathbb{N}^{*} \}.$$

$$(2)$$

With these notations, S^- (resp. S^+) is the memoryless source that takes its values in $\mathcal{B} \times (\mathcal{Y}^2)$ (resp. in $\mathcal{B} \times (\mathcal{Y}^2 \times \mathcal{B})$), with $X_1 \oplus X_2$ (resp. X_2) as the part to be compressed and (Y_1, Y_2) (resp. $(Y_1, Y_2, X_1 \oplus X_2)$) in the role of "side-information".

The process that constructs S^- and S^+ from S can be written $S_0^{(0)} = S$,

$$S_1^{(0)} = \left(S_0^{(0)}\right)^- = S^-$$
 and $S_1^{(1)} = \left(S_0^{(0)}\right)^+ = S^+.$ (3)

Applied recursively, this process leads to the sequence of memoryless sources $(S^{(i)}_{\mu})_{\mu \in \mathbb{N}, i \in [0, 2^{\mu}-1]}$, where $S^{(i)}_{\mu}$ takes its values in a set $\mathcal{B} \times (\mathcal{Y}^{2^{\mu}} \times \mathcal{B}^{K(i)})$ with $K(i) \in [0, 2^{\mu} - 1]$ and is defined by

$$S_{\mu+1}^{(i)} = \begin{cases} \left(S_{\mu}^{\lfloor i/2 \rfloor}\right)^{-} & \text{if } i \text{ is even} \\ \left(S_{\mu}^{\lfloor i/2 \rfloor}\right)^{+} & \text{if } i \text{ is odd.} \end{cases}$$
(4)

Let us introduce the sources' conditional entropies expressed in bits:

$$H(S) = \mathbb{H}(X_1 | Y_1) = \mathbb{H}(X_2 | Y_2),$$
 (5)

$$H(S^{-}) = \mathbb{H}(X_1 \oplus X_2 | Y_1, Y_2),$$
 (6)

$$H(S^{+}) = \mathbb{H}(X_2 | Y_1, Y_2, X_1 \oplus X_2).$$
(7)

For any $m \in \mathbb{D}$ $(m = 2^{\mu} \text{ with } \mu \in \mathbb{N})$ and for any $\theta \in [0, \frac{1}{2}]$, let

$$\mathcal{H}_{X|Y} = \mathcal{H}_{X|Y}(\theta) = \mathcal{H}_{X|Y}^{(m)}(\theta) = \left\{ i \in \left[\!\left[0, m-1\right]\!\right] : H\left(S_{\mu}^{(i)}\right) > \theta \right\}$$
(8)

$$\mathcal{V}_{X|Y} = \mathcal{V}_{X|Y}(\theta) = \mathcal{V}_{X|Y}^{(m)}(\theta) = \left\{ i \in [0, m-1] : H\left(S_{\mu}^{(i)}\right) > 1-\theta \right\}.$$
(9)

For any memoryless source $S = (X, Y) \simeq P_{X,Y}$, we introduce its Bhattacharyya parameter:

$$Z(S) = 2\sum_{y \in \mathcal{Y}} \sqrt{P_{X,Y}(0, y) P_{X,Y}(1, y)}$$

$$= \sqrt{4P_X(0)P_X(1)} \sum_{y \in \mathcal{Y}} \sqrt{P_{Y|X}(y \mid 0)P_{Y|X}(y \mid 1)}$$
(10)

which is the inner product between the unit vectors whose components are the square root of the distributions $P_{Y|X=0}$ and $P_{Y|X=1}$, under equiprobability $P_X(0) = P_X(1) = \frac{1}{2}$. This quantity informs about the similarity between the side-information Y when X is 0 and 1, under equiprobability $P_X(0) = P_X(1) = \frac{1}{2}$.

Let

$$h(x) = -x\log x - (1-x)\log(1-x)$$
(11)

be the entropy function expressed in bits, which admits an inverse h^{-1} : $[0, 1] \mapsto [0, \frac{1}{2}]$ when we restrict x to be in $[0, \frac{1}{2}]$.

Proposition 1.1 (Properties of Bhattacharyya parameter) Let $(X, Y) \simeq P_{X,Y}$ be an arbitrary pair of random variables over $\mathcal{B} \times \mathcal{Y}$ with $\mathcal{B} = \{0, 1\}$ and \mathcal{Y} an arbitrary countable set. For any memoryless source $S = (X, Y) \simeq P_{X,Y}$, with X as the part to be compressed and Y in the role of "side-information" about X, we have

$$Z(S)^2 \le H(S) \le \log(1 + Z(S)) \tag{12}$$

$$Z(S^+) = Z(S)^2$$
 and $\sqrt{2Z(S)^2 - Z(S)^4} \le Z(S^-) \le 2Z(S)$ (13)

The proof of the left inequality in (13) can be found in the paper¹ by Chou *et al.* and the proofs of Proposition 1.1 and Theorem 1.2 can be find in the paper by a_0^2 .

Theorem 1.2 (Şaşoğlu) Let (X_1, Y_1) and (X_2, Y_2) be independent pairs of discrete random variables taking their values in $\mathcal{B} \times \mathcal{Y}_1$ and respectively in $\mathcal{B} \times \mathcal{Y}_2$ with $\mathcal{B} = \{0, 1\}$, and let $\mathbb{H}(X_1 | Y_1) = \alpha$ and $\mathbb{H}(X_2 | Y_2) = \beta$. Then, the conditional entropy $\mathbb{H}(X_1 \oplus X_2 | Y_1, Y_2)$ is minimized when $\mathbb{H}(X_1 | Y_1 = y_1) = \alpha$ and $\mathbb{H}(X_2 | Y_2 = y_2) = \beta$ for all $(y_1, y_2) \in \mathcal{Y}_1 \times \mathcal{Y}_2$ such that $P_{Y_1}(y_1)P_{Y_2}(y_2) > 0$. Moreover, if $\beta = \alpha = h(x)$ with $x \in [0, \frac{1}{2}]$ and if $0 < \alpha < 1$, then

$$\min(\mathbb{H}(X_1 \oplus X_2 \mid Y_1, Y_2) - \mathbb{H}(X_1 \mid Y_1)) = h(2x(1-x)) - h(x) > 0,$$
(14)

where the minimum in (14) is taken on the set $\{P_{X_1Y_1}, P_{X_2Y_2} : \mathbb{H}(X_1 | Y_1) = \mathbb{H}(X_2 | Y_2) = \alpha\}.$

Finally, let us introduce

$$Z'(S) = 1 - Z(S)^2.$$
 (15)

The next proposition results straightforwardly from Proposition 1.1 and definition (15).

Proposition 1.3 For any memoryless source S with binary part to be compressed and discret "side-information", we have

$$Z'(S^+) = 2Z'(S) - Z'(S)^2 \text{ and } Z'(S^-) \le Z'(S)^2.$$
(16)

2 Rough polarization

The following corollaries and theorems are adaptations to source polarization of results given by Guruswami and Xia³ for channel polarization.

Corollary 2.1 (Guruswami & Xia) There exists a constant θ_0 with $0.799 < \theta_0 < 0.8$ such that for any memoryless source S with binary-part to compress and discrete side-information,

$$H(S^{-}) - H(S) = H(S) - H(S^{+}) \ge \theta_0 H(S)(1 - H(S)).$$
(17)

¹The left inequality in (13) corresponds to Lemma 16 in "Polar coding for secret-key generation", Rémi Chou, Matthieu Bloch and Emmanuel Abbe, *IEEE Trans. on Information Theory*, vol. 61, no. 11, pp. 6213–6237, 2015.

²Proposition 1.1 corresponds to Proposition 2.8 and Lemma 2.9 and Theorem 1.2 corresponds to Lemma 2.2 in "Polarization and polar codes", Eren Şaşoğlu, *Fundations and Trends in Communications and Information Theory*, vol. 8, no. 4, pp. 259–381, 2011.

³Corollary 2.1, Theorem 2.3, Corollary 2.4 and Theorem 2.8 correspond respectively to Lemma 6, Lemma 8, Corollary 9 and Proposition 5 in "Polar codes: speed of polarization and polynomial gap to capacity", by Venkatesan Guruswami and Patrick Xia, *IEEE Transactions on Information Theory*, vol. 61, no. 1, pp. 3–16, 2015.

Proof. We write $S = \{(X_i, Y_i) : i \in \mathbb{N}^*\}$, a sequence of independent drawings from $(X, Y) \simeq P_{X,Y}$, as in Section 1. According to the definitions of $H(S^-)$ and H(S), we have

$$H(S^{-}) - H(S) = H(X_1 \oplus X_2 | Y_1, Y_2) - H(X_1 | Y_1).$$
(18)

Using the entropy function h defined in equation (11) and setting $H(X_1 | Y_1) = H(X_2 | Y_2) = h(x)$, with $x \in [0, \frac{1}{2}]$, it results from Theorem 1.2 that

$$H(S^{-}) - H(S) \ge h(2x(1-x)) - h(x).$$
(19)

Therefore

$$\frac{H(S^{-}) - H(S)}{H(S)(1 - H(S))} \ge \frac{h(2x(1 - x)) - h(x)}{h(x)(1 - h(x))} \ge \min_{x \in [0, \frac{1}{2}]} \frac{h(2x(1 - x)) - h(x)}{h(x)(1 - h(x))} = \theta_0$$
(20)

and numerical simulations give $0.799 < \theta_0 < 0.8$. In order to end the proof, let us remark that the transformation $(X_1, X_2) \mapsto (X_1 \oplus X_2, X_2)$ is invertible, hence $H(S^+) + H(S^-) = 2H(S)$, i.e., $H(S) - H(S^+) = H(S^-) - H(S)$.

Remark 2.1 It results from Theorem 1.2 and its proof that for any $x \in [0, \frac{1}{2}]$, the inequality (19) can be an equality, hence the constant θ_0 is the greatest value $\theta \in \mathbb{R}$ such that $H(S^-) - H(S) \ge \theta H(S)(1 - H(S))$ for any memoryless source S with binary-part to compress and discrete side-information.

Lemma 2.2 The function

$$g: \begin{bmatrix} 0, 1 \end{bmatrix} \to \begin{bmatrix} 0, \frac{1}{2} \end{bmatrix}$$

$$\eta \mapsto \sqrt{\eta(1-\eta)}$$
(21)

is strictly concave and for any $\eta \in]0, 1[$, the function

$$\begin{array}{rcl}
G_{\eta} : \left[0, \min(\eta, 1 - \eta)\right] & \rightarrow & \left[0, 1\right] \\
\delta & \mapsto & \frac{g(\eta + \delta) + g(\eta - \delta)}{2g(\eta)}
\end{array} \tag{22}$$

is strictly decreasing.

Proof. The functions g and G_{η} are well defined for any $\eta \in]0, 1[$. Moreover, the two first derivatives of g are

$$g'(\eta) = \frac{1-2\eta}{2g(\eta)}$$
 and $g''(\eta) = \frac{-1}{g(\eta)} \left[1 + \frac{(1-2\eta)^2}{4\eta(1-\eta)} \right] < 0$ (23)

hence g is strictly concave and finally for any $\eta \in [0, 1[$ and $\delta \in [0, \min(\eta, 1-\eta)]$

$$G'_{\eta}(\delta) = \frac{g'(\eta+\delta) - g'(\eta-\delta)}{2g(\eta)} \le 0,$$
(24)

with equality if and only if $\delta = 0$, which completes the proof.

