
HAL Id: hal-01698194
https://centralesupelec.hal.science/hal-01698194v1

Submitted on 11 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Non-Linear Analytical Model for a Multi-V-Shape IPM
with Concentrated Winding

Paul Akiki, Maya Hage Hassan, Jean-Claude Vannier, Mohamed Bensetti,
Dany Prieto, Benjamin Dagusé, Mike Mcclelland

To cite this version:
Paul Akiki, Maya Hage Hassan, Jean-Claude Vannier, Mohamed Bensetti, Dany Prieto, et al.. Non-
Linear Analytical Model for a Multi-V-Shape IPM with Concentrated Winding. IEEE Transactions
on Industry Applications, 2018, 54 (3), pp.2165 - 2174. �10.1109/TIA.2018.2799175�. �hal-01698194�

https://centralesupelec.hal.science/hal-01698194v1
https://hal.archives-ouvertes.fr


�Abstract -- This paper presents a non-linear analytical model 
of a multi-V-shape Interior Permanent Magnet (IPM) motor with 
non-overlapping concentrated winding. The model relies on 
Ampere’s theorem and the flux conservation law in order to 
compute the flux density in the different parts of the motor. This 
article proposes a saturated analytical model of the stator and the 
rotor. The analytical model is used to calculate the average 
torque, the power factor and the voltage of the motor. It is 5 times 
faster than the 2D Finite Element Analysis (FEA). The results are 
compared to 2D FEA simulations and experimentally validated 
using a prototype motor.  

 
Index Terms–Analytical model, Concentrated winding, 

Electrical machines, IPM motor, Multi-V-shape magnets.   

I.   INTRODUCTION 

ECENTLY, high performance motors have been the 

subject of many studies and research projects. Permanent 

magnet motors with rare earth materials are known for their 

suitability in high performance applications and have been 

widely used by industrials during the last decades [1], [2]. 

However, these magnets have reached high price, which 

increased the cost of the motor. In order to ensure 

competitiveness, varieties of motors, which do not use or with 

reduced rare-earth materials, have been extensively 

developed [3]. Non-rare-earth permanent magnets such as 

ferrite or alnico have attracted significant interest in recent 

designs. The low magnetic field created by these types of 

magnet leads  to their use in a flux concentration configuration 

[4] or as an additional torque source in synchronous reluctance 

motors. This configuration is known as the Permanent Magnet 

Assisted Synchronous Reluctance Motor (PMASynRM) with 

distributed winding [5], [6].  

In this paper, the studied structure is a multi-V-shape 

Interior Permanent Magnet (IPM) motor with non-overlapping 

concentrated winding. It has ferrite magnets in the rotor and 

short end-winding in the stator in order to reduce the Joule 

losses. The motor’s design process usually starts by modelling 

the magnetic performance. The advances in computational 

tools made it possible to use Finite Element Analysis (FEA) to 

create a numerical simulation of the studied motor. FEA 

allows a detailed investigation of the motor behavior, with the 

disadvantage of generally long execution times [7]. In order to 

overcome this problem, analytical models based on creating a 

reluctance network or on solving Maxwell equations were 
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developed [8]–[10]. In this paper, an analytical model of a 

multi-V-shape IPM motor with non-overlapping concentrated 

winding is proposed. The model relies on two fundamental 

laws of electromagnetism: Ampere’s theorem and flux 

conservation law [11]. 

The studied machine is an 18 slot/16 pole structure (Fig.1). 

It has open slots in order to facilitate the automatic insertion of 

the windings during the manufacturing process. The rotor 

presents an interior iron bridge and an exterior one. A flux-

barrier is mainly defined by 2 parameters: δ is the barrier’s tilt 

angle and k = θ/β is the ratio of the barrier’s opening angle 

with respect to the half pole angle β. This article proposes a 

saturated analytical model of the stator teeth and the stator 

yoke. It takes into account the leakage flux in the slots and the 

saturation in the rotor magnetic circuit [12]. The developed 

model is parameterized as a function of the slot number, the 

pole pair number and the magnet layer number. 

 
Fig.1 Studied motor structure (a) with the rotor’s main geometrical 

parameters (b) 

II.   ANALYTICAL MODEL 

The analytical model computes the flux density of the 

motor over one electrical period (360°elec). Due to magnetic 

symmetry, half of the machine is modeled.  

