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Abstract—This paper presents a new model order selection
technique for signal processing applications related to source
localization or subspace orthogonal projection techniques in large
dimensional regime (Random Matrix Theory) when the noise
environment is modelled by Complex Elliptically Symmetric
(CES) distribution, with unknown scatter matrix. The proposed
method consists first in estimating the Toeplitz structure of the
background covariance matrix. In a second step, after a whiten-
ing process, the eigenvalues distribution of any Maronna’s M -
estimators is exploited, leading to the order selection. Simulations
made on different kinds of CES noise as well as analysis of real
hyperspectral images demonstrate the superiority of the proposed
technique compared to those of Akaike Information Criterion
(AIC) and the Minimum Description Length (MDL).

I. INTRODUCTION

In signal processing, covariance matrices often contain
information related to signals of interest. For example in
source localization [1], the estimation of the direction of
arrival, i.e. the estimation of the signal subspace, can be done
thanks to the estimation and the exploitation of the covariance
matrix. When sources are polluted with noise coming from
the sensors, the channel, or other disturbances, the estimation
of the covariance matrix is degraded. In the example of N
sensors detecting signals of size m, the estimation of the
covariance matrix 1 is also degraded if the dimensions N
and m go to infinity at the same [2]. And this situation
arises frequently since sensors are developed to be more
accurate and numerous: the improvment of accuracy leads
to an accumulation of large data that need to be processed.
Model order selection for detecting the number of sources
in a multichannel time-series or for estimating the rank of a
subspace remains therefore an important problem in statistical
signal processing as in security, medical screening, astronomy,
finance, communication and other scientific fields. Beyond the
problem of signal subspace estimation, the covariance matrix
is also used in detection [3], or filtering [4]. Thus, developing
more efficient tools and techniques is essential.

All these related techniques are commonly based on in-
formation theoretic criteria for model order selection such as

1More precisely, its eigenvalues distribution is not correct anymore

the Akaike Information Criterion (AIC) [5] or the Minimum
Description Length (MDL) [6], [7]. Since many techniques
are based on the eigenvalues decomposition or the singular
values decomposition of the collected data covariance matrix,
Wax and Kailath [8] have derived these two criteria based
on the eigenvalues which can be conveniently applied in
array signal processing problems. In their seminal work as
well as in most applications, the additive noise process is
assumed to be spatially and temporally white Gaussian random
process. These methods are shown to fail when the noise is
not white Gaussian distributed or even non-Gaussian. When
the dimension of the observation is growing, these methods
also give very bad performances [9].

In a lot of fields such as hyperspectral imaging which deals
with multivariate data of large dimension, data are generally
compressed or projected before being processed [10]. The
Random Matrix Theory (RMT), recently developed in signal
processing (see [11] for one of the first use of RMT in a
signal processing field), provides some useful properties or
attributes to handle with these kinds of matrices [12] without
using dimensionality reduction. This theory proposes, among
others, methods to estimate the eigenvalues distribution for
large matrices [13] or for mixed-model with a signal composed
of few sources and additive noise [14], [15].

This article first proposes a new estimator for the covariance
matrix when the noise is correlated and non-Gaussian. This es-
timator is developed here in the context of Complex Elliptical
Symmetric (CES) noise [16], which provides a better noise
characterisation in many applications (e.g., in hyperspectral
imaging [17]). For non-RMT processes, Toeplitz matrices have
been widely studied (see for instance [18] or [19]). But herein
they are exploited in a large dimension regime. The proposed
method is decomposed into two steps. A first part sets the
chosen model while the second one presents the beginning of
the method, that is to “toeplitzify” the empirical estimation of
the covariance matrix (the Sample Covariance Matrix (SCM))
and to prove the consistency of this "toeplitzified" estimator
compared to the true covariance matrix. This estimator is
required to whiten the data. Then, we propose to use a
Maronna’s M-estimator [20] to estimate the so-called scatter



matrix (covariance matrix up to a factor) of the uncorrelated
CES noise. This proposed robust estimator extends the field of
application of the article of Vinogradova [21] to the one of the
MDL and AIC methods. Finally, we focus on the model order
selection. Indeed a threshold can be applied on the covariance
matrix eigenvalues. All eigenvalues greater than this threshold
can be proved to be relative to sources due to RMT properties.
In conclusion, the relevance of this method on simulated
signals and on real hyperspectral images is presented.