Theorem 2.3 (Guruswami & Xia) Let g be the function defined in (21). There exists a constant $\Lambda < 1$, with 0.9165 $< \Lambda < 0.9166$, such that for any memoryless source S with binary-part to compress and discrete side-information

$$\frac{1}{2} \left[g \left(H(S^{-}) \right) + g \left(H(S^{+}) \right) \right] \leq \Lambda g \left(H(S) \right).$$
(25)

```
\diamond
```

Proof. For a memoryless source S with binary-part to compress and discrete side-information, let $\eta = H(S)$, $\varepsilon_0(\eta) = \theta_0 \eta (1 - \eta)$, where θ_0 has been introduced in Corollary 2.1 and $\varepsilon = H(S^-) - H(S) = H(S) - H(S^+)$. It results from Corollary 2.1 that $\varepsilon \geq \varepsilon_0(\eta)$, which implies, according to Lemma 2.2, that

$$\frac{g(H(S^{-})) + g(H(S^{+}))}{2g(H(S))} = \frac{g(\eta + \varepsilon) + g(\eta - \varepsilon)}{2g(\eta)} \\
\leq \frac{g(\eta + \varepsilon_0(\eta)) + g(\eta - \varepsilon_0(\eta))}{2g(\eta)} \\
= \frac{1}{2} \left(\sqrt{A_{\theta_0}(\eta)} + \sqrt{A_{\theta_0}(1 - \eta)} \right)$$
(26)

with $A_{\theta_0}(\eta) = [1 + \theta_0(1 - \eta)](1 - \theta_0 \eta) = \theta_0^2(\eta - \theta_0^{-1}) [\eta - (1 + \theta_0^{-1})]$. The two roots of polynomial $A_{\theta_0}(\eta)$ are both outside the interval [0, 1], therefore the function $\eta \mapsto \sqrt{A_{\theta_0}(\eta)}$ is strictly convexe for $\eta \in [0, 1]$. As a result, its derivative is injective and the term (26) is maximum for $\eta \in [0, 1]$ if and only if

$$\frac{A'_{\theta_0}(\eta)}{\sqrt{A_{\theta_0}(\eta)}} = \frac{A'_{\theta_0}(1-\eta)}{\sqrt{A_{\theta_0}(1-\eta)}},$$
(27)

i.e., if and only if $\eta = \frac{1}{2}$. Hence, it comes

$$\frac{g(H(S^{-})) + g(H(S^{+}))}{2g(H(S))} \leq \frac{1}{2}\sqrt{[1 + \theta_0(1 - \eta)](1 - \theta_0\eta)} + \frac{1}{2}\sqrt{[1 - \theta_0(1 - \eta)](1 + \theta_0\eta)}\Big|_{\eta = \frac{1}{2}} \\
= \sqrt{1 - \frac{\theta_0^2}{4}} = \Lambda.$$
(28)

Numerical simulations give $0.9165 < \Lambda < 0.9166$.

A recursive application of Theorem 2.3 gives

$$\forall \mu \in \mathbb{N}, \qquad \frac{1}{2^{\mu}} \sum_{i=0}^{2^{\mu}-1} g\left[H\left(S_{\mu}^{(i)}\right)\right] \leq \Lambda^{\mu} g\left[H(S)\right] \leq \Lambda^{\mu} \max_{\eta \in [0,1]} g(\eta) = \frac{1}{2} \Lambda^{\mu}. \tag{29}$$

This last equation can be interpreted as

$$\mathbf{E}\left\{g\left[H\left(S_{\mu}^{(J)}\right)\right]\right\} \leq \frac{1}{2}\Lambda^{\mu},\tag{30}$$

 \diamond

where J is a uniform random variable over $[0, 2^{\mu} - 1]$. Hence, the next corollary results from Markov's inequality.

Corollary 2.4 (Guruswami & Xia) For any memoryless source S, with binary-part to compress and discrete side-information, and the associated sequence introduced in equation (4), for any $\mu \in \mathbb{N}$, if J is a uniform random variable over $\llbracket 0, 2^{\mu} - 1 \rrbracket$, then

$$\forall \theta > 0, \qquad \mathbb{P}\left(g^2\left[H\left(S^{(J)}_{\mu}\right)\right] \ge \theta\right) \le \frac{\Lambda^{\mu}}{2\sqrt{\theta}}.$$
(31)

We conclude this section by proving an adaptation to source polarization of the Guruswami and Xia rough (channel) polarization theorem. For any $\theta \in [0, \frac{1}{2}]$, let

$$x_1 = x_1(\theta) = \frac{1 - \sqrt{1 - 2\theta}}{2}$$
 and $x_2 = x_2(\theta) = \frac{1 + \sqrt{1 - 2\theta}}{2} = 1 - x_1$ (32)

be the solutions of $x(1-x) = \frac{\theta}{2}$. We have $0 \le x_1 \le \frac{1}{2} \le x_2 \le 1$ and

$$\left\{ x \in [0, 1] : x(1-x) \ge \frac{\theta}{2} \right\} = \left[x_1(\theta), x_2(\theta) \right].$$
(33)

Moreover, $0 \leq 1 - 2\theta \leq \sqrt{1 - 2\theta} \leq 1$ implies $x_1(\theta) \leq \theta$. Hence, for any $m \in \mathbb{D}$ $(m = 2^{\mu})$, for any $\theta \in]0, \frac{1}{2}[$ and for any memoryless source S with binary-part to compress and discret side-information, we have

$$\begin{cases} i \in [0, m-1]] : g^{2} \left[H \left(S_{\mu}^{(i)} \right) \right] < \frac{\theta}{2} \end{cases} = \{ i \in [0, m-1]] : H \left(S_{\mu}^{(i)} \right) \in [0, x_{1}[\cup]x_{2}, 1] \} \\ \subset \mathcal{V}_{X|Y}(x_{1}) \cup \mathcal{H}_{X|Y}^{c}(x_{1}) \tag{34}$$

and the following partition of [0, m-1]:

$$[[0, m-1]] = \mathcal{V}_{X|Y}(x_1) \cup \mathcal{H}^c_{X|Y}(x_1) \cup [\mathcal{V}^c_{X|Y}(x_1) \cap \mathcal{H}_{X|Y}(x_1)], \qquad (35)$$

implies, by setting $A = \mathcal{V}_{X|Y}(x_1)$, $B = \mathcal{H}^c_{X|Y}(x_1)$ and $C = \mathcal{V}^c_{X|Y}(x_1) \cap \mathcal{H}_{X|Y}(x_1)$,

$$1 - H(S) = 1 - \frac{1}{m} \sum_{i=0}^{m-1} H\left(S_{\mu}^{(i)}\right)$$
$$= \frac{1}{m} \left[\sum_{i \in A} \left(1 - H\left(S_{\mu}^{(i)}\right)\right) + \sum_{i \in B} \left(1 - H\left(S_{\mu}^{(i)}\right)\right) + \sum_{i \in C} \left(1 - H\left(S_{\mu}^{(i)}\right)\right) \right]$$
(36)

$$\leq \frac{|A|}{m} \left(1 - \min\left\{ H\left(S_{\mu}^{(i)}\right) : i \in \mathcal{V}_{X|Y}(x_1) \right\} \right) + \frac{|B| + |C|}{m}$$
(37)

$$\leq x_1(\theta) + \frac{|B| + |C|}{m} \leq \theta + \frac{|B|}{m} + \mathbb{P}(J \in C),$$
(38)

where J is a random variable uniformly distributed over [0, m-1]. Now, the contraposition of (34) gives

$$C \subset \left\{ i \in [\![0, m-1]\!] : g^2 \left[H \left(S_{\mu}^{(i)} \right) \right] \ge \frac{\theta}{2} \right\},$$
(39)

hence it results from Corollary 2.4 that

$$\mathbb{P}(J \in C) \le \frac{\Lambda^{\mu}}{2\sqrt{\theta/2}},\tag{40}$$

and this implies, with inequality (38) where $\frac{|B|}{m} = \mathbb{P}(J \in \mathcal{H}^{c}_{X|Y}(x_1))$, that

$$\mathbb{P}(J \in \mathcal{H}^{c}_{X|Y}(x_{1})) \geq 1 - H(S) - \theta - \frac{\Lambda^{\mu}}{2\sqrt{\theta/2}}.$$
(41)

Proposition 2.5 There exists $\Lambda \in]0, 1[$ such that for any $\theta \in]0, \frac{1}{2}]$, for any memoryless source S with binary-part to compress and discrete side-information, for any $m \in \mathbb{D}$ $(m = 2^{\mu})$, the subsets defined in equations (8–9) satisfy

$$\frac{|\mathcal{H}_{X|Y}(\theta) \cap \mathcal{V}_{X|Y}^{c}(\theta)|}{m} \leq \frac{\sqrt{2}\Lambda^{\mu}}{2\sqrt{\theta}}$$
(42)

$$H(S) - \theta \leq \frac{|\mathcal{H}_{X|Y}(\theta)|}{m} \leq H(S) + \theta + \frac{\sqrt{2}\Lambda^{\mu}}{2\sqrt{\theta}}$$
(43)

$$H(S) - \theta - \frac{\sqrt{2}\Lambda^{\mu}}{2\sqrt{\theta}} \leq \frac{|\mathcal{V}_{X|Y}(\theta)|}{m} \leq H(S) + \theta.$$
(44)

Proof. Since $x_1 = x_1(\theta) \leq \theta$, we have $\mathcal{H}^c_{X|Y}(x_1) \subset \mathcal{H}^c_{X|Y}(\theta)$ and $\mathcal{V}_{X|Y}(x_1) \subset \mathcal{V}_{X|Y}(\theta)$. Therefore: firstly $\mathcal{H}_{X|Y}(\theta) \cap \mathcal{V}^c_{X|Y}(\theta) \subset \mathcal{H}_{X|Y}(x_1) \cap \mathcal{V}^c_{X|Y}(x_1)$ and inequality (42) results from (40); secondly $|\mathcal{H}_{X|Y}^c(x_1)| \leq |\mathcal{H}_{X|Y}^c(\theta)|$ and the right inequality in (43) comes directly from (41). Furthermore, the conditions $\max_{i\in\mathcal{H}_{X|Y}^c(\theta)} H(S_{\mu}^{(i)}) \leq \theta$ and $\max_{i\in\mathcal{H}_{X|Y}(\theta)} H(S_{\mu}^{(i)}) \leq 1$ give

$$H(S) = \frac{1}{m} \sum_{i=0}^{m-1} H\left(S_{\mu}^{(i)}\right) \le \theta \mathbb{P}\left[J \in \mathcal{H}_{X|Y}^{c}(\theta)\right] + \mathbb{P}\left[J \in \mathcal{H}_{X|Y}(\theta)\right] \le \theta + \frac{|\mathcal{H}_{X|Y}(\theta)|}{m}, \quad (45)$$

which proves the left inequality in (43). Similarly, condition $\min_{i \in \mathcal{V}_{X|Y}(\theta)} H(S^{(i)}_{\mu}) \ge 1 - \theta$ implies

$$H(S) \ge (1-\theta) \mathbb{P} \left[J \in \mathcal{V}_{X|Y}(\theta) \right] \ge \frac{|\mathcal{V}_{X|Y}(\theta)|}{m} - \theta,$$
(46)

which proves the right inequality in (44). Finally, note that $\mathcal{V}_{X|Y}(\theta) \subset \mathcal{H}_{X|Y}(\theta)$ implies $\mathcal{V}_{X|Y}(\theta) = \mathcal{H}_{X|Y}(\theta) \setminus \left[\mathcal{H}_{X|Y}(\theta) \cap \mathcal{V}_{X|Y}^{c}(\theta)\right]$, so the left inequality in (44) results from (42–43).

Let us now consider $\rho \in]0, 1[$ and $\mu \in \mathbb{N}^*$ such that $4\rho^{2\mu} < \frac{1}{2}$, i.e., $\mu > \frac{3}{2\log(1/\rho)}$. For any memoryless source S with binary-part to compress and discrete side-information, since according to Proposition 1.1 for all $i \in [0, 2^{\mu} - 1], Z(S_{\mu}^{(i)}) \leq \sqrt{H(S_{\mu}^{(i)})}$, we have

$$\left\{ i \in \left[\!\left[0\,,\,2^{\mu}-1\right]\!\right] : H\left(S_{\mu}^{(i)}\right) \le 4\rho^{2\mu} \right\} \subset \left\{ i \in \left[\!\left[0\,,\,2^{\mu}-1\right]\!\right] : Z\left(S_{\mu}^{(i)}\right) \le 2\rho^{\mu} \right\},$$
(47)

$$\left\{i \in \left[\!\left[0\,,\,2^{\mu}-1\right]\!\right]:\,H\left(S_{\mu}^{(i)}\right) \le x_{1}(4\rho^{2\mu})\right\} \subset \left\{i \in \left[\!\left[0\,,\,2^{\mu}-1\right]\!\right]:\,H\left(S_{\mu}^{(i)}\right) \le 4\rho^{2\mu}\right\};\quad(48)$$

therefore with $\theta = 4\rho^{2\mu}$ in (41), we obtain the following Proposition.

Proposition 2.6 With the notations introduced in this subsection, for any $\rho \in]0, 1[$, for any integer $\mu > \frac{3}{2\log(1/\rho)}$ we have

$$\mathbb{P}\left(Z\left(S_{\mu}^{(J)}\right) \le 2\rho^{\mu}\right) \ge 1 - H(S) - 4\rho^{2\mu} - \frac{1}{2\sqrt{2}}\left(\frac{\Lambda}{\rho}\right)^{\mu},\tag{49}$$

where J is a random variable uniformly distributed over $[0, 2^{\mu} - 1]$.