A.   Magnetomotive Force 

The machine is a three phase motor with a non-overlapping 

concentrated tooth winding. The magnetomotive force (mmf) 

is determined with respect to the winding pattern shown in 

Fig.2 that covers one electrical period.  The mmf level of each 

tooth is given by the total current of the tooth coil as in (1). A 

linear variation of the mmf in the slots is considered.  
 

 
Fig.2 Winding configuration for half of the motor (360°elec) 
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where IA, IB, IC are the currents in phases A, B, C respectively, 

and Ns is the number of turns per coil. 

B.   Stator Slots Additional Air-Gap  

Stator slotting influences the magnetic field by affecting the 

distribution of the flux density in the air-gap. It increases the 

reluctance of the flux path and reduces the air-gap flux density 

in front of a slot. Therefore, it is important to take it into 

account. A common method for modeling the stator slotting 

effect uses Carter’s coefficient to smooth the stator geometry 

but assumes that the slot width is much smaller than its height 

[13]. In this paper, the additional air-gap length is calculated 

using the mean flux path under the slot opening [14]. Thus, 

idealized flux paths are shown in Fig.3. Assuming quarter-

circular flux lines with radii R1 and R2, the arc lengths Γ1 and 

Γ2 are given by: 

- .��/� = 02 2,3	 sin�/�.��/� = 02 	2,3 	 789��,:;< − /� (2) 

where θslot is the slot opening angle, Rsi is the internal radius of 

the stator and ν is the angle under the slot opening. The 

additional air-gap es(ν) is the equivalent length of the two 

parallel paths Γ1 and Γ2. The use of the first-order Taylor 

expansion leads to (3): 

=,�/� = ��	
�
 	 02�,:;< 2,3/	��,:;< − /�			, >9?=@	7ABCBD=989E 	
		0																																													, 	>9?=@	7CFCB@CBBCℎ 	 (3) 

 

The total air-gap length is given by: =<;<�/� 	= = + =,�/� (4) 

where e is the airgap length. 
 

 
Fig.3 Idealized flux paths under stator slot 

C.   Flux density of the stator 

The flux density of the stator is calculated in the teeth and 

the yoke. Assuming quarter-circular paths between the air-gap 

and the stator tooth (Fig.4), the tooth flux density is calculated 

using flux conservation law applied to the tooth pitch (θτst) 

with a discretization of 1°elec. 
 

 
Fig.4 Flux lines between the airgap and the stator tooth 

Equation (5) computes the stator tooth flux density H,<IJ3  

due to airagp flux density Bag(θ): ∀	8	 ∈ {1,9}					; ∀	9	 ∈ {�,<2 	 , �O,<2 } 
 H,<IJP3 = H,<IJPQ�3 		+ 2,3	R,< ST HUV���?���	W�PW��

��	WP	 	 
+T HUV���?���	QP

��	Q�PW�� X										 (5) 

 

where wst is the stator tooth width, θst is the tooth angular span 

and θi is the center angular position of the i
th

 tooth (Fig.4). The 

flux density for n = 0 is calculated using flux conservation law 

for the airgap flux under the stator tooth. Its expression is 

given by (6). 

H,<IJ%3 	= 	2,3	R,< T HUV���?���	W�YZ�
��	Q�YZ�  (6) 

 

Hence, we obtain H,<IJ3 �[� which is the airgap flux density 

for each tooth along the y-axis shown in Fig.4, for 0 ≤ [	 ≤]Y��Z�  where wslot is the slot width.  
 

 
Fig.5 Tangential leakage flux in the stator slot 

The tangential leakage flux that links two adjacent teeth is 

taken into account (Fig.5). The total current distribution in 

each slot is considered to be linear. Thus, Ampere’s theorem is 

written on paths along the tooth height hst as shown in Fig.5, 

and the flux conservation law is applied between the tangential 

leakage flux in stator slots ^lf_slot(y) and the slot flux entering 

the tooth ^st_slot(y).This yields (7) and (8). 
 H:cY��Z�[� = 	H:c%d �=
e − =�
fYZ	=Q
e� (7) 
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H,<Y��Z�[� 	= 1R,< T H:cY��Ze
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fYZ	�=Q
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with h = 	i jk	]Y��Z	]YZ	 l �jYZ	� + �jmY	no		; 	d = 1 − =�
fYZ	  
where g%	, 	g,<	: 	, g,<	p	, �,:;< are respectively, the vacuum 

permeability, the relative permeability of the left and the right 

stator tooth (surrounding the considered slot) and the total 

current of the considered slot. Therefore the total leakage flux 

density and the total flux density of a tooth along its height (y-

axis) are given by (9) and (10) respectively. H,<�q3 �[� = 	H,<Y��Zn3 �[� −	H,<Y��Z�3 �[� (9) 
 H,<3 �[� = 		H,<IJ3 �[�+H,<�q3 �[� (10) 
 