Notation: Vectors are in bold and matrices in bold and cap-
itals letters. Let A be a matrix, AT and AH are respectively
the transpose and the Hermitian transpose of A, (A)i,j is the
(i, j)-th element of the matrix. If A is a square matrix of size
m×m then {λi(A)}i=1,...,m are the eigenvalues of A. E[x]
is the statistical mean of the random variable x. a.s. stands
for the almost sure convergence. For any complex scalar a,
a? denotes its complex conjugate. d1(.) means the distance
associated with the l1-norm. The distribution δ denotes the
Dirac measure, supp(.) the support of any measure and ‖.‖ the
spectral matrix norm. The Toeplitz matrix operator is acting on
any vector x as T : x → T (x) where ([T (x)]i,j)i≤j = xi−j
and ([T (x)]i,j)i>j = x∗i−j .

II. THEORETICAL ASPECTS

A. Model and Assumption

Let us consider a set of N observations {yi}i∈{1,...,N}
where each yi is a multidimensional m-vector. In this article,
we suppose here the usual random matrix regime, i.e. N →∞,
m→∞ with the constant regime cN = m

N → c, c > 0.
The general model characterizing the presence of p sources
corrupted with an additive CES noise can be stated as the
following binary hypothesis test:

H0 : yi =
√
τi C

1/2 xi , i ∈ {1, . . . , N} ,

H1 : yi =

p∑
j=1

si,j mj +
√
τi C

1/2 xi , i ∈ {1, . . . , N} ,

(1)
where, for each observation i, mj stands for the unknown
m-steering vector of the j-th deterministic source with power
si,j , xi is a multivariate zero-mean white noise of independent
entries identically and uniformly distributed on the m-unit-
sphere, τ1, . . . , τN are positive scalar random texture variables
(independent from the xi and with a non-specified distribution)
and where C is a Hermitian Toeplitz covariance matrix de-
fined as C = T

(
(c0, . . . , cm−1)T

)
. For large random matrix

regime, i.e. when N →∞, we suppose that µN = 1
N

N∑
i=1

δτi

satisfies
∫
τµN (dτ)→ 1 almost surely, that 1

N

∑
δλi(C) con-

verges almost surely toward the true measure ν and moreover,
maxi d1(λi(C), supp(ν)) → 0 (d1 is not specified!!!!) and
that {ck}k∈{0,...,m−1} are absolutely summable coefficients,
such that c0 6= 0.

By denoting Y = [y1, . . . ,yN ] the m × N -matrix con-
taining all the observations, X = [x1, . . . ,xN ] the m × N -
matrix containing white noise, T the N×N -matrix containing

the {τi}i∈{1,...,N} on its diagonal and zero elsewhere, M =
[m1, . . . ,mp] the m×p-mixing matrix containing the p steer-
ing vectors corresponding to the sources and

(
ST
)
i,j

= si,j
the N ×p-matrix representing all the source power, the model
can be rewritten as:

Y = M S + R ,

where R = C1/2 X T1/2 is the additive correlated CES noise.

B. Signal Whitening

The noise being correlated, we propose in this section a
consistent estimator of the covariance matrix C built on the
measurements Y. We first analyze the hypothesis H0, i.e. no
source is contained in the measurements.
Let us define č = (č0, . . . , čm−1)T the vector built with
elements given by averaging along each diagonal the signal-
free SCM defined as Y YH/N = R RH/N :

čk =
1

mN

m∑
i=1

N∑
j=1

yi,j y
?
i+k,j 11≤i+k≤m , (2)

where k ∈ {0, . . . ,m − 1} and where 1A is the indicator
function on the set A. It can be noted that this averaging
process consists in dividing each sum on each diagonal by
m, leading to a so-called biased Toeplitz estimate.