Let us remark that

$$\forall \theta \in \left[0, \frac{\sqrt{5} - 1}{2}\right[, \quad \sqrt{1 - \theta} \le 1 - \theta^2 \tag{50}$$

and for any $\rho \in]0, 1[$, for any $\mu \in \mathbb{N}$ such that

$$\mu > \frac{2 - \log(\sqrt{5} - 1)}{\log(1/\rho)} \simeq \frac{1.69}{\log(1/\rho)} \qquad \text{i.e.,} \qquad 2\rho^{\mu} < \frac{\sqrt{5} - 1}{2},\tag{51}$$

we have

$$\log\left(\frac{1}{1-2\rho^{2\mu}}\right) < \frac{1}{2} \qquad \text{i.e.,} \qquad \mu > \left[\frac{3}{4} - \frac{\log(\sqrt{2}-1)}{2}\right] \frac{1}{\log(1/\rho)} \simeq \frac{1.38}{\log(1/\rho)}, \qquad (52)$$

and it results from the right inequality in (12) that

$$\left(H(S) > \log(2 - 4\rho^{2\mu})\right) \Rightarrow \left(1 + Z(S) > 2 - 4\rho^{2\mu}\right).$$
(53)

Now, $\log(2 - 4\rho^{2\mu}) = 1 - \log[(1 - 2\rho^{2\mu})^{-1}]$, moreover $1 + Z(S) > 2 - 4\rho^{2\mu}$ if and only if $Z(S) > 1 - 4\rho^{2\mu}$ and $1 - 4\rho^{2\mu} \ge \sqrt{1 - 2\rho^{\mu}}$ according to (50–51), hence

$$\left(H(S) > 1 - \log\left[\frac{1}{1 - 2\rho^{2\mu}}\right]\right) \Rightarrow \left(Z(S) > \sqrt{1 - 2\rho^{\mu}}\right) \quad \text{i.e.,} \quad Z'(S) = 1 - Z(S)^2 < 2\rho^{\mu}.$$
(54)

Finally,

$$1 - \log\left[\frac{1}{1 - 2\rho^{2\mu}}\right] = 1 + \frac{\ln(1 - 2\rho^{2\mu})}{\ln 2} \le 1 - \frac{2\rho^{2\mu}}{\ln 2}.$$
(55)

Therefore the next proposition results from the left inequality in (44).

Proposition 2.7 With the notations introduced in this subsection, for any $\rho \in]0, 1[$, for any integer $\mu > \frac{2-\log(\sqrt{5}-1)}{\log(1/\rho)}$ we have

$$\mathbb{P}\left(Z'\left(S^{(J)}_{\mu}\right) < 2\rho^{\mu}\right) \ge H(S) - \frac{2}{\ln 2}\rho^{2\mu} - \frac{\sqrt{\ln 2}}{2}\left(\frac{\Lambda}{\rho}\right)^{\mu},\tag{56}$$

where J is a random variable uniformly distributed over $[0, 2^{\mu} - 1]$.

We add this paragraph to prove the Rough polarization theorem.

Let $\rho \in]\Lambda, 1[$ and $\varepsilon \in]0, \frac{1}{2}[;$ let

$$b_{\rho} = \max\left(\frac{2}{\ln(1/\rho)}, \frac{1}{\ln(\rho/\Lambda)}\right),\tag{57}$$

and let $\mu \in \mathbb{N}$ such that $\mu > b_{\rho} \ln(1/\varepsilon)$. Then, we have $\frac{\ln(1/\varepsilon) - (\ln 2)/2}{\ln(\rho/\Lambda)} < \frac{\ln(1/\varepsilon)}{\ln(\rho/\Lambda)} \le b_{\rho} \ln(1/\varepsilon) < \mu$ and $\frac{\ln(1/\varepsilon) + 3\ln 2}{2\ln(1/\rho)} \le \frac{4\ln(1/\varepsilon)}{2\ln(1/\rho)} \le b_{\rho} \ln(1/\varepsilon) < \mu$, which imply

$$\frac{1}{2\sqrt{2}} \left(\frac{\Lambda}{\rho}\right)^{\mu} < \frac{\varepsilon}{2} \quad \text{and} \quad 4\rho^{2\mu} < \frac{\varepsilon}{2}, \quad \text{hence} \quad 4\rho^{2\mu} + \frac{1}{2\sqrt{2}} \left(\frac{\Lambda}{\rho}\right)^{\mu} < \varepsilon.$$
(58)

We proved the following theorem by Guruswami and Xia.

Theorem 2.8 (Rough polarization) There exists $\Lambda \in]0, 1[$ such that for any $\rho \in]\Lambda, 1[$, there exists $b_{\rho} > 0$ such that for any memoryless source S with binary-part to compress and discrete side-information, for any $\varepsilon \in]0, \frac{1}{2}[$ and for any $\mu \in \mathbb{N}$, such that $\mu > b_{\rho} \ln(1/\varepsilon)$, there exists a roughly polarized set

$$\mathcal{S}_r \subset \left\{ S^{(i)}_\mu : 0 \le i < 2^\mu \right\} \tag{59}$$

such that for any $M \in S_r$, $Z(M) \leq 2\rho^{\mu}$ and $\mathbb{P}(S^{(J)}_{\mu} \in S_r) \geq 1 - H(S) - \varepsilon$, where J is a random variable uniformly distributed over $[0, 2^{\mu} - 1]$.

3 Fine polarization

This section is an adaptation of the reasoning given by Guruswami and Xia (see footnote 3) to prove their fine polarization theorem.

3.1 Preliminaries

Lemma 3.1 For any $\beta \in]0, \frac{1}{2}[$, the function $\zeta : \mathbb{R}^*_+ \to \mathbb{R}_+$ defined by

$$\zeta(y) = \frac{\lfloor y \rfloor}{2y} + \frac{2\beta^2 y}{\lceil y \rceil} = \begin{cases} \frac{1+4\beta^2}{2} & \text{if } y \in \mathbb{N}^* \\ \frac{q}{2(q+\alpha)} + \frac{2\beta^2(q+\alpha)}{q+1} & \text{if } y = q+\alpha \text{ with } q \in \mathbb{N} \text{ and } 0 < \alpha < 1, \end{cases}$$
(60)

satisfies the condition:

$$\forall y, \quad \left(\lfloor y \rfloor \ge \frac{4\beta^2}{1 - 4\beta^2} \Rightarrow \min\{\zeta(\lfloor y \rfloor + \alpha) : \alpha \in [0, 1]\} = \frac{\lfloor y \rfloor}{2(\lfloor y \rfloor + 1)} + 2\beta^2 \right). \tag{61}$$

Proof. For $q \in \mathbb{N}^*$, let us introduce the continuously differentiable function of α

$$\begin{aligned}
f_q : \mathbb{R}_+ &\to \mathbb{R}_+^* \\
\alpha &\mapsto \frac{q}{2(q+\alpha)} + \frac{2\beta^2(q+\alpha)}{q+1},
\end{aligned}$$
(62)

which satisfies $f_q(\alpha) = \zeta(q + \alpha) \ (\forall \alpha \in]0, 1[)$ and

$$f_q(0) = \frac{1}{2} + 2\beta^2 \frac{q}{q+1} < \frac{1}{2} + 2\beta^2 \quad \text{and} \quad f_q(1) = \frac{q}{2(q+1)} + 2\beta^2 < \frac{1}{2} + 2\beta^2, \tag{63}$$

$$f'_q(\alpha) = \frac{2\beta^2}{q+1} - \frac{q}{2(q+\alpha)^2} \quad \text{and} \quad f'_q(\alpha) = 0 \iff \alpha = \frac{\sqrt{q(q+1)}}{2\beta} - q.$$
(64)

Let us remark that $\beta \in]0, \frac{1}{2}[$ implies $f'_q(0) = \frac{-1}{2q} + \frac{2\beta^2}{q+1} < 0$ and the zero of the derivative function is always greater than zero. Moreover, the zero of the derivative function is smaller than 1 if and only if

$$\frac{q(q+1)}{4\beta^2} < (q+1)^2 \quad \Leftrightarrow \quad q < \frac{4\beta^2}{1-4\beta^2}.$$
(65)

Hence, if $\lfloor y \rfloor = q \ge \frac{4\beta^2}{1-4\beta^2}$, then $\min\{f_q(\alpha) : \alpha \in [0, 1]\} = f_q(1) = \frac{\lfloor y \rfloor}{2(\lfloor y \rfloor + 1)} + 2\beta^2$.

The proofs of the following three lemmas are straightforward.

Lemma 3.2 The function

$$\begin{aligned} \zeta : \mathbb{R}_+ &\to \mathbb{R}_- \\ y &\mapsto -\alpha_0 2^y + y \end{aligned} \quad with \quad \alpha_0 = \frac{2}{e \ln 2} \simeq 106 \end{aligned} \tag{66}$$

is maximum at the point $y_0 = \frac{-\ln(\alpha_0 \ln 2)}{\ln 2} = \frac{1}{\ln 2} - 1 \simeq 0.44$ and $\zeta(y_0) = -1$.

Lemma 3.3 For any $\beta \in \left[0, \frac{1}{2}\right]$, the function

$$\varphi : \mathbb{R}^*_+ \to \mathbb{R}^*_+ y \mapsto \frac{1 - \beta + y^{-1}}{1 - 2^{-\beta y}}$$

$$(67)$$

is strictly decreasing, $\varphi(1/\beta) = 2$ and $\varphi(y)$ approaches to $1 - \beta < 1$ when y approaches to infinity. Hence, there exists $c_{\beta} > 0$ such that

$$\forall y, (y \ge c_\beta \Rightarrow \varphi(y) < 1).$$
(68)

Lemma 3.4 $\forall \beta \in]0, \frac{1}{2}[, \forall \gamma \in \mathbb{R}^*_+, \forall \xi > 1 \text{ and } \forall \rho \in]0, 1[$ the function

$$\psi : \mathbb{R}_{+} \to \mathbb{R}_{+}^{*}$$

$$y \mapsto \sqrt{e} \left(1 + \frac{\gamma\xi}{\log(1/\rho)} \right) \exp\left[\frac{-(1-2\beta)^{2}y}{2} \right]$$
(69)

is strictly decreasing on \mathbb{R}_+ , $\psi(0) > 1$ and $\psi(y)$ approaches to 0 when y approaches to infinity.

3.2 Introduction of parameters, constants and notations

Let $\delta \in [0, \frac{1}{2}[$ and $\beta \in [\delta, \frac{1}{2}[$ such that $\gamma = \frac{\delta}{\beta - \delta}$ is a rational number. We put $\gamma = \frac{\gamma_n}{\gamma_d}$ with γ_n and γ_d co-prime integers (γ can take any value in \mathbb{Q}^*_+).

Let $\rho \in]\Lambda$, 1[, $\xi > 1$ (the x parameter used by Guruswami and Xia is connected to ξ with the relation $x = \frac{\log(1/\rho)}{\xi \log(2/\rho)}$) and

$$c = \left\lceil \frac{\gamma \xi}{\log(1/\rho)} \right\rceil.$$
(70)

Using the constant c_{β} introduced in lemma 3.3, let

$$c_{\beta}' = \left(\frac{\xi}{\log(1/\rho)} + \frac{1}{\gamma}\right) \max\left\{c_{\beta}, \frac{1}{(1-2\beta)}\right\},\tag{71}$$

$$c_{\delta} = \max\left(\frac{(1+\alpha_0)\xi}{(\xi-1)\log(1/\rho)}, c'_{\beta}\right).$$
(72)

Let μ be a natural integer multiple of γ_d such that

$$\mu > c_{\delta}.\tag{73}$$

Finally, let us introduce

$$\nu = \gamma \mu$$
 and $\nu_0 = (\gamma + 1)\mu = \nu + \mu$, (74)

which are natural integers because μ is a multiple of γ_d .

