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A family of piecewise affine control Lyapunov functions

Ngoc Anh Nguyen a, Sorin Olaru a

aLaboratory of Signals and Systems, CentraleSupélec-CNRS-UPS, Université Paris Saclay, Gif-sur-Yvette, France.

Abstract

This paper presents a novel method to construct a family of piecewise affine control Lyapunov functions. Unlike most of existing methods
which require the contractivity of their domain of definition, the proposed control Lyapunov functions are defined over a so-called N−step
controllable set, which is known not to be contractive. Accordingly, a robust control design procedure is presented which only requires
solving a linear programming problem at each sampling time. The construction is finally illustrated via a numerical example.
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1 Introduction

As a fundamental concept in control theory Lyapunov
(1907), Lyapunov stability has been applied in intensive
studies related to stability analysis as well as control de-
sign. For the design purpose, control Lyapunov functions
are usually employed to synthesize controllers guaranteeing
closed-loop stability in the sense of Lyapunov, see among
the others Zubov and Boron (1964); Khalil (2002). Such
control Lyapunov functions are usually chosen a priori with
special structural properties. More clearly, in the case of
linear optimal control, suitable quadratic objective functions
represent control Lyapunov candidates, see e.g. Ander-
son and Moore (2007); Chmielewski and Manousiouthakis
(1996); Daafouz and Bernussou (2001). Moreover, model
predictive control (MPC) usually employs finite/infinite
horizon quadratic cost functions as control Lyapunov candi-
dates, see for instance Kothare et al. (1996); Cuzzola et al.
(2002); Mayne et al. (2000). Extensive studies about control
Lyapunov functions for nonlinear systems have been found
in the literature, see among the others Primbs et al. (1999).
In case the underlying system is subject to constraints, such
a control Lyapunov function should be determined such that
the recursive feasibility is ensured. This problem is closely
related to the determination of the domain of attraction.

Piecewise linear control Lyapunov functions date back to the
studies in Gutman and Cwikel (1987); Nguyen et al. (2014)
for the nominal case, and are subsequently extended for the
robust case to cope with additive disturbances and/or poly-
topic uncertainty in Blanchini (1994); Rakovic and Baric
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(2010); Nguyen et al. (2013), leading to simple design for-
mulations as linear programming problems. However, these
studies require that such control Lyapunov functions be de-
fined over contractive sets to guarantee its strict decrease
and the recursive feasibility.

This paper aims to present the construction of a more gen-
eral family of control Lyapunov candidates in the context
of constrained control, namely piecewise affine functions.
These candidates are defined over a so-called N−step con-
trollable set for a given positive integer N, which is ob-
tained from an increasing sequence of N polytopes, and is
known to be not necessarily (one step) contractive. Accord-
ingly, we prove that the conditions of a Lyapunov function
(the positivity and the strict decrease) are satisfied within
this N−step controllable set with a suitable robust control
algorithm. Note that the complexity of the proposed control
Lyapunov functions increases as N becomes larger, leading
to a more complex control algorithm over the ones using
contractive set in Blanchini (1994); Nguyen et al. (2017c),
since the number of constraints in the proposed algorithm is
larger than the ones in two latter references. However, since
this method only requires solving a linear program at each
sampling instant, these results can be used for constrained
control systems with fast dynamics, e.g. vibration attenua-
tion system, c.f. Gulan et al. (2017b,a).

2 Generalities and basic notions

Throughout the paper, R,R+,N,N>0 denote the field of
real numbers, the set of nonnegative real numbers, the
set of nonnegative integers and the positive integer set,
respectively. The following index set is also defined, for
ease of presentation, with respect to a given N ∈ N>0:
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IN = {1, 2, . . . , N}. A polyhedron is defined as the in-
tersection of finitely many closed halfspaces. A polytope
is defined as a bounded polyhedron. Also, V(P ) is un-
derstood as the set of vertices of polytope P. The dis-
tance from a point x ∈ Rd to a set S ⊂ Rd denoted
by ρS(x) is defined as ρS(x) := min

y∈S

√
(x− y)T (x− y).

Given two sets S1, S2 ⊂ Rd, we define the set S1\S2 :={
x ∈ Rd : x ∈ S1, x /∈ S2

}
. Also, the Minkowski sum of

these two sets, denoted by S1 ⊕ S2, is defined as follows:
S1 ⊕ S2 = {x1 + x2 : x1 ∈ S1, x2 ∈ S2} . We use ∂S to
denote the boundary of a compact set S. Also, int(S) rep-
resents the interior of a full-dimensional set S and conv(S)
denotes its convex hull. A function α(·) : R+ → R+ is said
to be of class K, if it is continuous, strictly increasing and
α(0) = 0.

3 Problem settings

In this paper, we consider a linear time-varying system:

xk+1 = A(k)xk +B(k)uk + wk, (1)

where xk, uk, wk denote the state, control variable and ad-
ditive disturbance at time k. These variables satisfy

xk ∈ X, uk ∈ U, wk ∈W, (2)

where the constraint sets X ⊂ Rdx ,U ⊂ Rdu ,W ⊂ Rdx are
assumed to be polytopes, containing the origin in their inte-
rior, with given dx, du ∈ N>0. This assumption ensures that
the origin as the equilibrium point satisfies the above con-
straints. In case the origin is not the equilibrium point, the
system can be translated into the frame of the equilibrium
point and the construction can be easily adapted. This as-
sumption will be used later in (4) to build a control Lyapunov
function which is only equal to 0 at the equilibrium point.
Also, the state-space matrices A(k), B(k) are assumed to
belong to a given polytope, defined as below:

[A(k)B(k)] ∈ Ψ := conv {[A1 B1] , . . . , [AL BL]} . (3)

This paper aims to construct a new family of control Lya-
punov functions, also referred to as convex liftings in
the present framework. In particular, the control Lapunov
functions presented in this paper are more general than
the piecewise linear family proposed in Blanchini (1994);
Rakovic and Baric (2010), since besides their convex, piece-
wise affine properties, they are defined over the N−step
controllable set, known to be non-necessarily contractive.

4 Construction of control Lyapunov functions

Before describing the main result, we need to recall some
important ingredients which are instrumental for the pro-
posed construction of control Lyapunov functions.

Positive invariance concept has been investigated in many
studies Aubin and Cellina (2012); Bitsoris (1988b); Bitsoris
and Vassilaki (1995); Bitsoris (1988a); Blanchini and Miani
(2007) and used in different control strategy designs. In case
the system is affected by disturbances, the robust positive
invariance concept is of use instead.

