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Abstract

This paper deals with the optimization of a set of transmitted
sequences and their associated mismatched filters, for the co-
herent MIMO radar. A minimization problem may be consid-
ered, with an objective function that measures for instance the
correlations within the set. In the literature, it is usually solved
alternatively, meaning that the optimization is performed on
the sequences while the mismatched filters are set, and vice-
versa. In this paper, an iterative method that proceeds jointly
is introduced. Sequences are derived with a gradient descent,
and mismatched filters are chosen in such a way that they are
optimal in the ISL (Integrated Sidelobe Level) sense. Simula-
tions show interesting results, as a joint optimization performs
better than a separate one, even with relatively short sequences.

1 Introduction

Wireless communications face among other challenges an in-
creasing number of users and data demands [1]. An intuitive
solution consists in using multiple antennas: it is the MIMO
(Multiple-Input Multiple-Output) concept. This concept has
been adopted in radar in the late 70’s [2]; a MIMO radar em-
ploys several transmitters and several receivers. Two config-
urations of MIMO radars are usually considered, known as
statistical and coherent. In a statistical MIMO radar, antenna
elements are widely separated, improving detection perfor-
mance [3], while they are sufficiently close in a coherent (or
co-located) MIMO radar, providing a better spatial resolution
[4]. This article focuses on the latter, and especially on wave-
form design.

Figure 1 illustrates the concept of the coherent MIMO radar.
Contrary to a phased array, each transmitter produces its own
signal, represented by different colors. Each target receives a
coherent sum of these elementary signals, that is distinct ac-
cording to its position. In other words, it appears that each di-
rection is explored simultaneously with a different signal, im-
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Fig. 1: Concept of the coherent MIMO radar (DBF: Digital
Beamforming)

plying that this radar may broadcast wide beams, unlike (again)
phased arrays.

In this way, the coherent processing on receive is obtained via
a matched filter in range (i.e., in delay) and in angle. It means
that the received signal is not compared with each elementary
signal, but with signals transmitted in different directions. The
MIMO ambiguity function [5] measures the correlations of
signals that are radiated by the radar. So, in wireless communi-
cations or in radar processing, a lot of studies have been made
on waveform design (see [6] and [7] for instance). Besides,
MIMO waveforms can be classified into several categories [8].
Among them, phase codes seem present the best range/angle
coupling (in the ambiguity function), but at a cost of high side-
lobes [9]. These sidelobes should thus be reduced in order to
improve detection performances: a weak target response can
indeed be buried into sidelobes.

This is one of the reason why radar processing is not done in
practice with a matched filter, but with another signal, known
as a mismatched filter. This flexibility may thus provide lower
sidelobes, but at a cost of a containable Loss-in-Processing
Gain (LPG). Through optimization techniques, it is possible
to compute the optimal mismatched filter that minimizes the
PSLR (Peak-to-Sidelobe Level Ratio) or the ISL (Integrated
Sidelobe Level) [10].

A joint optimization of a set of transmitted sequences and of
some mismatched filters is proposed in this article, in the co-

1

mailto:u.tan@laposte.net
mailto:olivier.rabaste@onera.fr
mailto:claude.adnet@thalesgroup.com
mailto:jean-philippe.ovarlez@onera.fr


herent MIMO framework. An iterative procedure is suggested:
each mismatched filter is chosen ISL-optimal and is expressed
as a function of the transmitted sequences. Sequences and fil-
ters are then both computed with a gradient descent (the gradi-
ent calculation depends on the filter choice).

This article is organized as follows. It begins with a short re-
minder on the matched filter and the mismatched filter. Sec-
tion 3 formulates the joint optimization problem, and submits
a method in order to solve it. Some results are given in the last
section.

Notations: In the following, bold letters designate matrices and
vectors. (.)∗, (.)T and (.)H denote the conjugate, the transpose
and the transpose conjugate operator, respectively.

2 Matched Filter, Mismatched Filter
This section reminds some definitions on the matched filter and
the mismatched filter. It also explains how an optimal mis-
matched filter can be obtained through an optimization prob-
lem, for a given sequence. More details are given in [10].

2.1 Definitions

Let s be a discrete signal containing N samples:

s = [s1, s2, . . . , sN ]T . (1)

In the following developments, the sequence s is of constant
modulus (which is a non-convex constraint). Let αk ∈ [−π, π]
be the phase angle of the element sk:

sk =

{
exp(j2παk)/

√
N if k ∈ J1, NK

0 otherwise.
(2)

Matched filtering consists in a comparison of the signal s and
a time-shifted version of itself, i.e., generating the sequence y
of length 2N − 1 such that:

y = ΛN (s)s∗, (3)

where ΛK(s) is a matrix of size K + N − 1 ×K containing
delayed versions of the sequence s, such that:

ΛK(s) :=



sN 0 · · · · · · · · · · · · 0
... sN

. . .
...

s2
. . . 0

...

s1 s2 · · · sN 0 · · · 0

0 s1
. . .