For any $j \in [\![1, c]\!]$, let us note $I_j = \left[\frac{(j-1)\nu}{c}, \frac{j\nu}{c}\right] \cap \mathbb{N}, n_j = |I_j|$ and

$$G_{j}(\nu) = \left\{ i = \sum_{k=0}^{\nu-1} b_{k} 2^{k} : \sum_{k \in I_{j}} b_{k} \ge \frac{\beta\nu}{c} \right\}, \quad G_{j}'(\nu) = \left\{ i = \sum_{k=0}^{\nu-1} b_{k} 2^{k} : \sum_{k \in I_{j}} (1-b_{k}) \ge \frac{\beta\nu}{c} \right\}$$
(75)

where $b_0, \ldots, b_{\nu-1}$ are the binary digits of *i*. It comes

$$\left\lfloor \frac{\nu}{c} \right\rfloor \le n_j \le \left\lceil \frac{\nu}{c} \right\rceil$$
 and $\sum_{j=1}^c n_j = \nu.$ (76)

Finally, let us put

$$G(\nu) = \bigcap_{j=1}^{c} G_j(\nu) \quad \text{and} \quad G'(\nu) = \bigcap_{j=1}^{c} G'_j(\nu).$$
(77)

3.3 Proof of the fine polarization theorem

Lemma 3.5 (Guruswami & Xia) With the notations introduced in the previous subsections, if J_2 is a random variable with uniform distribution over $[0, 2^{\nu} - 1]$, then

$$\mathbb{P}(J_2 \in G(\nu)) \geq 1 - \psi\left(\frac{\nu}{c}\right), \tag{78}$$

$$\mathbb{P}(J_2 \in G'(\nu)) \geq 1 - \psi\left(\frac{\nu}{c}\right).$$
(79)

Proof. If we write $J_2 = \sum_{k=0}^{\nu-1} B_k 2^k$, then the ν bits B_k are independent Bernoulli random variables with parameter $\frac{1}{2}$. If J_2 takes its values in $G_j(\nu)$, we have

$$\sum_{k \in I_j} B_k - \frac{n_j}{2} \ge -\left(\frac{n_j}{2} - \frac{\beta\nu}{c}\right).$$
(80)

Moreover

$$\frac{n_j}{2} - \frac{\beta\nu}{c} \ge \frac{1}{2} \left\lfloor \frac{\nu}{c} \right\rfloor - \frac{\beta\nu}{c} > \frac{1}{2} \left(\frac{\nu}{c} - 1 \right) - \frac{\beta\nu}{c}$$

$$\tag{81}$$

and since, according to equations (70-74), we have

$$\frac{\nu}{c} \ge \frac{\gamma\mu}{1 + \frac{\gamma\xi}{\log(1/\rho)}} = \frac{\mu}{\frac{1}{\gamma} + \frac{\xi}{\log(1/\rho)}} > \frac{1}{(1 - 2\beta)},\tag{82}$$

it comes

$$\frac{1}{2}\left(\frac{\nu}{c}-1\right) - \frac{\beta\nu}{c} = \frac{(1-2\beta)\nu}{2c} - \frac{1}{2} > 0.$$
(83)

It then results from Hoeffding's inequality that

$$\mathbb{P}(J_2 \in G_j(\nu)) = 1 - \mathbb{P}\left(\sum_{k \in I_j} B_k - \frac{n_j}{2} < -\left(\frac{n_j}{2} - \frac{\beta\nu}{c}\right)\right) \\
\geq 1 - \exp\left(-\left(\frac{1}{2} - \frac{\beta\nu}{cn_j}\right)^2 2n_j\right).$$
(84)

Now, $\left(\frac{1}{2} - \frac{\beta\nu}{cn_j}\right)^2 2n_j = \frac{n_j}{2} - \frac{2\beta\nu}{c} + \frac{2\beta^2\nu^2}{c^2n_j} = \frac{\nu}{c} \left(\frac{n_j}{2\frac{\nu}{c}} - 2\beta + \frac{2\beta^2\frac{\nu}{c}}{n_j}\right) \ge \frac{\nu}{c} \left(\zeta\left(\frac{\nu}{c}\right) - 2\beta\right)$, where the last inequality comes from (76) and the ζ function is defined in equation (60). Further it results from condition (82) that $\left\lfloor\frac{\nu}{c}\right\rfloor \ge \frac{4\beta^2}{1-4\beta^2}$. Therefore $\zeta\left(\frac{\nu}{c}\right) \ge \frac{\left\lfloor\frac{\nu}{c}\right\rfloor}{2\left(\left\lfloor\frac{\nu}{c}\right\rfloor+1\right)} + 2\beta^2 = \frac{1}{2} + 2\beta^2 - \frac{1}{2\left(\left\lfloor\frac{\nu}{c}\right\rfloor+1\right)}$, according to Lemma 3.1, and

$$\left(\frac{1}{2} - \frac{\beta\nu}{cn_j}\right)^2 2n_j \ge \frac{\nu(1 - 2\beta)^2}{2c} - \frac{1}{2}\frac{\frac{\nu}{c}}{\left\lfloor\frac{\nu}{c}\right\rfloor + 1} \ge \frac{\nu}{c}\frac{(1 - 2\beta)^2}{2} - \frac{1}{2}.$$
(85)

Hence

$$\mathbb{P}(J_2 \in G_j(\nu)) \ge 1 - \sqrt{e} \exp\left[\frac{-(1-2\beta)^2\nu}{2c}\right]$$
(86)

and we obtain

$$\mathbb{P}(J_2 \notin G(\nu)) \le \sum_{j=1}^{c} P(J_2 \notin G_j(\nu)) \le c\sqrt{e} \exp\left[\frac{-(1-2\beta)^2\nu}{2c}\right] \le \psi\left(\frac{\nu}{c}\right)$$
(87)

(the last inequality resulting from equations (70) and (69)), that proves (78). Finally, the same proof, where B_k is replaced with $(1 - B_k)$ in relations (80) and (84) and $G_j(\nu)$ is replaced with $G'_i(\nu)$ leads to (79).

Now for any memoryless source S with binary-part to compress and discrete side-information, it results from Proposition 2.6 (since⁵ $\mu > \frac{3}{2\log(1/\rho)}$) that there exists $S_r \subset \{S^{(i)}_{\mu} : 0 \le i < 2^{\mu}\}$ such that

$$\forall M \in \mathcal{S}_r, \ Z(M) \le 2\rho^{\mu} \quad \text{and} \quad \mathbb{P}\left(S_{\mu}^{(J_1)} \in \mathcal{S}_r\right) \ge 1 - H(S) - 4\rho^{2\mu} - \frac{1}{2\sqrt{2}} \left(\frac{\Lambda}{\rho}\right)^{\mu}, \quad (88)$$

where J_1 is a random variable uniformly distributed over $[0, 2^{\mu} - 1]$. In a same way, it results from Proposition 2.7 (since⁶ $\mu > \frac{3}{2\log(1/\rho)}$) that there exists $S'_r \subset \{S^{(i)}_{\mu} : 0 \le i < 2^{\mu}\}$ such that

$$\forall M \in \mathcal{S}'_r, \ Z'(M) \le 2\rho^{\mu} \quad \text{and} \quad \mathbb{P}\left(S^{(J_1)}_{\mu} \in \mathcal{S}'_r\right) \ge H(S) - \frac{2}{\ln 2}\rho^{2\mu} - \frac{\sqrt{\ln 2}}{2}\left(\frac{\Lambda}{\rho}\right)^{\mu}.$$
 (89)

For any $M \in \mathcal{S}_r$, we define the sequence

$$\tilde{Z}_{k}^{(i)} = \begin{cases} \left(\tilde{Z}_{k-1}^{\lfloor i/2 \rfloor}\right)^{2} & \text{if } i \text{ is odd,} \\ 2\tilde{Z}_{k-1}^{\lfloor i/2 \rfloor} & \text{if } i \text{ is even,} \end{cases} \quad \text{for any } k \in \mathbb{N}^{*}, \text{ with } \tilde{Z}_{0}^{(0)} = Z(M). \tag{90}$$

 4 Indeed, the condition (82) implies

$$\left\lfloor \frac{\nu}{c} \right\rfloor \geq \frac{\nu}{c} - 1 > \frac{1}{1 - 2\beta} - 1 = \frac{2\beta}{1 - 2\beta} > \left(\frac{2\beta}{1 - 2\beta}\right) \left(\frac{2\beta}{1 + 2\beta}\right) = \frac{4\beta^2}{1 - 4\beta^2}$$

⁵Indeed, condition (72) implies $\mu > \frac{(1+\alpha_0)\xi}{(\xi-1)\log(1/\rho)} > \frac{1+\alpha_0}{\log(1/\rho)} \simeq \frac{2.06}{\log(1/\rho)} > \frac{3}{2\log(1/\rho)}$. ⁶Indeed, condition (72) implies $\mu > \frac{(1+\alpha_0)\xi}{(\xi-1)\log(1/\rho)} > \frac{1+\alpha_0}{\log(1/\rho)} \simeq \frac{2.06}{\log(1/\rho)} > \frac{2-\log(\sqrt{5}-1)}{\log(1/\rho)} \simeq \frac{1.69}{\log(1/\rho)}$.

Let us note $R(\mu) = \{i \in [0, 2^{\mu} - 1]] : S_{\mu}^{(i)} \in S_r\}.$ In the same way, for any $M' \in S'_r$, we define the sequence

$$\tilde{Z}_{k}^{\prime(i)} = \begin{cases} \left(\tilde{Z}_{k-1}^{\prime(\lfloor i/2 \rfloor)}\right)^{2} & \text{if } i \text{ is even,} \\ 2\tilde{Z}_{k-1}^{\prime(\lfloor i/2 \rfloor)} & \text{if } i \text{ is odd,} \end{cases} \quad \text{for any } k \in \mathbb{N}^{*}, \text{ with } \tilde{Z}_{0}^{\prime(0)} = Z^{\prime}(M^{\prime}). \tag{91}$$

Let us note $R'(\mu) = \{i \in [0, 2^{\mu} - 1]] : S_{\mu}^{(i)} \in \mathcal{S}'_r\}.$

Lemma 3.6 (Guruswami & Xia) With the notations introduced in the previous subsection, we have $\log\left(\max\left\{\tilde{Z}_{\nu}^{(i)}: i \in G(\nu)\right\}\right) \leq -2^{\beta\nu}$.

Proof. Let us note for $j \in [1, c]$, $\nu_j = \sum_{k=1}^j n_k$ (thus $\nu_c = \nu$) and

$$z_j = \max\left\{\tilde{Z}_{\nu_j}^{\left(\lfloor i/2^{\nu-\nu_j}\rfloor\right)} : i \in G(\nu)\right\} \text{ for any } j \in \llbracket 1, c \rrbracket \quad \text{and } z_0 = Z(M).$$
(92)

Let us remark first that if z_j has been attained by p squarings $(0 \le p \le n_j)$ and $n_j - p$ doublings from z_{j-1} , the maximum value will be obtained by applying first the $n_j - p$ doublings followed by the p squarings⁷. Moreover, if $z_j < 1$, the maximum value will be reached by minimizing the number of squarings⁸.

According to relations (72), (74), (70) and (88), we have $\mu > \frac{(1+\alpha_0)\xi}{(\xi-1)\log(1/\rho)}, M \in \mathcal{S}_r, \frac{\nu}{c} \le \frac{\mu\log(1/\rho)}{\xi}$ and

$$\log Z(M) + \frac{\nu}{c} \le 1 - \mu \log(1/\rho)(1 - 1/\xi) \le 1 - (1 + \alpha_0) = -\alpha_0 \le -1.$$
(93)

Equation (93) shows that $\log Z(M) + n_1 \leq \log Z(M) + \frac{\nu}{c} + 1 < 0$, hence if one doubles n_1 times z_0 one obtains a value that is smaller than 1. Thus $z_1 < 1$ and since for any $i \in G(\nu)$, the number of squarings is worth at least $\left\lceil \frac{\beta \nu}{c} \right\rceil$, we have

$$\log z_1 \le 2^{\lceil \frac{\beta\nu}{c} \rceil} \left(\log Z(M) + \frac{\nu}{c} + 1 - \left\lceil \frac{\beta\nu}{c} \right\rceil \right) \le 2^{\frac{\beta\nu}{c}} \left(\log Z(M) + \frac{(1-\beta)\nu}{c} + 1 \right), \tag{94}$$

which can be written, using the φ function introduced in Lemma 3.3,

$$\log z_1 + \frac{\nu}{c}\varphi\left(\frac{\nu}{c}\right) \le 2^{\frac{\beta\nu}{c}} \left(\log Z(M) + \frac{\nu}{c}\varphi\left(\frac{\nu}{c}\right)\right) \le 2^{\frac{\beta\nu}{c}} \left(\log Z(M) + \frac{\nu}{c}\right),\tag{95}$$

according to condition (68) and

$$\frac{\nu}{c} \ge \frac{\gamma\mu}{1 + \frac{\gamma\xi}{\log(1/\rho)}} = \frac{\mu}{\frac{1}{\gamma} + \frac{\xi}{\log(1/\rho)}} > c_{\beta}$$
(96)

- the last inequality resulting from condition (73) and definitions (71–72) of c_{δ} .