Definition 4.1 Given an admissible linear control law uk =
Kxk ∈ U, a set Ω ⊆ X is called robust positively invariant
with respect to system (1) subject to (2) and (3) iff

(A(k) +B(k)K)Ω⊕W ⊆ Ω, ∀ [A(k) B(k)] ∈ Ψ.

In order to compute such a set Ω, one should determine a
local controller u = Kx ∈ U, which can cope with both the
model uncertainty (3) and additive disturbances in W. Such a
gain K can be obtained by different methods, see among the
others Kothare et al. (1996); Daafouz and Bernussou (2001).
According to such a local controller, one can use existing
algorithms to compute a robust positively invariant set, e.g.,
in Gilbert and Tan (1991); Kolmanovsky and Gilbert (1998);
Nguyen et al. (2013).

The definition of another important ingredient N−step con-
trollable set is recalled below.

Definition 4.2 Consider system (1) subject to model uncer-
tainty (3) and constraints (2). Given a robust positively in-
variant set Ω and N ∈ N>0, a set denoted by KN (Ω) ⊆ X
is called the N−step controllable set if any point belonging
to this set can reach Ω in N steps in the presence of suit-
able admissible controller, while staying inside X despite
any disturbances in W and model uncertainties in Ψ. It is
mathematically defined below for all i ∈ IN :

K0(Ω) = Ω,

Ki(Ω) =
{
xk ∈ X : ∃uk ∈ U s.t. ∀ [A(k) B(k)] ∈ Ψ,

(A(k)xk +B(k)uk)⊕W ⊆ Ki−1(Ω)
}
.

To determine KN (Ω), the computation of the 1−step con-
trollable set should be performed, i.e.Ki(Ω) should be com-
puted according to Ki−1(Ω). Indeed, if one defines an in-
termediate set

S :=
{ [
xT uT

]T ∈ Rdx+du : x ∈ X, u ∈ U,
(Ajx+Bju)⊕W ⊆ Ki−1(Ω), ∀j ∈ IL

}
,

then Ki(Ω) can be determined as the orthogonal projec-
tion of the set S defined above onto the space of x. Simi-
lar computation is repeated until i = N to obtain KN (Ω).
The interested reader is referred to Section 2.6 in Kerri-
gan (2001) for further detail. One can easily see that if Ω
is empty, then so are Ki(Ω) for i ∈ N. Consequently, the
proposed method cannot apply in this case. Also, if Ω 6= ∅
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is not of full-dimension, then Ki(Ω) might not be of full-
dimension either. To illustrate this point, we consider the

following simple system: xk+1 =

[
1 0

0 αk

]
xk +

[
1

αk

]
uk,

where uncertainty αk ∈ [−1, 1] and control variable uk ∈
[−1, 1]. If Ω = {0}, then one can easily compute Ki(Ω) ={

[y1 y2]T ∈ R2 : y1 = y2 ∈ [−1, 1]
}

for all i ∈ N>0. Al-
though the proposed method can still apply in this case, we
exclusively consider the case as presented in Assumption 1
to ensure that Ki(Ω) for i ∈ N are of full-dimension.

Assumption 1 Ω is a full-dimensional polytope in Rdx .

Note that 0 ∈ int(Ω) since the origin is assumed to be the
equilibrium point and a full-dimensional set Ω is robust pos-
itively invariant. Furthermore, since Ω satisfies Assumption
1 and X,U,W are polytopes, thenKi(Ω) for any finite i ∈ N
is also a full-dimensional polytope. Therefore, the existence
of a full-dimensional KN (Ω) depends on the existence of a
full-dimensional Ω, since they fulfill the following property.

Lemma 4.1 Given a robust positively invariant set Ω satis-
fying Assumption 1, then Ki−1(Ω) ⊆ Ki(Ω) for all i ∈ N.

Clearly, the sequence {Ki(Ω)}∞i=0 is increasing and bounded
above by X, accordingly the limit exists. Note that if the
limit of this sequence is finitely determined, there exists
N∗ ∈ N>0 such that KN∗−1(Ω) ⊂ KN∗(Ω) = KN∗+1(Ω).
In this case, any positive integer N < N∗ is suitable for the
proposed construction to avoid V(KN+1(Ω))\KN (Ω) = ∅.
Otherwise, if the limit of {Ki(Ω)}∞i=0 is not finitely deter-
mined, this end may not be a polytope. In this case, one can
always ensure for any N < +∞ that KN (Ω) is a polytope
and V(KN+1(Ω))\KN (Ω) 6= ∅. As a consequence, any pos-
itive integer N can be used in the proposed construction.

Before presenting the main results of the paper, a parametric
linear programming (pLP) problem is recalled in the sequel:

max
x

cTx s.t. Hx ≤ Gλ+ b,

where x denotes the decision variable, λ denotes the param-
eter and H,G, b, c denote matrices of suitable dimensions.
Let Λ be the set of λ such that the above pLP problem has a
finite, optimal solution for each λ ∈ Λ and no optimal solu-
tion for λ /∈ Λ. Note that the set of constraintsHx ≤ Gλ+b
can be easily transformed into equality constraints by intro-
ducing an auxiliary variable y of suitable dimension. Then
the above pLP problem can be equivalently written as below:

z∗(λ) = max
x,y

[
cT 0T

] [x
y

]
s.t. [H I]

[
x

y

]
= Gλ+b, y ≥ 0,

where I denotes a suitable identity matrix. In the above
form, Gal (1995) shows important properties of z∗(λ) via
Theorems IV-3 and IV-4 therein, they are recalled below for

completeness, while their proof is referred to this reference
for more detail.

Theorem 4.1 z∗(λ) is a concave function over Λ.

Theorem 4.2 z∗(λ) is continuous over Λ.

Given a robust positively invariant set Ω satisfying Assump-
tion 1 and a constant h0 > 0, we define the following:

V̂0 :=
{ [
vT h0

]T
: v ∈ V(Ω)

}
∪ {0} ⊂ Rdx+1,

Π̂0 := conv(V̂0),

`0(x) := arg min
z
z s.t.

[
xT z

]T ∈ Π̂0.

(4)

x

z

0

Π̂0

-1 1

1

`0(x)

0

Fig. 1. Illustration for the construction of `0(x) in (4).