... sN
. . .

...
...

. . . . . . s2
. . . 0

0 · · · 0 s1 s2 sN
... 0 s1

. . .
...

...
. . . . . . s2

0 · · · · · · · · · · · · 0 s1



(4)

On the other hand, processing the signal s with a different filter
q, of length K, is called mismatched filtering:

y = ΛK(s)q. (5)

Note that, in both cases, the central element is designated as
the mainlobe, while the others are sidelobes.

The mismatched filter is less constrained than the matched fil-
ter, since q can take any value in CK . Moreover, its length may
also differ from N , and can be in particular chosen to contain
more elements, thus providing additional degrees of freedom
compared to the matched filter. It will be assumed without loss
of generality that K = N + 2p, p ∈ N, so that the length of y
is odd.

The matched filter is known for maximizing the SNR (Signal-
to-Noise Ratio) at the peak response, under a white noise hy-
pothesis. Using a mismatched filter implies inevitably a loss-
in-processing gain (LPG), expressed by:

LPG = 10 log10

(
SNRmismatched

SNRmatched

)
= 10 log10

(
|qHs|2

(qHq)(sHs)

)
≤ 0. (6)

This loss-in-processing gain can be inserted as a convex con-
straint in optimization problems, depending on s and q, as in
[10]:

LPG ≥ −10 log10 α⇔ qHq ≤ αsHs. (7)

2.2 Optimal Mismatched Filters

Several criteria have been introduced in order to measure the
performance of these filters: the Merit Factor [11], the Peak-
to-Sidelobe Level Ratio (PSLR) [10] or the Integrated Sidelobe
Level (ISL). In this article is studied the latter, defined by:

ISL(s, q) := yHFy, (8)

where y is defined as in (5) and F is a diagonal matrix of order
K + N − 1, defined by the vector [1, . . . , 1, 0, 1, . . . , 1], with
ones except for a 0 at the entry N + p.

The ISL can be considered as an objective function of an opti-
mization problem, called in this article (PISL):

(PISL)

{
minq ISL(s, q)

s.t. sHq = sHs,
(9)

that can be solved analytically, using Lagrangian multipliers
[12]:

qISL(s) =

(
sHs

) (
ΛK(s)HFΛK(s)

)−1
s

sH (ΛK(s)HFΛK(s))
−1

s
. (10)

This last definition means that, for a given sequence s, there
exists an optimal filter qISL(s) that minimizes the ISL. Note
here that this analytic solution does not guarantee an accept-
able loss-in-processing gain. If the LPG is added as a sec-
ond constraint in the constrained optimization problem (PISL),
then the new problem does not seem to present any analytic so-
lution (but its solution can be found numerically).
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3 A Joint Optimization for Coherent MIMO
Radar

This section deals with a joint optimization of the transmitted
sequences of a coherent MIMO radar, and their associated mis-
matched filters. It begins with some reminders on the coherent
MIMO radar. The problem formulation is given in a second
part, while an algorithm is proposed in the last one.

3.1 The Coherent MIMO Radar

Consider a transmitting array of NE antennas and a receiving
array ofNR antennas. Each of these antennas transmits its par-
ticular waveform, possibly different from the others. The sig-
nal radiated by the radar in the direction θc, denoted by s(θc),
is [5]:

sl(θc) =

NE∑
m=1

ejx
T
E,mk(θc)sml , (11)

where:

• xTE,m is the position of the m-th transmission antenna,
• k(θc) is the wave vector in the direction θc,
• sm := [sm1 , ..., s

m
N ]T is the waveform of length N as-

signed to the m-th antenna.

It can be worth noticed that a colocated MIMO radar produces
different signals at different angles, unlike classical phased ar-
rays. Hence, even with isotropic antennas, transmit beampat-
tern might not be uniform. The power density is incidentally
defined by [13]:

P (θ) =
1

4π
k(θ)HRk(θ), (12)

where R is the matrix of signal cross-correlations, that is to
say Rk,l := (sk)Hsl.