Moreover, according to Lemma 3.3, the φ function is greater than $1 - \beta$ and it results from (93) and (95) that

$$\log z_1 + \frac{\nu}{c} < -\alpha_0 2^{\frac{\beta\nu}{c}} + \frac{\beta\nu}{c} = \zeta \left(\frac{\beta\nu}{c}\right) \le -1, \tag{97}$$

where the ζ function is defined in Lemma 3.2. So $\frac{\nu}{c} + 1 + \log z_1 < 0$, therefore $z_2 < 1$ and the same reasoning as above leads to

$$\log z_2 \le 2^{\frac{\beta\nu}{c}} \left(\log z_1 + n_2 - \left\lceil \frac{\beta\nu}{c} \right\rceil \right) < 2^{\frac{\beta\nu}{c}} \left(\log z_1 + \frac{(1-\beta)\nu}{c} + 1 \right), \tag{98}$$

$$2^{p}(\log x + n_{j} - p) \le 2^{p+1}(\log x + n_{j} - p - 1) \quad \Leftrightarrow \quad \log x \ge 2 - (n_{j} - p).$$

⁷Indeed, starting from x, if we apply p squarings and $n_j - p$ doublings, the final result will be of the form $x^{2^{p}}2^{\alpha}$, and α , the power of 2, will be maximum if the $n_{j} - p$ doublings precede the p squarings.

⁸If $z_i > 1$, the maximum value can be reached by replacing some doublings by squarings: starting from x > 0, p + 1 squarings will give a greater result than p squarings if and only if

which can be written

$$\log z_2 + \frac{\nu}{c}\varphi\left(\frac{\nu}{c}\right) \le 2^{\frac{\beta\nu}{c}} \left(\log z_1 + \frac{\nu}{c}\varphi\left(\frac{\nu}{c}\right)\right),\tag{99}$$

which, with (95), leads to

$$\log z_2 + (1-\beta)\frac{\nu}{c} \le \log z_2 + \frac{\nu}{c}\varphi\left(\frac{\nu}{c}\right) \le 2^{\frac{2\beta\nu}{c}}\left(\log z_0 + \frac{\nu}{c}\varphi\left(\frac{\nu}{c}\right)\right)$$
(100)

and according to conditions (93) and (96) and the property (68), it follows that

$$\log z_{2} + \frac{\nu}{c} \leq 2^{\frac{2\beta\nu}{c}} \left(\log z_{0} + \frac{\nu}{c}\right) + \frac{\beta\nu}{c} \\ < -\alpha_{0}2^{\frac{2\beta\nu}{c}} + \frac{\beta\nu}{c} = \zeta \left(\frac{2\beta\nu}{c}\right) - \frac{\beta\nu}{c} \leq \zeta \left(\frac{2\beta\nu}{c}\right) \leq -1, \quad (101)$$

where the last inequality results from Lemma 3.2. More generally, let us suppose that

$$\log z_{j-1} + \frac{\nu}{c} \le 2^{\frac{(j-1)\beta\nu}{c}} \left(\log z_0 + \frac{\nu}{c}\right) + \frac{\beta\nu}{c},$$
(102)

so $1 + \frac{\nu}{c} + \log z_{j-1} < 1 + \zeta \left(\frac{(j-1)\beta\nu}{c}\right) \leq 0$ according to (93) and Lemma 3.2, and the same reasoning as above gives

$$\log z_j + \frac{(1-\beta)\nu}{c} \le 2^{\frac{j\beta\nu}{c}} \left(\log z_0 + \frac{\nu}{c}\right),\tag{103}$$

in particular for j = c:

$$\log z_c \le 2^{\beta\nu} \left(\log z_0 + \frac{\nu}{c} \right) \le -2^{\beta\nu},\tag{104}$$

where the last inequality results from relation (93).

The same reasoning replacing $\tilde{Z}_{k}^{(i)}$ with $\tilde{Z}_{k}^{'(i)}$ leads to the following lemma.

Lemma 3.7 With the notations introduced in the previous subsection, we have

$$\log\left(\max\left\{\tilde{Z}_{\nu}^{\prime(i)}:\,i\in G^{\prime}(\nu)\right\}\right)\leq -2^{\beta\nu}.$$

After all, we can deduce from equations (103-104) that

$$\log z_c + \frac{(1-\beta)\nu}{c} \le -2^{\beta\nu}.$$
(105)

Further, since $\log(1/\ln 2) \simeq 0.529$ and $\beta > 0$, we have

$$\beta \left(2\log(1/\ln 2) - 1 \right) > 0 > \log(1/\ln 2) - 1, \qquad \text{i.e.,} \quad \frac{1}{1 - 2\beta} > \frac{\log(1/\ln 2)}{1 - \beta}, \tag{106}$$

which implies, according to the conditions (71,73) and the equation (70),

$$\mu > \left(\frac{\xi}{\log(1/\rho)} + \frac{1}{\gamma}\right) \frac{1}{1 - 2\beta} > \frac{c\log(1/\ln 2)}{\gamma(1 - \beta)},\tag{107}$$

i.e., $\frac{(1-\beta)\nu}{c} > \log(1/\ln 2)$. Thus the relation (105) leads to the following lemma.

Lemma 3.8 With the notations introduced in the previous subsection, we have

$$\log\left(\max\left\{\tilde{Z}_{\nu}^{(i)}:i\in G(\nu)\right\}\right) \leq -2^{\beta\nu} + \log(\ln 2).$$

$$(108)$$

 \diamond

Let us recall that $\nu_0 = \nu + \mu$ and let us summarize the results proved in this section. We expanded $i \in [0, 2^{\nu_0} - 1]$ into $i = i_1 + 2^{\mu}i_2$, where the binary digits of $i_2 \in [0, 2^{\nu} - 1]$ and $i_1 \in [0, 2^{\mu} - 1]$ correspond respectively to the first ν and last μ bits of i. We proved that if $i_1 \in R(\mu)$ (i.e., if $S_{\mu}^{(i_1)} \in S_r$ or equivalently if $Z(S_{\mu}^{(i_1)}) < 2\rho^{\mu}$) and if $i_2 \in G(\nu)$, then

$$Z(S_{\nu_0}^{(i)}) \le 2^{-2^{\beta\nu}} \ln 2 = 2^{-2^{\delta\nu_0}} \ln 2.$$
(109)

We also proved that if $i_1 \in R'(\mu)$ (i.e., if $S'^{(i_1)}_{\mu} \in S'_r$ or equivalently if $Z'(S^{(i_1)}_{\mu}) < 2\rho^{\mu}$) and if $i_2 \in G'(\nu)$, then

$$Z'(S_{\nu_0}^{(i)}) \le 2^{-2^{\beta\nu}} = 2^{-2^{\delta\nu_0}}.$$
(110)

Now, according to equations (88) and (78) and assuming $J = J_1 + 2^{\mu}J_2$ is a random variable uniformly distributed over $[0, 2^{\nu_0} - 1]$, we have

$$\mathbb{P}(J_1 \in R(\mu) \text{ and } J_2 \in G(\nu)) = \mathbb{P}(J_1 \in R(\mu)) \mathbb{P}(J_2 \in G(\nu))$$

$$\geq \left(1 - H(S) - 4\rho^{2\mu} - \frac{1}{2\sqrt{2}} \left(\frac{\Lambda}{\rho}\right)^{\mu}\right) \left(1 - \psi\left(\frac{\nu}{c}\right)\right)$$

$$\geq 1 - H(S) - 4\rho^{2\mu} - \frac{1}{2\sqrt{2}} \left(\frac{\Lambda}{\rho}\right)^{\mu} - \psi\left(\frac{\nu}{c}\right). \quad (111)$$

We deduce that

$$\mathbb{P}\left(Z(S_{\nu_0}^{(J)}) \le 2^{-2^{\delta\nu_0}} \ln 2\right) \ge \mathbb{P}\left(J_1 \in R(\mu) \text{ and } J_2 \in G(\nu)\right)$$
$$\ge 1 - H(S) - 4\rho^{2\mu} - \frac{1}{2\sqrt{2}} \left(\frac{\Lambda}{\rho}\right)^{\mu} - \psi\left(\frac{\nu}{c}\right). \tag{112}$$

In a same way, we have

$$\mathbb{P}\left(Z'(S_{\nu_0}^{(J)}) \le 2^{-2^{\delta\nu_0}}\right) \ge \mathbb{P}\left(J_1 \in R'(\mu) \text{ and } J_2 \in G'(\nu)\right) \\
\ge H(S) - \frac{2}{\ln 2}\rho^{2\mu} - \frac{\sqrt{\ln 2}}{2}\left(\frac{\Lambda}{\rho}\right)^{\mu} - \psi\left(\frac{\nu}{c}\right).$$
(113)

Thus, we proved that for any μ multiple of γ_d : $\mu = k\gamma_d$ with $k \in \mathbb{N}^*$ great enough $(k > \frac{c_\delta}{\gamma_d})$ or in other words for any sufficiently large $\nu_0 = \mu(1 + \gamma) = k(\gamma_d + \gamma_n)$, the relations (109–110) and (112–113) are valid.

Let us consider now ν'_0 between two successive multiples of $\gamma_d + \gamma_n$:

$$\nu'_{0} = k(\gamma_{d} + \gamma_{n}) + u = \mu(1 + \gamma')$$
(114)

with

$$\mu = k\gamma_d, \quad 0 \le u < \gamma_n + \gamma_d \quad \text{and} \quad \gamma' = \frac{k\gamma_n + u}{k\gamma_d} = \gamma + \frac{u}{k\gamma_d},$$
(115)

then

$$\gamma \le \gamma' = \gamma + \frac{u}{k\gamma_d} \le \gamma + \frac{u}{\gamma_d} < 1 + 2\gamma.$$
(116)

Let us remark that if we introduce δ' such that

$$\gamma' = \frac{\delta'}{\beta - \delta'} \ge \gamma = \frac{\delta}{\beta - \delta},\tag{117}$$

then $\delta \leq \delta'$ and $2^{-2^{\delta'\nu'_0}} \leq 2^{-2^{\delta\nu'_0}}$. Thus, by replacing γ with $1 + 2\gamma$ in the definition of ψ (see (69)), leaving γ unchanged in equation (71) and replacing γ with γ' everywhere else, the above reasoning can be remade in order to prove the following proposition.

Proposition 3.9 For any $\delta \in \left[0, \frac{1}{2}\right]$, for any $\beta \in \left[\delta, \frac{1}{2}\right]$, for any $\rho \in \left[0, 1\right]$, for any $\xi > 1$, there exists $C_{\delta,\beta} > 0$ and $A_{\delta,\beta} > 0$ such that for any memoryless source S with binary-part to compress and discrete side-information and for any integer $\nu_0 > C_{\delta,\beta}$, we have

$$\mathbb{P}\left(Z(S_{\nu_{0}}^{(J)}) \leq 2^{-2^{\delta\nu_{0}}}\ln 2\right) \geq 1 - H(S) - 4\rho^{2\mu} - \frac{1}{2\sqrt{2}}\left(\frac{\Lambda}{\rho}\right)^{\mu} - A_{\delta,\beta}\exp\left(\frac{-(1-2\beta)^{2}\nu}{2c}\right) (18)$$
$$\mathbb{P}\left(Z'(S_{\nu_{0}}^{(J)}) \leq 2^{-2^{\delta\nu_{0}}}\right) \geq H(S) - \frac{2}{\ln 2}\rho^{2\mu} - \frac{\sqrt{2}}{2}\left(\frac{\Lambda}{\rho}\right)^{\mu} - A_{\delta,\beta}\exp\left(\frac{-(1-2\beta)^{2}\nu}{2c}\right), (119)$$

where J is a random variable uniformly distributed over $[0, 2^{\nu_0} - 1], \gamma = \frac{\delta}{\beta - \delta}, \nu_0 = (\gamma + 1)\mu, \nu = \gamma \mu$ and $c = \left\lceil \frac{\gamma \xi}{\log(1/\rho)} \right\rceil$.