The subscripts l and r represent the left and the right sides 

of a tooth. The tooth flux density is considered constant along 

the tooth width (θ-axis) so that the stator tooth flux density 

with respect to the electrical angle can be written: H,<��, [� = 	 rH,<3 �[�				>9?=@	Cℎ=	8<f	CBBCℎ0							>9?=@	Cℎ=	7ABC7  (11) 

 

The stator yoke flux density is calculated by applying the 

flux conservation equation between the stator teeth and the 

yoke over a variation of ∆θ = 1°elec. The stator yoke flux 

density with respect to the electrical angle Bsy(θ) is expressed 

by (12) for 0 ≤ θ ≤ 360°elec: 
   H,e�� + s��ℎ,e = H,e���ℎ,e + H,<��, [�	2e3	s�		 (12) 
 

where hsy is the yoke height and Ryi is the yoke interior radius. 

D.   Flux density of the rotor 

The flux density of the rotor has to be calculated for 8 

poles, since we are dealing with the half of the machine. Fig.6 

shows one rotor pole with V-shape flux-barriers that are filled 

with magnets. The iron piece between two flux-barriers is 

called “flux-guide” (green area in Fig.6).  

 
Fig.6 Motor general schematic and flux paths 

Each rotor pole is divided into two zones (z =1, 2) and the 

rotor flux densities are modeled by the flux-guide mean path. 

At the flux-guide boundaries, the magnetic flux is assumed to 

be aligned in the same direction as the flux-guide mean path 

(Fig.7a). Nbf is the number of flux barriers. The flux is defined 

as ^�z,fg,pol�	where fg is the flux-guide number (fg ∈ {1, +x�}), 

and pol is the pole number (DBA ∈ {1,8}). For the flux-guide 

between poles (fg =1), (13) and (14) are written: 
 ^cVq��,�,z;:� = 	^UV��,�z;:� + ^UV��,�,z;:Q��+	^{|k��,�,z;:Q��

 
 	−^{|q��,�,z;:Q��

 
(13) 

 ^cVk��,�,z;:� = 	^c|��,�,z;:� + ^c|��,�,z;:Q�� +	^cVq��,�,z;:�
 (14) 

 

with pol = 1 if pol-1= 8. For flux-guides between flux-barriers 

(fg	∈	{2, Nbf}), (15) and (16) are written with	} ∈ {1,2}: 
 ^cVq�~,cV,z;:� =	^UV�~,cV,z;:� − �2 − }�^{|q�~,cVQ�,z;:�

 
 +�2 − }�	^{|k�~,cV,z;:�+�} − 1�	^{|k�~,cVQ�,z;:�

 
 −�} − 1�^{|q�~,cV,z;:�

 

(15) 

 ^cVk�~,cV,z;:� =	^3|�cVQ�,z;:� − ^3|�cV,z;:� + ^c|�~,cV,z;:� 
 −^c|�~,cVQ�,z;:� +	^cVq�~,cV,z;:�

 
(16) 

 

where ^cVq 	, ^cVk are the boundary fluxes of the rotor flux-

guides. ^{|q , ^{|kare the boundary fluxes of the exterior iron 

bridges.  ^3| and ^UV are the fluxes of the interior iron bridge 

and the airgap respectively. ^c| is the flux crossing the flux-

barrier. 

 
 

Fig.7 Flux density mean path in a rotor flux-guide (a). Local saturation near 

the exterior iron bridge (b) 

The boundary flux densities are then given by (17) - (20) 
 

HcVq��,�,z;:� = ^cVq��,�,z;:�
2	RcVq�1� = 	HcVq��,�,z;:Q��

 (17) 

 HcVk��,�,z;:� = ^cVk��,�,z;:�2	RcVk�1� = 	HcVk��,�,z;:Q�� (18) 

 

HcVq�~,cV,z;:� = ^cVq�~,cV,z;:�
	RcVq��E� (19) 

 

HcVk�~,cV,z;:� = ^cVk�~,cV,z;:�	RcVk��E� (20) 

 

where RcVq  and RcVk  are the boundary widths of the flux-

guides. A linear interpolation is used between the boundary 

flux densities in order to compute the interior flux densities of 

each flux-guide. 