Note that a Lyapunov function is equal to 0 only at the ori-
gin, therefore the origin is given a height equal to 0, while
the vertices of Ω are given a height equal to h0 > 0 in
(4). Subsequently, the augmented set Π̂0 is computed as the
convex hull of these augmented points. Finally, the lower
boundary `0(x) of Π̂0 is computed, since this function rep-
resents a control Lyapunov candidate over Ω. This observa-
tion will be formally proven in Proposition 5.2. An illustra-
tion of construction (4) is presented in Fig. 1, in which Ω
is defined as interval [−1, 1] , h0 = 1, and function `0(x)
is represented by the blue segments. Important properties of
function `0(x), defined in (4), are presented in the following
lemma.

Lemma 4.2 Function `0(x) : Ω→ R defined in (4)

(1) is a convex, continuous, piecewise affine function;
(2) satisfies 0 ≤ `0(x) ≤ h0 for all x ∈ Ω;
(3) satisfies `0(x) = 0 only if x = 0;
(4) satisfies `0(x) = h0 for all x ∈ V(Ω);
(5) satisfies `0(x) = h0 for all x ∈ ∂Ω;
(6) satisfies `0(x) < h0 for all x ∈ int(Ω).

For reading ease, the proof is referred to Subsection 8.1.

Remark 4.1 We remark that one can choose any value of
constant h0 > 0 to construct `0(x) as in (4) without affecting
its properties shown in Lemma 4.2.
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We now present the construction of a control Lyapunov
function defined over the N−step controllable set KN (Ω).
For ease of presentation, let `N (x) denote such a control
Lyapunov function. Function `N (x) is expected to be con-
vex, continuous, piecewise affine. Also, the value of `N (x)
at each vertex v ∈ V(Ki(Ω))\Ki−1(Ω) should be strictly
larger than the maximal value of `N (x) over Ki−1(Ω). This
requirement will be used later (more precisely (13)–(15)
in Proposition 5.1) to prove the strict decrease of `N (x)
along the trajectories outside Ω. For simplicity, one can
choose the same height hi for all v ∈ V(Ki(Ω))\Ki−1(Ω)
such that `N (v) = hi for all v ∈ V(Ki(Ω))\Ki−1(Ω).
Further, function `N (x) should satisfy `N (x) = `0(x) for
all x ∈ Ω. In order to find `N (x), we construct step by
step intermediate functions `i(x) for i ∈ IN , defined over
Ki(Ω), such that these functions are convex, `i(v) = hi for
all v ∈ V(Ki(Ω))\Ki−1(Ω), and `i(x) = `i−1(x) for all
x ∈ Ki−1(Ω).

As proven in Lemma 4.2, `0(x) defined in (4), is a convex,
continuous and piecewise affine function. For ease of pre-
sentation, let

{
X (0)
j

}
j∈I

M(0)
denote the polytopic partition

of Ω associated with `0(x) (the definition of a polytopic par-
tition is referred to Nguyen et al. (2017b)) and we denote
`0(x) as follows:

`0(x) =
(
f

(0)
j

)T
x+ g

(0)
j for x ∈ X (0)

j , (5)

where f
(0)
j ∈ Rdx , g(0)

j ∈ R, j ∈ IM(0) for a suitable
M (0) ∈ N>0. One can further prove that M (0) is equal to
the number of facets of Ω. Moreover, g(0)

j can be proven to
be 0 for all j ∈ IM(0) .

Lemma 4.3 Let function `0(x) be defined in (4) and denoted
as in (5). Then, `0(x) =

(
f

(0)
j

)T
x for all x ∈ X (0)

j .

The proof is referred to Subsection 8.2. This lemma shows
that all the regions X (0)

j for j ∈ IM(0) share a common
vertex as the origin. For ease of presentation, define function:

̂̀
0(x) := max

j∈I
M(0)

(
f

(0)
j

)T
x+ g

(0)
j for all x ∈ Rdx . (6)

In a general manner, the ingredients `i(x), ̂̀i(x), hi, V̂i, Π̂i

for i ∈ IN are defined step-by-step (recursively) in the
sequel. Let function `i−1(x), known as a piecewise affine
function over Ki−1(Ω), be given in the following form:
`i−1(x) =

(
f

(i−1)
j

)T
x + g

(i−1)
j for x ∈ X (i−1)

j , where{
X (i−1)
j

}
j∈I

M(i−1)
denotes the polytopic partition of

Ki−1(Ω) associated with `i−1(x) and M (i−1) ∈ N>0. As
`i−1(x) is restrictively defined over Ki−1(Ω), we define the
following function

̂̀
i−1(x) := max

j∈I
M(i−1)

(
f

(i−1)
j

)T
x+ g

(i−1)
j ,∀x ∈ Rdx . (7)

With respect to a given scalar constant ε > 0, the function
`i(x) over Ki(Ω) is constructed as follows:

`i(x) := arg min
z
z s.t.

[
xT z

]T ∈ Π̂i

Π̂i := conv(V̂i) (8)

V̂i :=
{ [
vT hi

]T
: v ∈ V(Ki(Ω))

}
∪ V̂i−1

hi := min
h
h s.t. ̂̀i−1(v) + ε ≤ h,∀v ∈ V(Ki(Ω))\Ki−1(Ω).

The constructions (7) and (8) are iteratively repeated
until i = N. Recall that `i(x) at each vertex v ∈
V(Ki(Ω))\Ki−1(Ω) is required to be strictly larger than the
maximal value of `i−1(x) over Ki−1(Ω), this requirement
is enforced by the constraints

hi ≥ ̂̀i−1(v) + ε for all v ∈ V(Ki(Ω))\Ki−1(Ω),

with a suitable ε > 0. The proof for hi > max
x∈Ki−1(Ω)

`i−1(x)

will be shown later in Lemma 4.6. From the geometric view-
point, the insertion of a constant ε > 0 in (8) is to ensure
that all the vertices v ∈ V(Ki(Ω))\Ki−1(Ω) are lifted onto
a level above all the hyperplanes composing ̂̀i−1(x).

To illustrate the construction (8), consider a simple sys-
tem xk+1 = xk + uk + wk, where xk ∈ [−10, 10] ,
uk ∈ [−0.5, 0.5] , wk ∈ [−0.1, 0.1] . It can easily
be observed that a robust positively invariant set is
Ω = [−0.2, 0.2] with the local controller uk = −0.5xk.
Accordingly, one determines K1(Ω) = [−0.6, 0.6] ,
K2(Ω) = [−1, 1] . As shown in Fig. 2, we choose
h0 = 0.1, ε = 0.1; polytope Π̂0 is thus computed by the
convex hull of [0 0]

T
, [−0.2 0.1]

T
, [0.2 0.1]

T and `0(x)
is represented by two blue segments above the interval
[−0.2, 0.2] . Subsequently, the construction (8) results
in h1 = 0.4 and the vertices of Π̂1 consist of [0 0]

T
,

[−0.2 0.1]
T
, [0.2 0.1]

T
, [−0.6 0.4]

T
, [0.6 0.4]

T
. Simi-

larly, (8) returns h2 = 0.8, function `2(x) is thus composed
of the colored segments above the x−axis, the blue ones
correspond to z = ±0.5x, while the brown segments are
represented by z = ±0.75x− 0.05 and the green segments
are described by z = ±x− 0.2.