The usual ambiguity function measures the correlation be-
tween a signal and a delayed version of it (in this paper, the
Doppler shift is ignored). However, in the coherent MIMO
background, the angular aspect should also be considered.
Hence, the MIMO ambiguity function is defined by [5]:

A(k, θl, θl′) :=

N∑
k′=1

NR∑
n=1

(
ejx

T
R,nk(θl)

NE∑
m=1

ejx
T
E,mk(θl)smk′

)
(

ejx
T
R,nk(θl′ )

NE∑
m′=1

ejx
T
E,m′k(θ

′
l)smk+k′−N

)∗
(13)

where xTR,n denotes the position of the n-th reception antenna.
As said in the previous section, radar processing can also be
performed with mismatched filters. These mismatched filters
should be associated with a direction, like the signal transmit-
ted by the radar. Remark that they are thus not directly related
to the probing signals.

3.2 An Optimization Problem

In this section, an optimization problem is developed. Ob-
tained solutions should be interesting waveform/filter pairs for
the coherent MIMO radar.

As previously said, a mismatched filter is associated to a given
direction. It could thus be convenient to discretise the angular
domain: let Θ = {θ1, . . . , θν}, ν ∈ N∗, be a set of directions
of interest. The signal transmitted by the radar in the direc-
tion θl is denoted by s(θl) = [s1(θl), . . . , sN (θl)]

T while its
counterpart mismatched filter is denoted by q(θl), l ∈ J1, νK.

In addition, their autocorrelation function should present low
sidelobes. In the ISL sense, it is equivalent to minimize the
following, with l ∈ J1, νK:

Ea(s(θl), q(θl)) = ISL(s(θl), q(θl)). (14)

In practice, the position of the target (i.e., the origin of the re-
ceived signal) is unknown. Reception processing is performed
by filtering the received signal with each mismatched filter. So
it is important that sidelobes generated by the correlation be-
tween a signal backscattered by a target in a given direction and
a mismatched filter optimized for a different direction, remain
low. In other words, sidelobes should be minimized along both
range and angle dimensions. This is equivalent to a criterion
on cross-correlations:

Eb(s(θl), q(θl′)) =

K+N−1∑
k′=1

|yk′ |2 , l 6= l′, (15)

with y = ΛK (s(θl)) q(θl′) defined as in (5).

Finally, the power density has to be similar for each θk ∈ Θ,
so that no direction is favored:

Ec({sk}) =

ν∑
l=1

∣∣P (θl)− P̄
∣∣2 , (16)

with P̄ the mean power density in Θ, P̄ :=
∑ν
l=1 P (θl)/ν.

Gathering all these expressions gives an objective function E
on the set of transmitted sequences {sk}k∈J1,NEK, and on the
set of mismatched filters {ql}l∈J1,νK:

E
(
{sk}, {ql}

)
:=

ν∑
l=1

Ea(s(θl), q(θl)) (17)

+

ν∑
l,l′=1
l 6=l′

Eb(s(θl), q(θl′)) + Ec({sk}),

and its associated optimization problem (P1):

(P1)

{
min{sk},{ql} E

(
{sk}, {ql}

)
s.t. s(θl)

Hq(θl) = s(θl)
Hs(θl),∀l ∈ J1, νK.

(18)
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3.3 The Proposed Algorithm

How can the previous optimization problem be solved? An
iterative algorithm is proposed herein, that includes a gradient
descent and computations of optimal filters in the ISL sense.

The optimization problem (18) is quite complicated as it may
have a lot of variables (N NE + Kν elements, to be precise).
But especially, it is a non-convex problem, because of the con-
stant modulus constraint on the transmitted sequences.

A lot of methods have been reviewed in order to solve this
sort of problem [14]. Among them, the steepest descent has
shown interesting capabilities, even if its convergence is local.
An example of optimization of phase codes for the coherent
MIMO radar is explained in [15].

A joint optimization of a sequence and its mismatched filter
with a gradient-based method (L-BFGS) has already been pro-
posed [16]. This procedure implies computing a gradient for
the mismatched filter as well as for the signal. In this article is
proposed on the contrary to exploit the existence of an analyt-
ical expression of the optimal filter that minimizes the ISL.

The suggested procedure is based on a modified version of the
problem (P1). Separating both optimization variables gives the
following:

(P2)

{
min{sk}min{ql} E

(
{sk}, {ql}

)
s.t. s(θl)

Hq(θl) = s(θl)
Hs(θl),∀l ∈ J1, νK.