Let us denote

$$\varepsilon = \frac{\mu}{\nu_0} = \frac{1}{\gamma + 1} = \frac{\beta - \delta}{\beta}, \quad \text{hence} \quad \beta = \frac{\delta}{1 - \varepsilon} \quad \text{and} \quad \gamma = \frac{1}{\varepsilon} - 1.$$
 (120)

Now we can choose $\xi > 1$ so that the fraction $\frac{\gamma\xi}{\log(1/\rho)}$ is an integer (equal to c), then we have

$$\frac{\nu}{c} = \frac{\gamma\mu}{c} = \frac{\mu\log(1/\rho)}{\xi} \tag{121}$$

and the previous proposition becomes:

Proposition 3.10 For any $\delta \in \left[0, \frac{1}{2}\right]$, for any $\rho \in \left[0, 1\right]$, for any $\varepsilon \in \left[0, 1-2\delta\right]$, for any $\xi > 1$ such that $\frac{(1-\varepsilon)\xi}{\varepsilon \log(1/\rho)} \in \mathbb{N}^*$, there exists $C_{\delta,\varepsilon} > 0$ and $A_{\delta,\varepsilon} > 0$ such that for any memoryless source S with binary-part to compress and discrete side-information and for any integer $\nu_0 > C_{\delta,\varepsilon}$, we have

$$\mathbb{P}\left(Z(S_{\nu_{0}}^{(J)}) \leq 2^{-2^{\delta\nu_{0}}} \ln 2\right) \geq 1 - H(S) - 4\rho^{2\varepsilon\nu_{0}} - \frac{1}{2\sqrt{2}} \left(\frac{\Lambda}{\rho}\right)^{\varepsilon\nu_{0}} - A_{\delta,\varepsilon} \exp\left(\frac{-(1 - \frac{2\delta}{1 - \varepsilon})^{2} \log(1/\rho)\varepsilon\nu_{0}}{2\xi}\right) = 1 - H(S) - 4\rho^{2\varepsilon\nu_{0}} - \frac{1}{2\sqrt{2}} \left(\frac{\Lambda}{\rho}\right)^{\varepsilon\nu_{0}} - A_{\delta,\varepsilon} \left[(\rho)^{\left(1 - \frac{2\delta}{1 - \varepsilon}\right)^{2} \frac{1}{2\xi \ln 2}}\right]^{\varepsilon\nu_{0}}_{(122)} \\ \mathbb{P}\left(Z'(S_{\nu_{0}}^{(J)}) \leq 2^{-2^{\delta\nu_{0}}}\right) \geq H(S) - \frac{2}{\ln 2}\rho^{2\varepsilon\nu_{0}} - \frac{\sqrt{\ln 2}}{2} \left(\frac{\Lambda}{\rho}\right)^{\varepsilon\nu_{0}} - A_{\delta,\varepsilon} \left[(\rho)^{\left(1 - \frac{2\delta}{1 - \varepsilon}\right)^{2} \frac{1}{2\xi \ln 2}}\right]^{\varepsilon\nu_{0}}_{(123)}$$

where J is a random variable uniformly distributed over $[0, 2^{\nu_0} - 1]$. Moreover we can choose

$$A_{\delta,\varepsilon} = \sqrt{e} \left(1 + \frac{(2-\varepsilon)\xi}{\varepsilon \log(1/\rho)} \right).$$
(124)

Let us put $n = 2^{\nu_0}$. Equation (122) can be written

$$\mathbb{P}\left(Z(S_{\nu_0}^{(J)}) \le 2^{-n^{\delta}} \ln 2\right) \ge 1 - H(S) - \frac{4}{n^{\kappa_{\epsilon}^{(1)}}} - \frac{1}{2\sqrt{2} \cdot n^{\kappa_{\epsilon}^{(2)}}} - \frac{A_{\delta,\varepsilon}}{n^{\kappa_{\epsilon}^{(3)}}}$$
(125)

with

$$\kappa_{\epsilon}^{(1)} = 2\varepsilon \log(1/\rho), \qquad (126)$$

$$\kappa_{\epsilon}^{(2)} = \varepsilon \log(\rho/\Lambda) \tag{127}$$

$$\kappa_{\epsilon}^{(3)} = \varepsilon \left(1 - \frac{2\delta}{1 - \varepsilon} \right)^2 \frac{\log(1/\rho)}{2\xi \ln 2}.$$
 (128)

In order to shorten the notations, let us put

$$\alpha = \alpha(\delta, \varepsilon, \rho, \xi) = \left(1 - \frac{2\delta}{1 - \varepsilon}\right)^2 \frac{1}{2\xi \ln 2}.$$
(129)

For fixed $\delta \in [0, \frac{1}{2}[$, we look for $\varepsilon \in [0, 1-2\delta[, \rho \in]0, 1[$ and $\xi > 1$ that maximize $\kappa_{\epsilon} = \min\left(\kappa_{\epsilon}^{(1)}, \kappa_{\epsilon}^{(2)}, \kappa_{\epsilon}^{(3)}\right)$. Let us remark that

$$\kappa_{\epsilon}^{(3)} = \varepsilon \left(1 - \frac{2\delta}{1 - \varepsilon}\right)^2 \frac{\log(1/\rho)}{2\xi \ln 2} < \frac{\varepsilon \log(1/\rho)}{2\ln 2} < 2\varepsilon \log(1/\rho) = \kappa_{\epsilon}^{(1)}, \tag{130}$$

therefore $\min\left(\kappa_{\epsilon}^{(1)}, \kappa_{\epsilon}^{(2)}, \kappa_{\epsilon}^{(3)}\right) = \min\left(\kappa_{\epsilon}^{(2)}, \kappa_{\epsilon}^{(3)}\right)$. Moreover, we have

$$\kappa_{\epsilon}^{(2)} \le \kappa_{\epsilon}^{(3)} \Leftrightarrow \log(\rho/\Lambda) \le \alpha \log(1/\rho) \Leftrightarrow \log \rho \le \frac{\log \Lambda}{1+\alpha} \Leftrightarrow \rho \le \Lambda^{\frac{1}{1+\alpha}}.$$
 (131)

Firstly, let us suppose that

$$\rho \le \Lambda^{\frac{1}{1+\alpha}}.\tag{132}$$

In this case we have $\min\left(\kappa_{\epsilon}^{(1)}, \kappa_{\epsilon}^{(2)}, \kappa_{\epsilon}^{(3)}\right) = \kappa_{\epsilon}^{(2)} = \varepsilon \log(\rho/\Lambda)$ and this expression is maximum when the independent variables ρ and ε are maximum, hence for $\rho = \Lambda^{\frac{1}{1+\alpha}}$, which leads to

$$\min\left(\kappa_{\epsilon}^{(1)},\kappa_{\epsilon}^{(2)},\kappa_{\epsilon}^{(3)}\right) = \kappa_{\epsilon}^{(2)} = \kappa_{\epsilon}^{(3)} = \log(1/\Lambda)\frac{\varepsilon\alpha}{1+\alpha} \quad \text{with} \quad \alpha = \alpha(\varepsilon,\xi), \quad (133)$$

since δ is supposed to be fixed. Secondly, if we suppose that

$$\rho \ge \Lambda^{\frac{1}{1+\alpha}},\tag{134}$$

then min $\left(\kappa_{\epsilon}^{(1)}, \kappa_{\epsilon}^{(2)}, \kappa_{\epsilon}^{(3)}\right) = \kappa_{\epsilon}^{(3)} = \epsilon \alpha \log(1/\rho)$ and this quantity is maximum when α is maximum and ρ minimum, i.e., when inequality (134) is an equality, i.e., when (133) is satisfied. Further, the exponent $\kappa_{\epsilon}^{(2)} = \kappa_{\epsilon}^{(3)}$ in equation (133) is maximum if and only if

$$g(\varepsilon,\xi) \stackrel{\text{def}}{=} \frac{\varepsilon\alpha(\varepsilon,\xi)}{1+\alpha(\varepsilon,\xi)}$$
(135)

is maximum. Since

$$\frac{\partial g}{\partial \xi}(\varepsilon,\xi) = \frac{\varepsilon}{(1+\alpha)^2} \cdot \frac{\partial \alpha}{\partial \xi}(\varepsilon,\xi) = \frac{-\varepsilon \left(1 - \frac{2\delta}{1-\varepsilon}\right)^2}{(1+\alpha)^2 2\xi^2 \ln 2} < 0, \tag{136}$$

 $g(\varepsilon,\xi)$ is maximum when

$$\xi = \xi_{\min} > 1 \tag{137}$$

and equation (129) implies that

$$\alpha(\varepsilon, \xi_{\min}) = \frac{\left(1 - \frac{2\delta}{1 - \varepsilon}\right)^2}{2\xi_{\min} \ln 2} \stackrel{\text{def}}{=} \alpha_{\max}(\varepsilon).$$
(138)

Finally, the function to maximize is

$$\tilde{g}(\varepsilon) \stackrel{\text{def}}{=} \frac{\varepsilon \alpha_{\max}(\varepsilon)}{1 + \alpha_{\max}(\varepsilon)} \tag{139}$$

whose derivative

$$\tilde{g}'(\varepsilon) = \frac{\alpha_{\max}(\varepsilon)}{1 + \alpha_{\max}(\varepsilon)} + \frac{\varepsilon \alpha'_{\max}(\varepsilon)}{\left(1 + \alpha_{\max}(\varepsilon)\right)^2}$$
(140)

vanishes if and only if $\alpha_{\max}(\varepsilon)(1 + \alpha_{\max}(\varepsilon)) + \varepsilon \alpha'_{\max}(\varepsilon) = 0$. We obtain a trivial solution $\varepsilon = 1 - 2\delta$ (corresponding to a minimum: $\tilde{g}(1 - 2\delta) = 0$) and a third degree algebraic equation in u, with $u = 1 - \varepsilon$:

$$P(u) = Au^{3} - Bu^{2} - Cu - D, \quad \text{with} \quad \begin{cases} A = 2\xi_{\min} \ln 2 + 1\\ B = 2\delta(3 - 2\xi_{\min} \ln 2)\\ C = 4\delta(2\xi_{\min} \ln 2 - 3\delta)\\ D = 8\delta^{3} \end{cases}$$
(141)

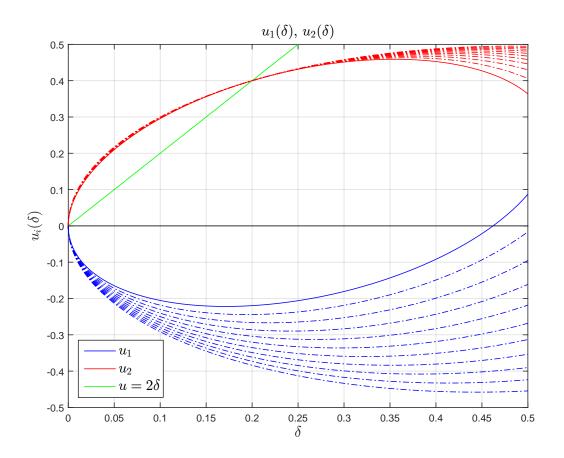


Figure 1: Graphs of $u_1(\delta)$ and $u_2(\delta)$, the roots of P'(u), for $\delta \in]0, \frac{1}{2}[$ and various values of $\xi_{\min} = (10+k)/10$ ($0 \le k \le 10$); solid line corresponds to $\xi_{\min} = 1$.