Theorem 1 (Consistent estimator of C). Under the assump-
tions stated above, one has the following result:

‖T (č)− E[τ ] C‖ → 0 . (3)

Up to the unknown scale factor E[τ ], a consistent estimator
of C is therefore given by Č = T (č).

Proof. The proof follows the one in [21] and will not be
detailed due to the lack of space. The proof relies on the
Lemma 4.1 from [22], which sets an inequality between the
l2-norm of a matrix and the Fourier series of the correlation
coefficients of the matrix (power spectral density). The left
term of the theorem is decomposed into two parts. Then, we
prove that each term converges towards zero. Finally, in the
Fourier space, the steps of the proof are similar than the ones in
[21], except the additional term ‖T‖ found on the denominator
of the upper bound of the inequality.

The consistency of the proposed estimator is illustrated in
Figure 1. The chosen signal is a white Gaussian noise X cor-
related with a Toeplitz matrix C = T

((
ρ0, ρ1, . . . , ρm−1

)T)
where ρ = 0.7. The texture {τi}i∈[1,N ] is randomly extracted
from an inverse gamma distribution with unit mean. The
resulting noise is therefore Student-t-distributed. This figure
presents the l2-norm (log scale) of the difference between the
real covariance matrix C and the proposed estimator (green
curve) or the usual SCM estimator equal to 1

N R RH (red
curve) when N varies from 20 to 2000 and c = 0.2 (20 Monte
Carlo trials). As expected, the SCM is not consistent while
the proposed estimator of Theorem 1 has a slow convergence
toward the true covariance.
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Fig. 1. Consistency of Č estimator when C = T
((
ρ0, . . . , ρm−1

)T)
with

ρ = 0.7 and c = 0.2 for Student-t distributed m-vectors.

C. Signal Subspace Rank Estimation

In this section, the observations Y are whitened by the
estimator Č introduced before. Let us note Yw the whitened
signal:

Yw = Č−1/2 Y = Č−1/2 M S + Rw , (4)

where Rw = Č−1/2 C1/2 X T1/2.

Due to the fact that the observations are polluted by the tex-
tures {τi}i∈{1,...,N}, the number of sources can be estimated
thanks to the distribution of the eigenvalues of any Maronna’s
M -estimator of the scatter matrix of the observations Yw.
Under the H0 hypothesis, the chosen robust estimator Σ̌ is
defined as the unique solution of the following equation:

Σ =
1

N

N∑
i=1

u

(
1

m
rw

H
i Σ−1 rwi

)
rwi rw

H
i , (5)

where Rw = [rw1, . . . , rwN ] and u : [0,+∞) → [0,+∞)
nonnegative, continue and non-increasing (see [23] for details).
In order to evaluate the rank of the signal subspace, it is
possible to set a threshold on the eigenvalues of Σ̌ in a non-
RMT regime. But it is not easy to analyze the behavior of
Σ̌ eigenvalues when N,m → ∞ using RMT classical tools
since the term u

(
1
m rw

H
i Σ̌−1 rwi

)
depends on rwi. For that

purpose, a possible solution is to find and deal with another
useful mathematical object having similar properties. Before
establishing the next theorem, here are some definitions:
• φ : x 7→ xu(x), is increasing and bounded with

lim
x→∞

φ(x) = φ∞ > 1 where φ∞ < lim
N→∞

cN

PROBLEM!!!! Car c est juste positif!!!!! C’est très
réducteur cette hypothèse et d’ailleurs ça ne correspond
pas aux simulations où c = 0.2,

• g : x 7→ x

1− cN φ(x)
, v : x 7→ u ◦ g−1(x),

• ψ : x 7→ x v(x) and γm is the unique solution (if it exists)

of
N∑
i=1

ψ(τi γ)

1 + cN ψ(τi γ)
= 1.