The iron bridges are generally saturated. Hence, the mmf 

drop of the rotor flux-guide near the iron bridge is higher than 

other areas. To take into account this local saturation 

phenomenon, the area near the exterior iron bridges is 
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modeled separately (Fig.7b). We assume a linear variation of 

the flux density between two bridges in the θ-axis (Bx(θ)). The 

boundary flux density of the flux-guide Bfgf and the average 

value of the airgap flux density Bagavg are used to calculate an 

average value of the flux-guide flux density in the y-axis: 
 He = HUVI�J + HcVq2  (21) 

 

Thus, for the electrical angle between θ2(i) and θ1(i+1) the 

flux-guide local saturation flux density is given by: 
 

 H:;�U:YIZ��� = 	iH����� + He� (22) 

E.   Equations of the global system 

The motor general scheme is shown in Fig.6. The magnets 

are inserted in the V-shape flux-barriers and are surrounded by 

air from both sides. The model considers the non-linearity of 

the ferromagnetic material. The electrical angular position θ is 

discretized from 0 to 360° along the airgap. Ampere’s theorem 

is written on five contours (C1 to C5) and expressed by (23) to 

(27), respectively. 
 �UV���	=<;<��� −	�UV��!%�	=<;<��!%� + hC,��� − hC,��!%� + hCp��� 

 −hCp��!%� +������ −�����!%� = 0 
(23) 

 

�UV���	=<;<��� −	�UV��!%�	=<;<��!%� − � ��3|��,z;:�	ℎ3|����cVQ�
���  

 +hC,��� − hC,��!%� + hCp��� − hCp��!%� +������ 
 −�����!%� = 0 

(24) 

 −�U��~,P|,z;:�	Rc|�P|� + �−1�z;: 	�z��~,P|,z;:�	Rz��P|� +hCp�~,P|,z;:� = 0 
(25) 

 −�3|�P|,z;:�	ℎ3|�P|� + �U��~,P|,z;:�	Rc|�P|� = 0 (26) 
 �U��~,P|,z;:�	Rc|�P|� − �U��~,P|,z;:�Rc|�P|� + hCp�~,P|,z;:� = 0 (27) 
 

where nb is the number of the flux-barriers varying from 1 to 

Nbf . H, w and h are respectively the magnetic field, the width 

and the height. The subscripts pm, fb, ib, a1 and a2 represent 

the permanent magnet, the flux-barrier, the interior iron bridge 

and the air next to the magnet sides, respectively. Ats and Atr 

are the mmf drop of the stator path (tooth + yoke) and the rotor 

path respectively. The above equations are completed with 

(28) that express the flux conservation law in the airgap. 
 < HUV >	= 0 (28) 
 

Equations (23) and (24) are not valid for the exterior iron 

bridge angular positions. The model above the exterior iron 

bridges is given in the next section (III-F). 

The flux of the interior iron bridges is calculated by applying 

the flux conservation law in the central iron piece and between 

the flux-barriers for	DBA ∈ {1,8}. Central iron piece:  

���−1�z;:^z��~,�|c,z;:� + ^cU��~,�|c,z;:� + ^cU��~,�|c,z;:���
~�� 	 
 +^UV��,�|cW�,z;:� + ^{|k��,�|c,z;:� − ^{|q��,�|c,z;:� +	^3|��|c� = 0	 

(29) 

 

Between two flux-barriers: �E ∈ {2, +x�} 
��	


 �−1�z;:^z��~,cVQ�,z;:� + ^U��~,cVQ�,z;:�+^U��~,cVQ�,z;:� + ^UV�~,cV,z;:�−�−1�z;:^z��~,cV,z;:� − ^U��~,cV,z;:� − ^U��~,cV,z;:���
�	�

~��  

 +^{|k��,cV,z;:� + ^{|k��,cVQ�,z;:� − ^{|q��,cVQ�,z;:�
 

 −^{|q��,cV,z;:� − ^3|�cV� + ^3|�cVQ�� = 0 

(30) 

 

It is worth mentioning that (29) and (30) take into account 

the alternating magnetic orientation of the permanent magnet 

among poles.  