The discriminant of P is the resultant $\operatorname{Res}(P, P')$ between polynomials P(u) and its derivative $P'(u) = 3Au^2 - 2Bu - C$:

$$\operatorname{Res}(P, P') = \begin{vmatrix} A & -B & -C & -D & 0 \\ 0 & A & -B & -C & -D \\ 0 & 0 & 3A & -2B & -C \\ 0 & 3A & -2B & -C & 0 \\ 3A & -2B & -C & 0 & 0 \end{vmatrix}$$
(142)
$$= 256(\xi_{\min} \ln 2)^2 (2\xi_{\min} \ln 2 + 1)(4\delta^2 - 4\delta + 2\xi_{\min} \ln 2 + 1)\delta^3 \times (8\xi_{\min} \ln 2 - \delta(27 - 2\xi_{\min} \ln 2)).$$
(143)

The third degree equation P(u) = 0 admits a multiple root if and only if the resultant Res(P, P') vanishes, i.e., if and only if $\delta = 0$ or (see Figure 2)

$$\delta = \delta_1(\xi_{\min}) = \frac{8\xi_{\min}\ln 2}{27 - 2\xi_{\min}\ln 2} \underset{\xi_{\min}=1}{\simeq} 0.21649.$$
(144)

Thus for all $\delta \in [0, \delta_1(\xi_{\min})]$, the equation P(u) = 0 admits three real roots, for $\delta > \delta_1(\xi_{\min})$ the same equation admits only one real root and for $\delta = \delta_1(\xi_{\min})$, the real root is multiple. Moreover, let us introduce the discriminant of P'(u):

$$\Delta' = B^2 + 3AC = 8\delta\xi_{\min}\ln 2\left(6\xi_{\min}\ln 2 + 3 - \delta(15 - 2\xi_{\min}\ln 2)\right),\tag{145}$$

which vanishes when

$$\delta = \delta_0(\xi_{\min}) = \frac{6\xi_{\min}\ln 2 + 3}{15 - 2\xi_{\min}\ln 2} \simeq 0.52586, \tag{146}$$

and, for $\delta \in \left]0, \frac{1}{2}\right[$, let

$$u_1(\delta) = \frac{B - \sqrt{\Delta'}}{3A} < 0 \qquad \text{and} \qquad u_2(\delta) = \frac{B + \sqrt{\Delta'}}{3A} > 0 \tag{147}$$

be the real roots of P'(u) (see Figure 1). We have $P\left(u_1(\delta_1(\xi_{\min}))\right) = 0$ and $u_2(\delta_2) = 2\delta_2$ with $\delta_2 = 1/5 = 0.2$.

We show on Figure 2 the graphs of the values of P(u) when P'(u) vanishes as functions of δ for different values of ξ_{\min} and we can see that for all $\delta \in [0, \delta_1(\xi_{\min})[, P(u_1) > 0]$. Further,

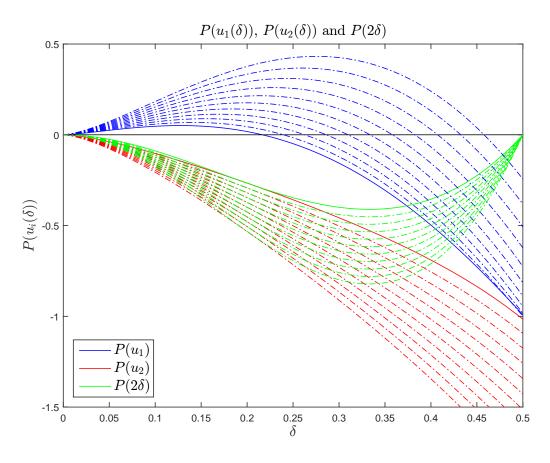


Figure 2: Graphs of $P(u_1(\delta))$, $P(u_2(\delta))$ and $P(2\delta)$ for $\delta \in]0, \frac{1}{2}[$ and various values of $\xi_{\min} = (10+k)/10$ ($0 \le k \le 10$); solid line corresponds to $\xi_{\min} = 1$.

since P(0) = -D < 0 ($\forall \delta > 0$) and $P(u) \to -\infty$ when $u \to -\infty$ ($\forall \delta$), we deduce that when equation P(u) = 0 admits three real zeros (i.e., when $0 < \delta < \delta_1(\xi_{\min})$), two of the three roots are smaller than zero.

Finally, since polynomial $4\delta^2 - 4\delta + 2\xi_{\min} \ln 2 + 1$ has no real roots, we can remark that

$$P(1) = A - B - C - D = (1 - 2\delta)(4\delta^2 - 4\delta + 2\xi_{\min}\ln 2 + 1) > 0 \quad \text{for all} \quad \delta \in \left[0, \frac{1}{2}\right](148)$$
$$P(2\delta) = 8A\delta^3 - 4B\delta^2 - 2C\delta - D = -16\xi_{\min}(\ln 2)\delta^2(1 - 2\delta) < 0 \quad \text{for all} \quad \delta \in \left[0, \frac{1}{2}\right](149)$$

Therefore, for all $\delta \in]0, \frac{1}{2}[$, there is always one and only one zero of P(u) with $2\delta < u < 1$. Let us note $\nu_1(\delta)$ this root of P. All the above mentioned conditions on the real roots $\nu_i(\delta)$ $(1 \leq i \leq 3)$ of P(u) can be observed on Figure 3, which has been obtained with numerical simulations.

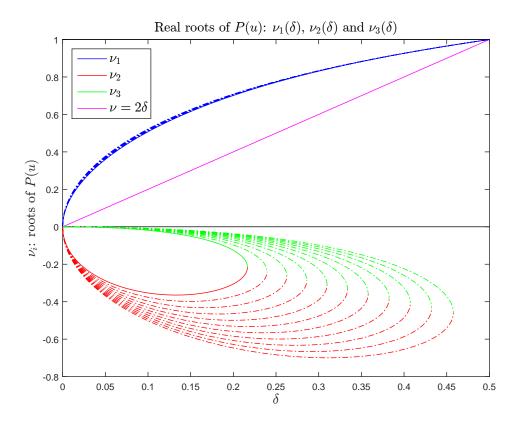


Figure 3: Graphs of $\nu_1(\delta)$, $\nu_2(\delta)$, $\nu_3(\delta)$ the real roots of P(u) and of $\nu = 2\delta$ for $\delta \in]0, \frac{1}{2}[$ and various values of $\xi_{\min} = (10+k)/10$ ($0 \le k \le 10$); solid line corresponds to $\xi_{\min} = 1$.

We show on Figure 4 (a) the graph of $\tilde{g}(1-\nu_1(\delta))$ as a function of δ and (b) the graph of $\tilde{g}(\varepsilon)$ as a function of ε for various δ . We see that \tilde{g} is maximum for $\lim_{\delta \to 0^+} \tilde{g}(1-\nu_1(\delta)) \underset{\xi_{\min}=1}{\simeq} 0.0046789995$.

Thus, we prove the following Proposition.

Proposition 3.11 For any $\delta \in \left[0, \frac{1}{2}\right[$ and for any $\varepsilon \in \left[0, 1-2\delta\right]$, there exists $\kappa_{\delta,\varepsilon} > 0$, $A_{\delta,\varepsilon} > 0$ and $C_{\delta,\varepsilon}$ such that for any memoryless source S with binary-part to compress and discrete side-information and for any integer $\nu_0 > C_{\delta,\varepsilon}$ – noting $n = 2^{\nu_0}$ –, we have

$$\mathbb{P}\left(Z(S_{\nu_0}^{(J)}) \le 2^{-n^{\delta}} \ln 2\right) \ge 1 - H(S) - \frac{A_{\delta,\varepsilon}}{n^{\varepsilon \kappa_{\delta,\varepsilon}}}$$
(150)

$$\mathbb{P}\left(Z'(S_{\nu_0}^{(J)}) \le 2^{-n^{\delta}}\right) \ge H(S) - \frac{A_{\delta,\varepsilon}}{n^{\varepsilon \kappa_{\delta,\varepsilon}}},\tag{151}$$

where J is a random variable uniformly distributed over [0, n-1].

Moreover putting $B_{\delta,\varepsilon} = \left[\frac{\left(1-\frac{2\delta}{1-\varepsilon}\right)^2+2\ln 2}{2\ln(1/\Lambda)}\right]$, we can choose $A_{\delta,\varepsilon}$ such that

$$\sqrt{e}\left(1 + \frac{2-\varepsilon}{\varepsilon}B_{\delta,\varepsilon}\right) + \frac{\sqrt{\ln 2}}{2} < A_{\delta,\varepsilon} < \sqrt{e}\left(1 + \frac{2-\varepsilon}{\varepsilon}B_{\delta,\varepsilon}\right) + \frac{\sqrt{\ln 2}}{2} + \frac{2}{\ln 2}.$$
 (152)

Further, for any $\delta \in [0, \frac{1}{2}[$, for any memoryless source S with binary-part to compress and discret side-information, for any $\nu_0 \in \mathbb{N}$, let us apply inequality (42) of Proposition 2.5 with

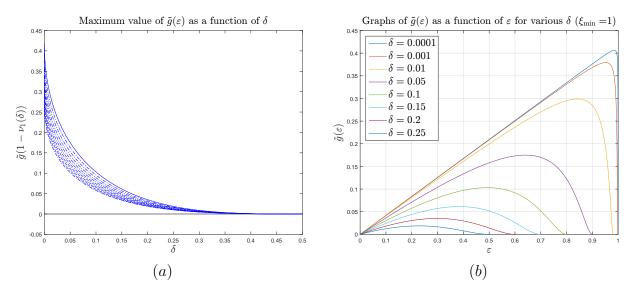


Figure 4: Graphs of (a) $\tilde{g}(1-\nu_1(\delta))$ as a function of δ and various values of $\xi_{\min} = (10+k)/10$ ($0 \le k \le 10$) (solid line corresponds to $\xi_{\min} = 1$) and (b) of $\tilde{g}(\varepsilon)$ as a function of ε for various δ and $\xi_{\min} = 1$.

$$\mu = \nu_0, \ m = n = 2^{\nu_0} \text{ and } \theta = 2^{-n^{\delta}} \text{ (provided that } \theta \leq \frac{1}{2}\text{):}$$
$$\frac{|\mathcal{H}_{X|Y}(2^{-n^{\delta}}) \cap \mathcal{V}_{X|Y}^c(2^{-n^{\delta}})|}{n} \leq \frac{\sqrt{2}\Lambda^{\nu_0}}{2\sqrt{2^{-n^{\delta}}}}.$$
(153)

We claim that for any $\kappa > 0$, for any $\varepsilon > 0$, there exists $\theta_{\kappa,\varepsilon} > 0$ such that for all $n > \theta_{\kappa,\varepsilon}$

$$\frac{\sqrt{2}\Lambda^{\nu_0}}{2\sqrt{2^{-n^{\delta}}}} \le \frac{\theta_{\kappa,\varepsilon}}{n^{\kappa\varepsilon}}.$$
(154)

Indeed, inequality (154) is equivalent to

$$\log n \left(\log \Lambda + \kappa \varepsilon\right) \le \log \theta_{\kappa,\varepsilon} + \frac{1}{2} \left(1 + n^{\delta}\right), \qquad (155)$$

which is satisfied when $\theta_{\kappa,\varepsilon}$ and *n* are sufficiently large.

Finally we have

$$\mathbb{P}\left(H(S_{\nu_0}^{(J)}) > 2^{-n^{\delta}}\right) = 1 - \mathbb{P}\left(H(S_{\nu_0}^{(J)}) \le 2^{-n^{\delta}}\right)$$

$$(156)$$

and since according to relation (12),

$$Z(S_{\nu_0}^{(J)}) \le 2^{-n^{\delta}} \ln 2 \quad \Rightarrow \quad H(S_{\nu_0}^{(J)}) \le \log(1 + Z(S_{\nu_0}^{(J)})) \le \frac{Z(S_{\nu_0}^{(J)})}{\ln 2} \le 2^{-n^{\delta}}, \tag{157}$$

then

$$\mathbb{P}\left(H(S_{\nu_0}^{(J)}) \le 2^{-n^{\delta}}\right) \ge \mathbb{P}\left(Z(S_{\nu_0}^{(J)}) \le 2^{-n^{\delta}}\ln 2\right)$$
(158)

and with the notations of Proposition 3.11, we have

$$\mathbb{P}\left(H(S_{\nu_0}^{(J)}) > 2^{-n^{\delta}}\right) \le H(S) + \frac{A_{\delta,\varepsilon}}{n^{\varepsilon \kappa_{\delta,\varepsilon}}}$$
(159)

Similarly

$$Z'(S_{\nu_0}^{(J)}) \le 2^{-n^{\delta}} \implies H(S_{\nu_0}^{(J)}) \ge 1 - 2^{-n^{\delta}}$$
 (160)

implies

$$\mathbb{P}\left(H(S_{\nu_0}^{(J)}) > 1 - 2^{-n^{\delta}}\right) \ge \mathbb{P}\left(Z'(S_{\nu_0}^{(J)}) \le 2^{-n^{\delta}}\right) \ge H(S) - \frac{A_{\delta,\varepsilon}}{n^{\varepsilon\kappa_{\delta,\varepsilon}}}.$$
(161)

Therefore, applying the left inequality of relation (43) and the right inequality of relation (44) we prove the following proposition.