Theorem 2 (Convergence of Σ̌). Using previous definitions,
one has the following almost sure convergence∥∥∥Σ̌− Ŝ

∥∥∥→ 0 (6)

where the matrix Ŝ is defined by:

Ŝ
4
=

1

N

N∑
i=1

τiv (τi γm) xi x
H
i . (7)

Proof. Define Σ̂ as the unique solution of

Σ =
1

N

N−1∑
i=0

τi u

(
1

m
τi x

H
i Σ−1 xi

)
xi x

H
i . (8)

As rwi = Č−1/2 C1/2√τi xi, it can be easily shown that

Σ̌ = Č−1/2 C1/2 Σ̂ C1/2 Č−1/2 , (9)

and∥∥∥Σ̌− Č−1/2 C1/2 Ŝ C1/2 Č−1/2
∥∥∥ ≤ ∥∥∥Σ̂− Ŝ

∥∥∥ ‖Č‖ ‖C‖ .
(10)

It is proven in [14] that the matrix Ŝ given by (7) is such that∥∥∥Σ̂− Ŝ
∥∥∥→ 0 a.s. (11)

As ‖C‖ has a bounded support, ‖Č‖ is bounded too since its
eigenvalues support converges almost surely toward the true
distribution. Moreover, it can also be easily shown than the
consistency implies that Č−1/2 C1/2 → I , I being the identity
matrix, term to term. The result given in (11) ensures the proof.

In [14], the threshold t =
φ∞ (1 +

√
c)2

γm (1− c φ∞)
has been set

to ensure that all the eigenvalues of the matrix Ŝ beyond t
correspond to sources. This threshold comes from the upper
bound of the support of the Marchenko-Pastur law and details
can be found in [14]. Thanks to Theorem 2, the threshold t can
also be applied on the eigenvalues of scatter matrix Σ̌ built
on Yw = [yw1, . . . ,ywN ] in order to test both hypothesis H0

and H1:

Σ̌ =
1

N

N∑
i=1

u

(
1

m
yw

H
i Σ̌−1 ywi

)
ywi yw

H
i . (12)

Let
{
λi(Σ̌)

}
i={1,...,N} be the eigenvalues of Σ̌ sorted in de-

scending order. As all sources are assumed to be independent,
the estimated number p̂ of sources that is the rank of the signal
subspace is given by p̂ = min

k
(λk > t).

III. RESULTS AND SIMULATIONS

In this section, the proposed method is used to estimate the
rank of the signal subspace, on simulated data.



A. Behavior of the eigenvalues on simulated CES noise

Figure 2 represents the Marchenko-Pastur law, the threshold
t and the distribution of the eigenvalues of Σ̌ for hypothesis
H0. The chosen signal (m = 900, N = 2000) is a correlated
Student-t noise with a Toeplitz matrix (ρ = 0.7). In addition,
we set the function u with the inverse gamma distribution
for τ . As a reminder, u is computed in order to obtain the
Maximum Likelihood for the Fixed-Point estimator in the
non-RMT regime even if the RMT regime does not ensure
to maintain the performances: u(.) = −h′(.)/h(.) where
h(.) is the CES generator function and where ′ denotes
the derivative. J’ENLEVERAI TOUTE LA PHRASE QUI
N’EST PAS CLAIRE et n’apporte pas grand chose For the
corresponding Student-t distributed noise with parameter ν,

one has u : x 7→ 1 + ν

ν + x
. Hence, the threshold t is equal

to
(1 + ν) (1 +

√
c)2

γm (1− c (1 + ν))
. For the following figures, ν is set to

0.1 (peut-être ici une footnote disant que en régime classique
ν doit être > 2 mais que en RMT régime ν doit juste être
positif... car c’est ν/m en fait...) . In Figure 2, the eigenvalues
distribution is almost the same than the Marchenko-Pastur
law. The fixed-point M -estimator cancels the influence of
the texture τ on the X observations: Σ̌ is almost equal to
1
NXXH as expected. If the noise is not whitened by the
proposed estimator Č and if the scatter matrix is directly
estimated with the Fixed Point estimator, denoted Σ̌nw, the
threshold is clearly not greater than the largest eigenvalue of
Σ̌nw. This result is illustrated in Figure 3: this shows that the
proposed whitening process is very important when applying
the threshold technique.