Some essential properties of functions ̂̀i(x), `i(x) are pre-
sented in the sequel.

Lemma 4.4 Functions `i(x), defined in (8), are convex,
continuous, piecewise affine.

PROOF. The proof follows the same arguments of claim
1) in Lemma 4.2. 2

Lemma 4.5 Functions ̂̀i(x), defined in (7), satisfy ̂̀i(x) =
`i(x) for all x ∈ Ki(Ω) and any i ∈ {0} ∪ IN−1.
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x

z

0 0.2−0.2 0.6 1−0.6−1

0.1

0.4

0.8

Fig. 2. Illustration for the construction of `N (x).

PROOF. As a convex, piecewise affine function over Ω,
`0(x) can also be represented by:

`0(x) = max
j∈I

M(0)

(
f

(0)
j

)T
x+ g

(0)
j for all x ∈ Ω. (9)

Therefore, the definition of ̂̀0(x) in (6) satisfies ̂̀0(x) =
`0(x) for any x ∈ Ω. Following similar argument and using
Lemma 4.4 lead to ̂̀i(x) = `i(x) for all x ∈ Ki(Ω). 2

We now prove that the functions `i(x), defined in (8), satisfy
the aforementioned requirements. This is formally stated in
the following result whose proof is presented in Subsection
8.3 for reading ease.

Lemma 4.6 Functions `i(x) for i ∈ IN satisfy:

(1) 0 ≤ `i(x) ≤ hi for all x ∈ Ki(Ω);
(2) hN > . . . > hi > . . . > h0 > 0;
(3) `i(x) = hi for all x ∈ V(Ki(Ω))\Ki−1(Ω);
(4) `i(x) = `i−1(x) for all x ∈ Ki−1(Ω);
(5) `i(x) = hj for x ∈ V(Kj(Ω))\Kj−1(Ω), ∀j ∈ Ii;
(6) `i(x) > 0 for all x ∈ Ki(Ω)\{0};
(7) `i(βx) ≤ β`i(x) for all x ∈ Ki(Ω) and 0 ≤ β ≤ 1.

It can also be proven that such a function `i(x) repre-
sents a convex lifting for the associated polytopic partition{
X (i)
j

}
j∈I

M(i)
of Ki(Ω). The interested reader is referred

to Nguyen (2015); Nguyen et al. (2015a,b) for a precise
definition of convex lifting and its existence conditions. For
simplicity, we skip this analogy in this paper and stress that
those existence conditions are fulfilled in the present context.

Lemma 4.7 Function `i(x) : Ki(Ω)→ R represents a con-
vex lifting of the polytopic partition

{
X (i)
j

}
j∈I

M(i)
ofKi(Ω)

for each i ∈ IN .

PROOF. The proof is referred to Lemma II.8 in Nguyen
et al. (2017a) or Lemma 4.7 in Nguyen et al. (2017c). 2

Remark 4.2 From the mathematical point of view, the value
of ε in (8) can be arbitrarily chosen as long as it is positive.

However, the value of hN can be relatively large in some
cases, since a subset of the vertices ofKN (Ω) andKN−1(Ω)
may be very close to each other, when N becomes larger.
This end may present numerical sensitivity in determining
`N (x), as the precision of convex hull operation is known
to be limited, see Avis and Fukuda (1992). Therefore, ε in
(8) should be chosen small enough to reduce the value of
hN and large enough to ensure the precision of the convex
hull computation. A value in interval [10−5, 1] is basically
a good choice.

5 Control design procedure

The construction and prominent properties of a family of
control Lyapunov candidates have been presented in the pre-
ceding section. In this section, we need to prove that they
satisfy the conditions of control Lyapunov functions. Be-
fore proceeding the proof, we recall a definition of a local
input-to-state stability (ISS) Lyapunov function from Jiang
and Wang (2001); Khalil (2002):

Definition 5.1 Consider system (1) subject to constraints
(2), (3), the feasible region X ⊆ X and a control law u =
κ(x) ∈ U. A continuous function V (x) : X → R+ is called
a local ISS-Lyapunov function, if the following conditions
hold

• χ1(‖x‖) ≤ V (x) ≤ χ2(‖x‖) for all x ∈ X , and
• V (Ax+Bκ(x) +w)− V (x) ≤ −χ3(‖x‖) + σ(‖κ(x)‖)

for all x ∈ X and time-varying [A B] ∈ Ψ, w ∈W,

where χ1(·), χ2(·), χ3(·), σ(·) are class K−functions and
‖ · ‖ denotes any vector norm.

Note that as `N (x), constructed in the preceding section,
is a convex, continuous, piecewise affine function defined
over a bounded set KN (Ω), then there always exist two
suitable class K−functions satisfying the first condition in
Definition 5.1. This observation is formally stated in the
following result.

Lemma 5.1 Given a function `N (x) constructed as in (8),
then there exist two constant scalars c2 ≥ c1 > 0 such that

c1‖x‖∞ ≤ `N (x) ≤ c2‖x‖∞ for all x ∈ KN (Ω). (10)

The proof is presented in Subsection 8.4. Lemma 5.1 shows
that `N (x) satisfies the first condition in Definition 5.1. Ac-
cordingly, in order to prove `N (x) to be a control Lyapunov
function, one needs to show that there exists a controller
u = κ(x) ∈ U for all x ∈ KN (Ω) such that `N (x) satis-
fies the second condition in Definition 5.1. Such a controller
can be determined by means of Algorithm 1. The main idea
of (11) is to minimize the worst case of function `N (xk+1)
despite any [A(k) B(k)] ∈ Ψ and wk ∈ W, by means of
minimizing an auxiliary variable γ ≥ 0. Also, constraints
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Algorithm 1 Control design procedure
Input: `N (x), KN (Ω).
Output: optimal control action u∗(xk) at each instant k.

1: Compute `N (xk)
2: Solve the following problem:[

γ∗ (u∗k)T
]T

= arg min
γ, uk

γ

s.t. `N (Aixk +Biuk + w) ≤ γ`N (xk),

Aixk +Biuk + w ∈ KN (Ω),

uk ∈ U, γ ≥ 0, ∀i ∈ IL, ∀w ∈ V(W).