F.   Flux density of the exterior iron bridge 

To complete the global system, the airgap flux density 

above the exterior iron bridge has to be computed. The flux 

conservation law (31) and Ampere’s theorem (32) are used on 

the iron bridge as shown in Fig.8. The mmf drop in the stator 

iron is included when applying Ampere’s theorem.  

HUV��3� = 	 ℎ{|2p;< 	∆� �H{|��3� − H{|��3W���	 
 1	 ≤ 	8	 ≤ 	9 + 1 

(31) 

 2p;<T �{|�����
�� 	?� + HUV����g% 	=<;<��� 		− HUV����g% =<;<���� + hC,���� −hC,���� +������ −������� 		= 0						 

 2	 ≤ 	8	 ≤ 	9 + 2 

(32) 

 

where (n+2) is the electrical angular span of the iron bridge. 

Rrot is the rotor radius and heb is the height of the exterior iron 

bridge. Equation (32) is completed with the boundary value 

Bag(θ1) . The airgap flux density above the iron bridge is then 

deduced by (31). 

 
Fig.8 Exterior iron bridge: Ampere’s theorem and flux conservation law 

G.   Performance calculation  

The airgap flux density is used to calculate the stator phase 

flux linkages (^a, ^b, ^c). The slot leakage flux is added to 

obtain the total flux linked by the stator coils. Equation (33) 

gives the flux linkage of phase-A. For the other phases it is 

obtained by replacing the subscript A by B and C. 

^U = +�,+�z 	+,	�2,3�T HUV���?�����
����

�
��� + 	^,<�q 	 (33) 

 

where �
W	and �
Q are the center angular position of the coils 

A+ and A- (Fig.2), m is the number of coils per phase per 

electrical period, Ncs and Ncp are the number of circuits in 
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series and in parallel respectively, L is the stack length The d-

q axis currents (id, iq) and flux linkages (^�, ^�) are then 

computed using Park’s transformation. The average torque 

(Tavg), the power factor (PF) and the voltage (V) are computed 

at 4 static positions for an accurate estimation [15]. They are 

expressed by (34), (35) and (36) respectively. 
 �U�V = 3D2 �^� 	8� −	^�8�� (34) 
 �� = 	  B7 �CF9Q��−^�/^�� − CF9Q��8�/8��� (35) 
 ¢ = £i^�� + ^�� (36) 

III.   FINITE ELEMENT COMPARISON 

A 2D finite element model of the studied motor is created 

and its results are compared with the results of the analytical 

model. The first motor geometry (M1) is reported in the 

APPENDIX. At first, the magnetomotive force (mmf) is 

verified and the airgap flux density is shown for two pairs of 

current values and current angles (α). Then, the flux density of 

the stator teeth is shown and the flux density of the rotor flux-

guides and exterior iron bridges are reported. Finally, the 

comparison of the average torque, the power factor and the 

voltage is conducted for M1 and another geometry M2 in order 

to verify the robustness of the analytical model.  

The studied motors have 2 V-shape flux-barriers filled with 

ferrite magnets and rotate at 500 rpm.  

A.   Magnetomotive force 

In order to verify the validity of the magnetomotive force 

model (1) and the stator permeance function (3), the system 

formed by (23) and (28) was solved under linear conditions 

with a passive rotor disc. Thus, the terms hC,���	and hCp��� do 

not exist. Fig.9 shows the airgap flux density for a current 

value of 43A (rms) and a current angle of 0°.  

 
Fig.9 Airgap flux density under linear conditions and passive rotor iron disc 

In this particular configuration, the airgap flux density is 

the image of the mmf since no Ampere-turns are consumed in 

the motor’s iron parts. The analytical model (AM) reproduces 

almost the exact shape of the Finite Element Analysis (FEA) 

result. This validates the mmf and the stator saliency models 

for the non-overlapping concentrated tooth winding. 

B.   Airgap flux density 

The airgap flux density of the motor M1 is obtained by 

resolving the equation system (23) to (28). A comparison 

between the analytical model and the finite element model is 

made. The airgap flux density is given for two current values, 

28A (Fig.10) and 43A (Fig.11) with a current angle α of 

10°elec. The analytical model gives satisfactory results and is 

accurate for both current values at two saturation levels of the 

ferromagnetic material (lower saturation at 28A and higher 

saturation at 43A). 