Proposition 3.12 For any $\delta \in \left[0, \frac{1}{2}\right[$ and for any $\varepsilon \in \left[0, 1-2\delta\right]$, there exists $\kappa_{\delta,\varepsilon} > 0$, $A_{\delta,\varepsilon} > 0$ and $C_{\delta,\varepsilon}$ such that for any memoryless source S with binary-part to compress and discrete side-information and for any integer $\nu_0 > C_{\delta,\varepsilon}$ – noting $n = 2^{\nu_0}$ –, we have

$$0 \leq \frac{|\mathcal{H}_{X|Y}(2^{-n^{\delta}}) \cap \mathcal{V}_{X|Y}^{c}(2^{-n^{\delta}})|}{n} \leq \frac{A_{\delta,\varepsilon}}{n^{\varepsilon \kappa_{\delta,\varepsilon}}}$$
(162)

$$H(S) - 2^{-n^{\delta}} \leq \frac{\left|\mathcal{H}_{X|Y}\left(2^{-n^{\delta}}\right)\right|}{n} \leq H(S) + \frac{A_{\delta,\varepsilon}}{n^{\varepsilon \kappa_{\delta,\varepsilon}}}$$
(163)

$$H(S) - \frac{A_{\delta,\varepsilon}}{n^{\varepsilon\kappa_{\delta,\varepsilon}}} \leq \frac{\left|\mathcal{V}_{X|Y}\left(2^{-n^{\delta}}\right)\right|}{n} \leq H(S) + 2^{-n^{\delta}},\tag{164}$$

where $A_{\delta,\varepsilon}$ satisfies the inequalities (152).

3.4 Order of magnitude of constants

In this subsection we study the values of the constants c_{β} and c_{δ} with numerical simulations. Firstly we compute the solution⁹ $\alpha = \alpha(\beta)$ of the equation

$$\varphi\left(\frac{\log\alpha - \log\beta}{\beta}\right) = 1 \quad \Leftrightarrow \quad \frac{\beta}{\alpha} + \frac{\beta}{\log\alpha - \log\beta} = \beta, \tag{165}$$

such that

$$c_{\beta}^{(1)} = \frac{1}{\beta} \log\left(\frac{\alpha(\beta)}{\beta}\right) \tag{166}$$

is the smallest permissible value of c_{β} satisfying (68). Moreover we find a simple expression

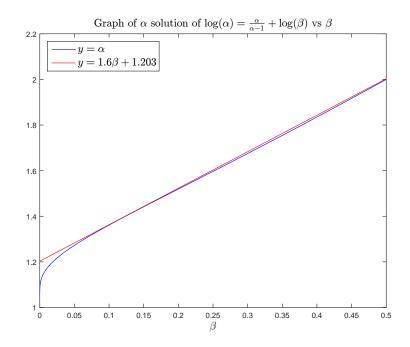


Figure 5: Graphs of $\alpha(\beta)$ solution of equation (165) and of an affine upper bound.

$$c_{\beta}^{(2)} = \frac{1}{\beta} \log\left(\frac{1.6\beta + 1.203}{\beta}\right)$$
(167)

slightly greater than the smallest value $c_{\beta}^{(1)}$ (see Figures 5–7).

⁹Let us remark that this new function α is not connected to the α function introduced in (129).

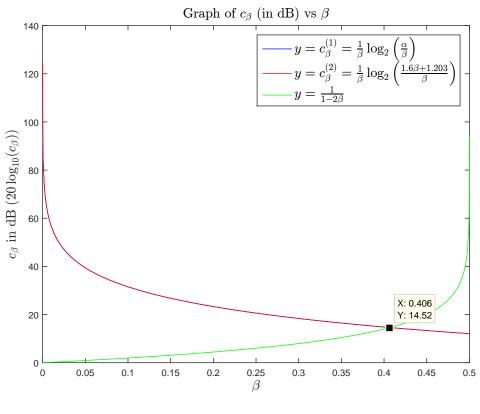
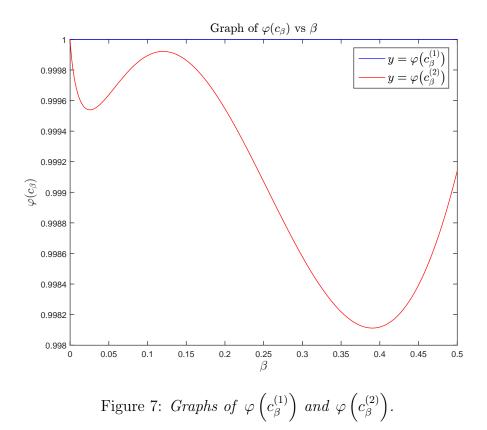


Figure 6: Graphs of $c_{\beta}^{(1)}$, $c_{\beta}^{(2)}$ and $\frac{1}{1-2\beta}$.



Secondly, we assume that inequality (134) is an equality and replacing α by the expression (129), we obtain

$$\log(1/\rho) = \frac{\log(1/\Lambda)}{1+\alpha} = \frac{2\xi \ln(1/\Lambda)}{2\xi \ln 2 + (1-2\beta)^2}$$
(168)

and we express c'_{β} and c_{δ} introduced in relations (71,72) as functions of β and ξ .

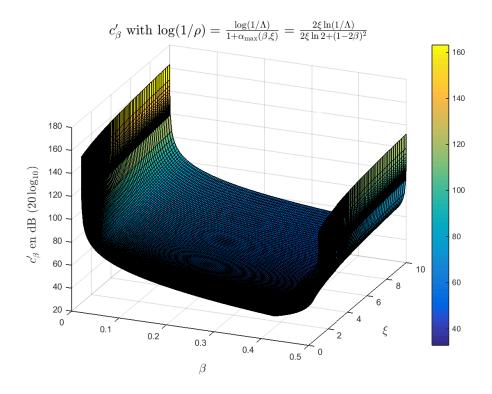


Figure 8: Graphs of c'_{β} versus ξ and β .

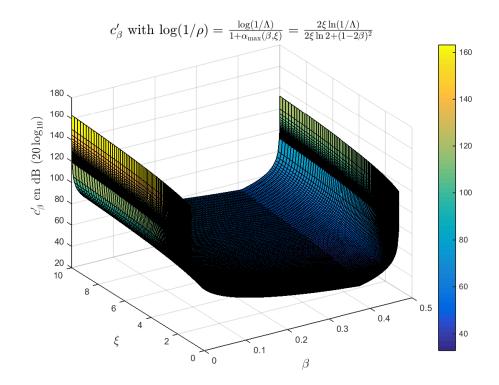
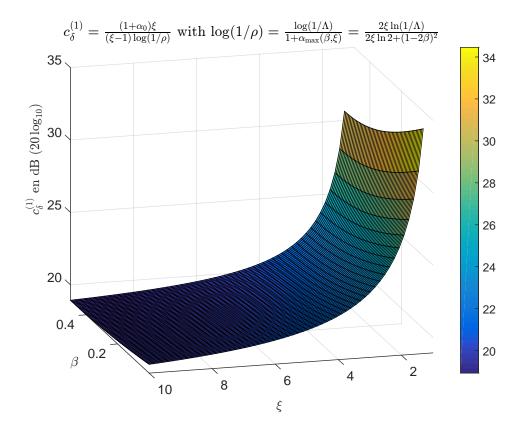


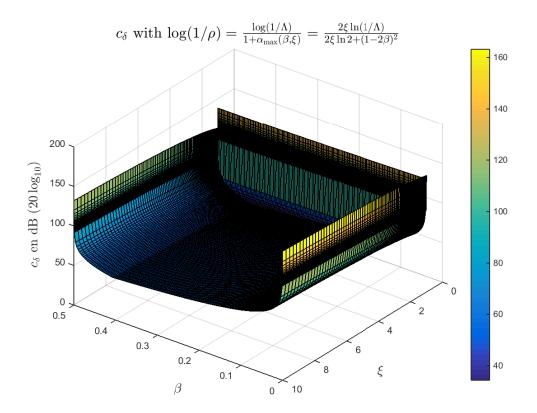
Figure 9: Graphs of c'_{β} versus ξ and β .

Let us denote

$$c_{\delta}^{(1)} = \frac{(1+\alpha_0)\xi}{(\xi-1)\log(1/\rho)} \tag{169}$$

appearing in the definition (72) of c_{δ} .





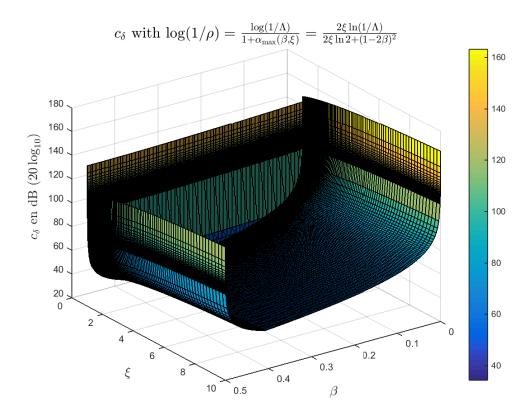


Figure 10: Graphs of c_{δ} versus ξ and β .

In order to have

$$c \stackrel{\text{def}}{=} \left[\frac{\gamma \xi}{\log(1/\rho)} \right] = \frac{\gamma \xi}{\log(1/\rho)} \tag{170}$$

with ρ satisfying equality (168) and $\xi > 1$ as small as possible, we set ξ_{\min} as the value of ξ solution of equations (168) and

$$\frac{(1-\varepsilon)\xi}{\varepsilon\log(1/\rho)} = \min\left(\mathbb{N}^* \cap \left\{\frac{(1-\varepsilon)\xi}{\varepsilon\log(1/\rho)} : \xi > 1\right\}\right).$$
(171)

δ	ε	β	γ	$c_{\beta}^{(2)}$	$\frac{1}{1-2\beta}$	ξ_{\min}	$\log(\frac{1}{\rho})$	c'_{β}	c_{δ}	$A_{\delta,\varepsilon}$	$C_{\delta,\varepsilon}$	$\kappa_{\epsilon} = \kappa_{\delta,\varepsilon}$	$\varepsilon\kappa_\epsilon$
0.10	0.79	0.48	0.27	4.3	21	1.42	0.1255	316	316	30.1	400	1.1410^{-4}	$9.05 10^{-5}$
0.10	0.74	0.38	0.35	5.8	4.3	1.03	0.121	66	506	25.6	684	3.3310^{-3}	2.4610^{-3}
0.10	0.69	0.32	0.45	7.5	2.8	1.03	0.116	83	650	29.5	943	7.0410^{-3}	4.8610^{-3}
0.10	0.64	0.28	0.56	9.2	2.3	1.20	0.112	115	115	39.0	179	8.5410^{-3}	5.4710^{-3}
0.10	0.59	0.24	0.69	11.1	2.0	1.08	0.107	127	270	41.3	458	1.1110^{-2}	6.5310^{-3}
0.10	0.54	0.22	0.85	13.0	1.8	1.10	0.104	153	223	48.7	413	1.1210^{-2}	6.3610^{-3}
0.10	0.49	0.20	1.04	15.1	1.6	1.06	0.101	173	352	55.3	719	1.2410^{-2}	$6.05 10^{-3}$
0.10	0.44	0.18	1.27	17.1	1.6	1.08	0.099	201	268	65.9	610	1.1910^{-2}	5.2410^{-3}
0.10	0.39	0.16	1.56	19.3	1.5	1.04	0.096	221	557	75.6	1428	1.1710^{-2}	4.5610^{-3}
0.10	0.34	0.15	1.94	21.5	1.4	1.01	0.093	243	2394	88.7	7042	1.1010^{-2}	3.7410^{-3}
0.10	0.29	0.15	2.45	23.7	1.4	1.01	0.092	271	1633	108.9	5631	9.7810^{-3}	2.8310^{-3}
0.10	0.24	0.13	3.17	26.0	1.4	1.04	0.091	304	629	139.1	2622	8.2610^{-3}	1.9810^{-3}
0.10	0.19	0.12	4.26	28.4	1.3	1.01	0.089	326	3834	178.5	20179	6.9010^{-3}	1.3110^{-3}
0.10	0.14	0.12	6.14	30.8	1.3	1.01	0.088	355	3168	251.3	22634	5.2110^{-3}	7.3110^{-4}
0.10	0.09	0.11	10.11	33.2	1.3	1.00	0.087	384	8302	403.1	92253	3.4410^{-3}	3.1010^{-4}
0.10	0.04	0.10	24	35.7	1.3	1.00	0.087	414	6290	937.4	157257	1.5610^{-3}	6.2410^{-5}

Table 1: Some numerical values obtained by simulations.