(11)

3: u∗(xk) = u∗k.
4: k ← k + 1. Return to step 1.

Aixk +Biuk + w ∈ KN (Ω) for all i ∈ IL and w ∈ V(W)
are aimed at ensuring that function `N (x) is exclusively de-
fined overKN (Ω), i.e. xk+1 stays insideKN (Ω) for all real-
izations of disturbances and uncertainties. These constraints
can be removed if the set Ξ :=

{
x ∈ Rdx : `N (x) ≤ hN

}
and KN (Ω) are identical.

Next, we concentrate on the proof that the convex lifting
`N (x) and the controller designed in Algorithm 1 satisfy the
second condition in Definition 5.1. More precisely, we prove
that `N (xk) is strictly decreasing along the trajectories out-
side Ω. This is formally stated in the following proposition.

Proposition 5.1 Consider function `N (x) defined in (8)
and the controller designed in Algorithm 1, then for all
[A(k) B(k)] ∈ Ψ and wk ∈ W, any xk ∈ KN (Ω)\Ω
satisfies:

`N (A(k)xk +B(k)u∗(xk) + wk) < `N (xk).

PROOF. Consider any x ∈ KN (Ω), we define

i(x) := arg min
j∈{0}∪IN

j s.t. x ∈ Kj(Ω). (12)

It can be seen that the definition of the index i(x), for
each x ∈ KN (Ω), is unique. Consider now any point v ∈⋃
j∈IN V(Kj(Ω))\Ω; according to definition (12) and claim

5) of Lemma 4.6, it yields

`N (v) = hi(v). (13)

As v ∈ Ki(v)(Ω), there exists a controller, denoted by
u(v) ∈ U, such that A(k)v+B(k)u(v)+wk ∈ Ki(v)−1(Ω)
for all [A(k) B(k)] ∈ Ψ and all wk ∈ W according to its
definition. Consequently, claim 1) of Lemma 4.6 leads to:

`N (A(k)v +B(k)u(v) + wk) ≤ hi(v)−1. (14)

Inclusions (13), (14) and claim 2) of Lemma 4.6 yield:

`N (A(k)v +B(k)u(v) + wk) < `N (v), (15)

for all [A(k) B(k)] ∈ Ψ and all wk ∈ W. Otherwise, if
v ∈ V(Ω), there exists a control law u(v) ∈ U such that
A(k)v + B(k)u(v) + wk ∈ Ω, since Ω is robust positively
invariant. Accordingly, we obtain

`N (A(k)v +B(k)u(v) + wk) ≤ h0 = `N (v). (16)

Note that for any point xk ∈ KN (Ω)\Ω, there exists a
region X (N)

j in the polytopic partition
{
X (N)
j

}
j∈I

M(N)
,

associated with `N (x), such that xk ∈ X (N)
j . Accord-

ingly, xk can be written in the following form: xk =∑
v∈V(X (N)

j
)
α(v)v, α(v) ≥ 0,

∑
v∈V(X (N)

j
)
α(v) = 1.

As xk ∈ KN (Ω)\Ω, then there exists at least one vertex
v ∈ V(X (N)

j )\Ω such that α(v) > 0. Accordingly, it yields:

`N (xk) =
∑

v∈V(X (N)
j

)

α(v)`N (v) (17a)

>
∑

v∈V(X (N)
j

)

α(v)`N (A(k)v +B(k)u(v) + wk) (17b)

≥ `N (A(k)xk +B(k)
∑

v∈V(X (N)
j

)

α(v)u(v) + wk) (17c)

≥ `N (A(k)xk +B(k)u∗(xk) + wk). (17d)

Note that inclusion (17a) is obtained because function `N (x)

is affine over X (N)
j . Meanwhile, inclusion (17b) is obtained

due to inclusions (15) and (16). Also, inequality (17c) is
induced from the convexity of `N (x), as proven in Lemma
4.4. Finally, inclusion (17d) is guaranteed since U is convex
and

∑
v∈V(X (N)

j
)
α(v)u(v) ∈ U. The proof is complete. 2

Proposition 5.2 Consider function `N (x) defined in (8)
and the controller designed in Algorithm 1, then for all
[A(k) B(k)] ∈ Ψ and wk ∈W, any point xk ∈ Ω satisfies

`N (A(k)xk +B(k)u∗(xk) + wk) ≤ `N (xk) + `N (wk).

PROOF. As xk ∈ Ω, there exists a region X (0)
j in the poly-

topic partition
{
X (0)
j

}
j∈I

M(0)
of Ω, associated with `0(x),

such that xk ∈ X (0)
j . Such a region X (0)

j has its vertices as
vertices of Ω and the origin. Therefore, xk can be written
in the following form: xk =

∑
v∈V(X (0)

j
)
α(v)v, α(v) ≥ 0,∑

v∈V(X (0)
j

)
α(v) = 1. Also, since Ω represents a robust

positively invariant set, then for any v ∈ V(Ω), there exists a
control law u(v) ∈ U such thatA(k)v+B(k)u(v)+wk ∈ Ω
for all [A(k) B(k)] ∈ Ψ and wk ∈ W. In other words, in-
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clusion (16) holds at v ∈ V(Ω). Accordingly, we obtain

`N (xk) =
∑

v∈V(X (0)
j

)

α(v)`N (v)

≥
∑

v∈V(X (0)
j

)\{0}

α(v)`N (A(k)v +B(k)u(v) + wk).
(18)

If we choose u(0) = 0, then inclusion (18) yields

`N (xk) + `N (wk) ≥ `N (xk) + α(0)`N (wk) ≥∑
v∈V(X (0)

j
)

α(v)`N (A(k)v +B(k)u(v) + wk). (19)

The convexity of `N (x) also leads to∑
v∈V(X (0)

j
)

α(v)`N (A(k)v +B(k)u(v) + wk)

≥ `N (A(k)xk +B(k)
∑

v∈V(X (0)
j

)

α(v)u(v) + wk) (20a)

≥ `N (A(k)xk +B(k)u∗(xk) + wk). (20b)

Again, inclusion (20b) follows the convexity of U and∑
v∈V(X (0)

j
)
α(v)u(v) ∈ U. Accordingly, incorporating

inclusions (19) and (20b) yields

`N (xk) + `N (wk) ≥ `N (A(k)xk +B(k)u∗(xk) + wk),

for all [A(k) B(k)] ∈ Ψ and wk ∈W. 2

Remark 5.1 Note that the choice of Ω is arbitrary as long as
its polytopic topology and robust positively invariant proper-
ties are guaranteed. The minimal and maximal robust posi-
tively invariant sets, e.g. in Kolmanovsky and Gilbert (1998)
are preferable.