0 1 2 3
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4

6
·10−2

Histogram of eigenvalues

Histogram

Marchenko Pastur distribution

Threshold λ

Fig. 2. Eigenvalues distribution of Σ̌ for m = 900, N = 2000.

B. Estimation of the number of sources on CES simulated
noise and real data

For simulated and correlated (ρ = 0.7) CES noise, the
{τi}i∈{1,...,N} are inverse gamma distributed with parameter
ν = 0.1. In Figure 4 (m = 400 and N = 2000), p = 4
sources are added in the observations with a Signal-to-Noise
Ratio (SNR) varying from −50 to 50dB. In this figure, the
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Fig. 3. Eigenvalues distribution of Σ̌nw for m = 900, N = 2000.

number of sources p̂ (mean of 4 trials) is estimated thanks to
three different methods: AIC, the non-whitened signal and the
proposed method. The proposed method starts to find sources
from a SNR equal to 10dB. For a greater SNR, whereas it
systematically gives the correct number of sources, the other
methods overestimate it. Figure 5 presents the same simulation
for p = 16 sources. Indeed, similar remarks occurs: the
proposed estimator still presents better performance than the
others.

−40 −20 0 20 40
100

101

102

103

SNR

N
um

be
r

of
so

ur
ce

s

p̂ with Σ̌nw

p̂ with Σ̌

p̂ with AIC method

p

Fig. 4. Estimation of the number p of sources embbeded in CES correlated
noise (m = 400, c = 0.2, p = 4 sources, ρ = 0.7) versus SNR.

Now we compare the results obtained with three different
methods on several real hyperspectral images found in public
access: Indian Pines, SalinasA from AVIRIS database and
PaviaU from ROSIS database. Let M1 be the proposed
method, M2 be the method consisting in thresholding the
eigenvalues of the Fixed-Point estimator without the whitening
step, and the usual AIC method. For the function u(.) corre-
sponding to Student-t distribution, we choose ν = 0.1. As we
do not have any access to the true distribution of the noise, an
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Fig. 5. Estimation of the number p of sources embbeded in CES correlated
noise (m = 400, c = 0.2, p = 16 sources, ρ = 0.7) versus SNR.

TABLE I
ESTIMATED p FOR DIFFERENT HYPERSPECTRAL IMAGES.

Images Indian Pines SalinasA PaviaU Cars
p 16 9 9 6

p̂ M1 11 9 1 3
p̂ M2 220 204 103 1
p̂ AIC 219 203 102 143

empirical estimator of γ is used, γ̂ =
1

N

N∑
i=1

1

m
yHi Σ̌−1(i) yi,

where Σ̌(i) = Σ̌ − 1

N
u

(
1

m
yHi Σ̌−1 yi

)
yi y

H
i . Then [14]

shows that γ − γ̂ → 0 a.s.. The results are summarised in
table I. On each image, the result tends to be better than those
of classical methods.

IV. CONCLUSION AND PERSPECTIVES

This article is devoted to the model order selection of
sources embedded in correlated CES noise. First, a Toeplitz-
based covariance matrix estimator for the correlated noise has
been proposed and has been proven to be consistent. To deal
with the CES texture, any M -estimator can then be used to
estimate the correct structure of the scatter matrix built on
whitened observations. A Random Matrix Theory-based model
order selection has been therefore used on the corresponding
scatter matrix eigenvalues to correctly separate sources from
the noise. We have applied successfully this general technique
on both simulated correlated CES noise and real hyperspectral
data. This method provides interesting and encouraging results
on several hyperspectral images containing known sources.
Note that the proposed method is general and can be applied
for any model order selection problems (radar clutter rank
estimation, sources localization or any hyperspectral problems
such as anomaly detection or linear/non-linear unmixing tech-
niques).
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