Robust ANMF Detection in Noncentered Impulsive Background - CentraleSupélec
Article Dans Une Revue IEEE Signal Processing Letters Année : 2017

Robust ANMF Detection in Noncentered Impulsive Background

Résumé

One of the most general and acknowledged models for background statistics characterization is the family of elliptically symmetric distributions. They account for heterogeneity and non-Gaussianity of real data. Today, although nonGaussian models are assumed for background modeling and design of detectors, the parameters estimation is usually performed using classical Gaussian-based estimators. This letter analyzes robust estimation techniques in a nonGaussian environment and highlights their interest as an alternative to classical procedures for target detection purposes. The goal of this letter is to extend well-known detection methodologies to nonGaussian framework, when the statistical mean is nonnull and unknown. Furthermore, a theoretical closed-form expression for false-alarm regulation is derived and the Constant False Alarm Rate property is pursued to allow the detector to be independent of nuisance parameters. The experimental validation is conducted on simulations.
Fichier principal
Vignette du fichier
Robust_Target_v4.pdf (313.68 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01692403 , version 1 (26-02-2020)

Identifiants

Citer

Joana Frontera-Pons, Jean-Philippe Ovarlez, Frederic Pascal. Robust ANMF Detection in Noncentered Impulsive Background. IEEE Signal Processing Letters, 2017, 24 (12), pp.1891 - 1895. ⟨10.1109/LSP.2017.2763784⟩. ⟨hal-01692403⟩
144 Consultations
143 Téléchargements

Altmetric

Partager

More