The main result related to control design of the paper is
formally stated in the following theorem:

Theorem 5.3 Given system (1) subject to uncertainty (3)
and constraint (2), the controller designed in Algorithm 1
guarantees the recursive feasibility and input-to-state sta-
bility.

PROOF. The recursive feasibility is guaranteed by suffi-
ciently large γ > 0 according to Propositions 5.1 and 5.2.
Also, `N (x), constructed in (8), satisfies the conditions
of an ISS Lyapunov function according to Definition 5.1.
Therefore, input-to-state stability is proven. More intu-
itively, Proposition 5.1 shows that {`N (xk)}∞k=0 outside Ω
is strictly decreasing and bounded in [h0, hN ], therefore
lim
k→∞

`N (xk) = h0, consequently lim
k→∞

ρΩ(xk) = 0. The

proof is complete. 2

Remark 5.2 It is worth stressing that neither finite cost
function usually employed in model predictive control
Mayne et al. (2000), nor the control Lyapunov function
computed in Blanchini (1994) can guarantee their strict
decrease outside a given robust positively invariant set Ω
like function `N (x) as proven in Proposition 5.1.

Remark 5.3 Although the construction of KN (Ω) is much
cheaper than the one of the maximal λ−contractive set,
since the latter one is computed mainly relying on iterative
procedures, see Blanchini (1994); Kerrigan (2001), the con-
struction of `N (x) is however performed at the price of solv-
ing multiple parametric linear programming problems, see
among the others Grancharova and Johansen (2012). Also,
since the proposed construction relies on the vertex repre-
sentation, it is thus limited to small-dimensional systems.

Remark 5.4 The number of regions in the polytopic parti-
tion associated with `N (x) may be relatively large in com-
parison to the methods in Blanchini (1994); Nguyen et al.
(2017c), because its construction relies on combinations of
the vertices of the sets Ki(Ω) for i ∈ {0} ∪ IN . This may
thus slow down the online computation. However, since this
problem is a linear program, it is not expensive.

6 Numerical example

This section aims to illustrate the above construction via a
numerical example. To this end, we consider an angular an-
tenna positioning system, presented in Kothare et al. (1996),

xk+1 =

[
1 0.1

0 1− 0.1βk

]
xk +

[
0

0.0787

]
uk, (21)

where the uncertain parameter βk ranges in [0.1 10] . Also,
the state, control variables are subject to the following con-
straints:

‖xk‖∞ ≤ 1, ‖uk‖∞ ≤ 2. (22)
A stabilizing local controller u = [−3.9922 − 6.5135]x is
chosen to compute Ω as the maximal output admissible set.
Accordingly, Ω and the 10−step controllable set are pre-
sented in Fig. 3. In this example, we choose h0 = 0.1 and
ε = 10−4. The constructed control Lyapunov function is
shown in Fig. 4, where the strict decrease of its value along
the closed-loop dynamics outside the robust positively in-
variant set Ω is also proven with the controller designed by
Algorithm 1. The closed-loop stability in the sense of Lya-
punov is more clearly illustrated in Fig. 3. Also, the design
problem (11) is composed of 887 constraints, as `N (x) asso-
ciates with a partition of 402 regions. Note however that the
method presented in Blanchini (1994) exploiting the max-
imal 0.999−contractive set for the same numerical exam-
ple can formulate a control problem with 40 constraints,
while the method in Nguyen et al. (2017c) with the same
0.999−contractive set requires solving a problem consisting
of 61 constraints.
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Ω

K10(Ω)

x2

x1

Fig. 3. Maximal output admissible set Ω, its 10−step controllable
set K10(Ω) and the closed-loop dynamics.

x1

x2

`10(x)

Fig. 4. The constructed control Lyapunov function with h0 = 0.1,
ε = 10−4 and its strict decrease along the closed-loop dynamics
outside Ω.

We remark that Fig. 5 represents the 1−step controllable
set K1(Ω), which is not contractive since two vertices of
Ω, surrounded by two red circles, lie on the boundary of
K1(Ω). This implies that for some points on the boundary
of K1(Ω), there does not exist a controller satisfying the
given constraints such that their next state stay in the interior
of K1(Ω). Also, to illustrate more clearly control Lyapunov
function `10(x), we show in Fig. 6 function `1(x) defined
over set K1(Ω). Finally, the computation of `N (x) is per-
formed in the environment of MPT 3.0 Herceg et al. (2013).

7 Conclusions

This paper presented a novel method to construct a family
of piecewise affine control Lyapunov functions. The most
remarkable property of this construction is that it does not
require the contractivity of the domain over which these
control Lyapunov functions are defined. Accordingly, this

Ω

K1(Ω)

x1

x2

Fig. 5. K1(Ω) is not contractive.

x2

x1

`1(x)

Fig. 6. Function `1(x) defined over K1(Ω).

construction was shown to lead to a simple robust control
design procedure as a linear programming problem. The
construction was finally illustrated via a numerical example.

Acknowledgment: The authors would like to thank the as-
sociate editor and the reviewers for their helpful comments.

8 Appendix

8.1 Proof of Lemma 4.2

For claim 1), `0(x) is a piecewise affine function, since it
is resulted from a pLP problem. Also, the convexity and
continuity of `0(x) follow as direct consequences of Theo-
rems 4.1 and 4.2. For claim 2), it is observed that any point[
xT z

]T ∈ Π̂0 can be expressed as a convex combination
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of the points in V̂0, defined in (4), i.e.,[
xT z

]T
= α(0)0 +

∑
v∈V(Ω)

α(v)
[
vT h0

]T
α(0), α(v) ≥ 0, α(0) +

∑
v∈V(Ω)

α(v) = 1.
(23)

According to inclusion (23), claim 2) is easily deduced by
the argument: 0 ≤ z =

∑
v∈V(Ω) α(v)h0 ≤ h0. Also, z = 0

holds only if α(v) = 0 for all v ∈ V(Ω) and α(0) = 1,
leading to claim 3).

For claim 4), one can see that any x ∈ V(Ω) can be expressed
as in (23) only if α(v) = 0 for v ∈ V(Ω)\{x} and α(v) = 1
for v = x, since x represents a vertex of Ω. In other words,
`0(x) = z = h0 for x ∈ V(Ω). To prove claim 5), we note
that any point x ∈ ∂Ω can be written in form (23) only if
α(0) = 0. This end leads to `0(x) = z = h0.