(19)

A part of this expression may be identified as (PISL), as:

(P2a)

{
min{ql} Ea

(
{sk}, {ql}

)
=
{
qISL

(
sk
)}

s.t. s(θl)
Hq(θl) = s(θl)

Hs(θl),∀l ∈ J1, νK.
(20)

As mentioned earlier, there exists indeed a global solution of
(P2a) that can be computed, denoted here

{
qISL

(
sk
)}

. Its ex-
plicit definition is defined in Section 2. Based on that, the pro-
posed method introduces this solution into the objective func-
tion, becoming a function of a sequence-only variable:

(P3)

{
min{sk} Ẽ

(
{sk}

)
:= E

(
{sk},

{
qISL

(
sk
)})

s.t. s(θl)
HqISL (s(θl)) = s(θl)

Hs(θl),∀l ∈ J1, νK.
(21)

A feasible solution of the problem (P3) can classically be
found with a gradient descent. The gradient vector,∇Ẽ, should
be composed of partial derivatives of Ẽ with respect to the
phase of each element smk , denoted αmk :

(
∇Ẽ
)m
k

=
∂Ẽ

∂αmk
m ∈ J1, NEK, k ∈ J1, NK. (22)

It can be viewed from Eq.(10) that the optimal solution qISL
to the problem PISL requires a matrix inversion. Thus this gra-
dient cannot be easily computed analytically and will be com-
puted with finite differences here. Note that this implies such
a computation for each partial derivative to compute.

The resolution of (P3) suggests that the initial sequences
{
sk
}

have been modified. Therefore, all this process should be re-
peated, until convergence. The algorithm is summarized in Ta-
ble 1.

Algorithm A joint optimization algorithm

Given Transmitted sequences {sk}, k ∈ J1, NEK
Directions of interest Θ

Repeat 1. Computation of
{
qISL

(
sk
)}

,
optimal mismatched filters of {sk}

2. Gradient descent search
— Computation of the gradient vector∇Ẽ
— Search of the best step µ
— Update of {sk} : smk = smk exp(−jµ(∇Ẽ)mk ),

m ∈ J1, NEK, k ∈ J1, NK
Until A stopping criterion is satisfied.

Table 1: Proposed algorithm

4 Results
In this section, some simulations are made in order to illustrate
the efficiency of the proposed algorithm, under the following
parameters:

• Consider a simulated radar antenna with four transmitters
(NE = 4) and eight receivers (NR = 8).
• Transmitted phase codes are of length N = 32, while the

mismatched filters are three times longer.
• The loss-in-processing gain (LPG) is set to 1 dB.
• In order to emphasize the effect of the optimization, only

one direction of interest will be considered: θ = 0.

Figures 2 to 4 present the ambiguity function range/elevation
of signals obtained with several methods. Sidelobes differ-
ences can easily be observed.

• Figure 2 represents the ambiguity function of a random
initialization. Sidelobes are well-distributed into each el-
evation angle, and are correct in the direction of interest
(around -22 dB).
• The autocorrelation property of the transmitted sequences

has been optimized in Figure 3, as in [15]. An ISL-
optimal filter is then applied. It can be observed that, apart
from the cut in the direction of interest, most of the side-
lobes are greater than -13 dB. This was expected since in
that case, the optimization only considered one direction
angle, thus potentially leading to undesired uncontrolled
effects in the other directions.
• In Figure 4, the proposed method is applied in order to

jointly optimize the transmitting sequences and the set of
angular mismatched filters used for the range/angle pro-
cessing. Results are quite encouraging: in the direction
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of interest, the highest sidelobe is at -37 dB. Besides, the
Peak Sidelobe – in all angles – is at -18 dB...
• After all, a joint optimization (Figure 3) seems to perform

better than a separate one (Figure 2).

However, these observations are mainly qualitative. Hence,
Figure 5 compares the cut θ = 0 of the ambiguity function,
which was a direction of interest in the optimization proce-
dure. In these figures, “Random” indicates that a mismatched
filter has been applied on a sequence drawn randomly. Results
may not be that significant – a more substantial number of sim-
ulations should be more thorough – but they highlight well the
behaviour of these algorithms.

5 Conclusion

In this article, an iterative algorithm that jointly optimizes the
transmitted sequences of a coherent MIMO radar and several
mismatched filters has been proposed. This algorithm is based
on the existence of an optimal mismatched filter in the ISL
sense. Simulations have highlighted really promising results.
As expected, mismatched filtering provides a noticeable gain
compared to the usual matched filtering. Moreover, a joint op-
timization performs better than a separate one.

Ongoing works will be focused on:

• Speeding up the algorithm, by computing analytically the
gradient of the modified optimization problem
• Applying the same procedure, but with the mismatched

filter that minimizes the PSLR criterion
• Considering the angular domain as a continuous domain,

and not as a discrete one
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