Finally, consider any point x ∈ int(Ω), then there exists
a point y(x) ∈ ∂Ω and 0 ≤ β < 1 such that x = βy(x).
Accordingly, the convexity of `0(x) yields: `0(x) =
`0(βy(x)) ≤ β`0(y(x)) + (1− β)`0(0) = βh0 < h0. This
end completes the proof of claim 6). 2

8.2 Proof of Lemma 4.3

Consider any point
[
xT z

]T ∈ Π̂0 such that x ∈ Ω\{0},
this augmented point is represented by a convex combina-
tion of the points of V̂0 as shown in (23). Accordingly, one
obtains z = (1 − α(0))h0. It can be seen that the mini-
mal value `0(x) of z holds at the maximal value of α(0),
denoted by α∗(0). Since x ∈ Ω\{0}, then α∗(0) < 1.
Let α∗(v) denote the optimal value of α(v) such that z =
`0(x), we will prove that x/(1 − α∗(0)) ∈ ∂Ω. Indeed,
one can see that `0(x) = (1 − α∗(0))h0. Note also that∑
v∈V(Ω) α

∗(v) = 1 − α∗(0), leading to x/(1 − α∗(0)) =

(1 − α∗(0))−1
∑
v∈V(Ω) α

∗(v)v ∈ Ω. Therefore, the con-
vexity of `0(x) yields

h0 = `0(x)/(1− α∗(0)) ≤ `0(x/(1− α∗(0))) ≤ h0.

According to Lemma 4.2, x/(1 − α∗(0)) ∈ ∂Ω. Conse-
quently, there exists a facet of Ω denoted by F such that
x/(1−α∗(0)) ∈ F. Geometrically, the point x/(1−α∗(0))
can be obtained by the intersection between ∂Ω and the
line going through 0, x such that x lies between 0 and
x/(1− α∗(0)). Also,

[
xT `0(x)

]T
can be expressed by

[
x

`0(x)

]
= α∗(0)0 + (1− α∗(0))

∑
v∈V(F )

β(v)

[
v

`0(v)

]
β(v) ≥ 0,

∑
v∈V(F )

β(v) = 1. (24)

Similarly, for any x ∈ conv ({0} ∪ V(F )) , the point[
xT `0(x)

]T
is described as in (24). In other words,

conv ({0} ∪ V(F )) represents a region in the polytopic
partition

{
X (0)
j

}
j∈I

M(0)
of Ω associated with `0(x). Fur-

thermore, the regions in this partition share a common point
0. Also, `0(0) = 0 according to claim 3) of Lemma 4.2, it
yields g(0)

j = 0 for all j ∈ IM(0) . 2

8.3 Proof of Lemma 4.6

First, we will prove claims 1), 2) and 3) simultaneously.
Obviously, `0(x) = h0 for x ∈ V(Ω), we need to prove
that `1(x) = h1 for all x ∈ V(K1(Ω))\Ω, 0 ≤ `1(x) ≤ h1

and h1 > h0. Indeed, any point x ∈ K1(Ω) is written as a
convex combination of the vertices of K1(Ω), i.e.

x =
∑

v∈V(K1(Ω))

α(v)v, α(v) ≥ 0,
∑

v∈V(K1(Ω))

α(v) = 1.

According to the definition of h1 in (8), we obtain∑
v∈V(K1(Ω))\Ω

α(v)h1 +
∑

v∈V(K1(Ω))∩Ω

α(v)h0

≥
∑

v∈V(K1(Ω))\Ω

α(v)ε+
∑

v∈V(K1(Ω))

α(v)̂̀0(v)

≥
∑

v∈V(K1(Ω))\Ω

α(v)ε+ ̂̀0(x).

(25)

Note that the last inequality in inclusion (25) is obtained due
to the convexity of function ̂̀0(x) over Rdx . Since this inclu-
sion holds true for all x ∈ K1(Ω), thus if one chooses x ∈
V(Ω) such that there exists at least one v ∈ V(K1(Ω))\Ω,
α(v) > 0, then it yields h1 ≥ h0 + ε > h0. This end leads
to 0 ≤ `1(x) ≤ h1 according to the definition of Π̂1, `1(x)
in (8) and similar argument as in the proof for claim 2) of
Lemma 4.2.

To prove that `1(x) = h1 for all x ∈ V(K1(Ω))\Ω, it can
easily be seen that `1(x) is a convex function over K1(Ω)
as proven in Lemma 4.4, then it attains its maximal value
h1 at its vertices. Note however that for the points x ∈
V(K1(Ω))∩Ω, `1(x) ≤ h0 < h1. Therefore, `1(x) = h1 for
x ∈ V(K1(Ω))\Ω. For the other i ∈ IN , the proof follows
similar arguments.

To prove claim 4), first we prove it holds with i = 1. In-
deed, consider any point

[
xT z

]T ∈ Π̂1; this point can be
expressed as a convex combination of the points in V̂1 as:

[
xT z

]T
= β(0)0 +

1∑
j=0

∑
v∈V(Kj(Ω))

αj(v)
[
vT hj

]T
β(0), αj(v) ≥ 0, β(0) +

1∑
j=0

∑
v∈V(Kj(Ω))

αj(v) = 1.

(26)
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The above inclusion yields

z =

1∑
j=0

∑
v∈V(Kj(Ω))

αj(v)hj

≥
∑

v∈V(Ω)

α0(v)̂̀0(v) +
∑

v∈V(K1(Ω))

α1(v)(̂̀0(v) + ε)

≥ ̂̀0(x) +
∑

v∈V(K1(Ω))

α1(v)ε ≥ ̂̀0(x). (27)

The equality in (27) holds only if α1(v) = 0 for all
v ∈ V(K1(Ω)), leading to x ∈ Ω. Suppose claim
4) holds true until i − 1, we will prove it holds for
i. In fact, claim 4) holding true until i − 1 leads to
`j(x) = `j−1(x) for x ∈ Kj−1(Ω), j ∈ Ii−1. Accord-
ingly, consider any point

[
xT z

]T ∈ Π̂i, then it can be
written in the following form:

[
xT z

]T
= β(0)0 +

i∑
j=0

∑
v∈V(Kj(Ω))

αj(v)
[
vT hj

]T
β(0), αj(v) ≥ 0, β(0) +

i∑
j=0

∑
v∈V(Kj(Ω))

αj(v) = 1.

(28)

Note that each v ∈ V(Kj(Ω)) satisfies hj ≥ `j(v) =
`i−1(v) for j ∈ {0}∪Ii−1, therefore inclusion (28) leads to

z =

i∑
j=0

∑
v∈V(Kj(Ω))

αj(v)hj (29)

≥
i−1∑
j=0

∑
v∈V(Kj(Ω))

αj(v)`i−1(v) +
∑

v∈V(Ki(Ω))

αi(v)hi.

According to Lemma 4.5 and definition (8), we have:

̂̀
i−1(v) = `i−1(v) for all v ∈ Ki−1(Ω),̂̀
i−1(v) + ε ≤ hi for all v ∈ V(Ki(Ω)).

(30)

Recall that proving hi ≥ hi−1 +ε follows similar arguments
as showing h1 ≥ h0 + ε. According to claim 1), we obtain
hi ≥ `i−1(v)+ε = ̂̀

i−1(v)+ε for v ∈ V(Ki(Ω))∩Ki−1(Ω).
Therefore, inclusions (29) and (30) yield:

z ≥
i−1∑
j=0

∑
v∈V(Kj(Ω))

αj(v)̂̀i−1(v)

+
∑

v∈V(Ki(Ω))

αi(v)(̂̀i−1(v) + ε).

(31)

As ̂̀i−1(x) is a convex function, it satisfies:

β(0)̂̀i−1(0) +

i−1∑
j=0

∑
v∈V(Kj(Ω))

αj(v)̂̀i−1(v)

+
∑

v∈V(Ki(Ω))

αi(v)̂̀i−1(v) ≥ ̂̀i−1(x).

(32)

Inclusions (31) and (32) yield:

z ≥ ̂̀i−1(x) +
∑

v∈V(Ki(Ω))

αi(v)ε ≥ ̂̀i−1(x). (33)

The equality in (33) holds only if αi(v) = 0 for all
v ∈ V(Ki(Ω)). In other words, z = ̂̀

i−1(x) only if
x = β(0)0+

∑i−1
j=0

∑
v∈V(Kj(Ω)) αj(v)v ∈ Ki−1(Ω). More

precisely, `i(x) = ̂̀
i−1(x) = `i−1(x) takes place only if

x ∈ Ki−1(Ω). Following similar argument, we conclude
that claim 4) holds true for all i ∈ IN .

Claim 5) follows as a direct consequence of claims 3) and 4).
Indeed, `i(x) = `j(x) for all x ∈ Kj(Ω) and j ∈ {0} ∪ Ii.
On the other hand, claim 3) shows that `j(x) = hj for
x ∈ V(Kj(Ω))\Kj−1(Ω). Therefore, `i(x) = hj for x ∈
V(Kj(Ω))\Kj−1(Ω) and j ∈ Ii.

Claim 6) can easily be deduced from equation (29) that

z = β(0)0 +

i∑
j=0

∑
v∈V(Kj(Ω))

αj(v)hj ≥ 0, (34)

as hj > 0 for all j ∈ {0} ∪ Ii, thus the inequal-
ity (34) becomes equality only if αj(v) = 0 for all
v ∈

⋃i
j=0 V(Kj(Ω)) and β(0) = 1, leading to x = 0.

Claim 7) is obtained by the convexity of `i(x), i.e. `i(βx) ≤
β`i(x)+(1−β)`i(0) = β`i(x). The proof is complete. 2

8.4 Proof of Lemma 5.1

Consider the polytopic partition
{
X (N)
j

}
j∈I

M(N)
of KN (Ω)

associated with `N (x). Denote also such a function `N (x)

as follows: `N (x) =
(
f

(N)
j

)T
x+ g

(N)
j for x ∈ X (N)

j . Con-

sider a region X (N)
j in this polytopic partition. Due to the

boundedness and positivity of `N (x) except at 0, for each
v ∈ V(X (N)

j ), there exists a c(j)1 (v) > 0 such that

c
(j)
1 (v)‖v‖∞ ≤

(
f

(N)
j

)T
v + g

(N)
j . (35)

Note that if region X (N)
j contains the origin, then g(N)

j =
0. Moreover, if v = 0, then inclusion (35) holds true for

10



all c(j)1 (0) ∈ R, since its two sides are equal to 0. As a
consequence, if one chooses c(j)1 = min

v∈V(X (N)
j

)

c
(j)
1 (v) > 0,

then one obtains:

c
(j)
1 ‖v‖∞ ≤

(
f

(N)
j

)T
v + g

(N)
j , ∀v ∈ V(X (N)

j ). (36)

Note that any x ∈ X (N)
j can be expressed as follows:

x =
∑

v∈V(X (N)
j

)

α(v)v, α(v) ≥ 0,
∑

v∈V(X (N)
j

)

α(v) = 1.

The convexity of function ‖ · ‖∞ yields

c
(j)
1 ‖x‖∞ ≤

∑
v∈V(X (N)

j
)

c
(j)
1 α(v)‖v‖∞

≤
∑

v∈V(X (N)
j

)

α(v)
((
f

(N)
j

)T
v + g

(N)
j

)
=
(
f

(N)
j

)T
x+ g

(N)
j .

(37)

Recall that the existence of c(j)1 satisfying (37) only holds
true for all x ∈ X (N)

j . Therefore, if one chooses c1 =

min
j∈I

M(N)

c
(j)
1 > 0, then we can ensure that c1‖x‖∞ ≤ `N (x)

for all x ∈ KN (Ω).

In order to prove the existence of c2, consider again region
X (N)
j . First, we observe that

(
f

(N)
j

)T
x ≤ ‖f (N)

j ‖1‖x‖∞.
Also, since this region is a polytope due to the boundedness
of X, then there exists a constant bj > 0 such that

g
(N)
j ≤ bj‖x‖∞ for all x ∈ X (N)

j . (38)

Note that if X (N)
j contains the origin, then g(N)

j = 0, there-
fore any bj > 0 satisfies (38). Otherwise, one can choose bj
as follows: bj =

(
min

x∈X (N)
j

‖x‖∞
)−1

∣∣∣g(N)
j

∣∣∣ , since X (N)
j does

not contain the origin, thus min
x∈X (N)

j

‖x‖∞ > 0. Obviously,

such a scalar bj satisfies (38) and bj > 0. We now define
c
(j)
2 := ‖f (N)

j ‖1 + bj > 0, then one can ensure that(
f

(N)
j

)T
x+ g

(N)
j ≤ c(j)2 ‖x‖∞, ∀x ∈ X

(N)
j . (39)

Therefore, if one chooses c2 = max
j∈I

M(N)

c
(j)
2 > 0, then we

ensure that `N (x) ≤ c2‖x‖∞ for all x ∈ KN (Ω). 2
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