 
Fig.10 Comparison of the airgap flux density between the AM and the FEA 

(Irms=28A, α =10°elec) 

 
Fig.11 Comparison of the airgap flux density between the AM and the FEA 

(Irms=43A, α=10°elec) 

C.   Flux density of the stator teeth 

The developed model of the stator teeth that takes into 

consideration the airgap flux density and the slot tangential 

leakage flux (section II-C) is computed and compared to the 

results of the FEA.  

 
Fig.12 Comparison of the stator teeth flux density between the AM and the 

FEA (Irms=43A, α=10°elec) 

The comparison is carried out for a current of 43A and a 

current angle of 10°elec. Since only half of the motor is 

modeled, the number of teeth is 9. Fig.12 shows the flux 

density of the 9 teeth along the tooth height. The analytical 

model shows a good concordance with the finite element 

results. 

AM FEA 



D.   Flux density of the exterior iron bridge 

Each rotor barrier has two exterior iron bridges. Their flux 

densities are obtained by the system of equations (32). For a 

current value of 43A (rms) and a current angle of 10°elec, the 

comparison of the exterior iron bridges flux density of motor 

M1 between the AM and the FEA is given in Fig.13.  

 
Fig.13 Comparison of the exterior iron bridges flux densities between the AM 

and the FEA (Irms=43A, α=10°elec) 

Fig.13 shows a good agreement between the AM and the 

FEA results. The flux density of the iron bridges can reach 

high saturation levels and causes the peaks observed in the 

AM. Despite these local peaks, the airgap flux density given in 

Fig.11, reflects the saturation of the motor and shows very 

good results when compared to the FEA. 

E.   Flux density of the rotor 

The motor M1 has 2 flux barriers therefore it has 2 flux-

guides per pole. Fig.14 shows the flux density of the flux-

guides for the first pole. It was computed along the mean flux 

path of the flux-guide, with a current of 43A (rms) and a 

current angle of 10°elec. The x-axis represents the length of 

the flux-guide. 

 
Fig.14 Comparison of the flux density of the rotor flux-guides for the 1st pole 

between the AM and the FEA (Irms=43A, α=10°elec) 

The analytical model shows good results when compared to 

the finite element model. The local variations of the flux 

density along the flux-guide shown in the FEA are close to the 

linear approximation of the analytical model. 

F.   Average torque 

The average torque is computed for the motor M1 at two 

current levels: 28A and 43A. Another motor geometry is 

added to the comparison. The motor M2 has the same exterior 

dimensions as M1 but differs in its rotor parameters (Fig.1). 

The barriers parameters of both motors are given in per unit 

and reported in the APPENDIX. Tavg of M2 is also computed 

for a current of 28 A and 43A (rms). Fig.15 shows the 

comparison of the AM and the FEA for the two motor 

structures. It can be seen that the curves are very close at all 

current levels for the two structures. The discrepancy between 

the two models at the maximum average torque is given in 

TABLE I and is around 2% (for the two current values) which 

confirms the accuracy of the analytical model. 

 
Fig.15 Comparison of the average torque between the AM and the FEA for 

two motor structures 
 

TABLE I 

 COMPARISON BETWEEN AM AND FEA AT MAXIMUM AVERAGE TORQUE 

 M1 M2 

Current rms (A) 28 43 28 43 

AM: Tavg (Nm) 104.4 163.4 128 192.8 

FEA: Tavg (Nm) 102.1 160.2 128.6 194.5 

Discrepancy % 2.2 2 0.4 0.9 

G.   Power factor 

The power factor (PF) is also computed for the two motors 

under the same torque conditions. The analytical model curves 

and the finite element curves show good agreement. Fig.16 

shows the PF versus the current angle. 

 
Fig.16 Comparison of the power factor between the AM and the FEA for two 

motor structures 

At maximum average torque, the difference between the 

two models remains acceptable. For instance, at 43A the PF of 

M1 is 0.48 (AM) and 0.49 (FEA). For M2 it is 0.7 (AM) and 

0.71 (FEA). 

H.   Voltage  

The two motors rotate at 500 rpm. Fig.17 shows the results 

for the voltage curves computed with the analytical and finite 

element models.  
 

 
Fig.17 Comparison of the voltage between the AM and the FEA for two motor 

structures 



TABLE II shows the discrepancy between the two models 

at the current angle that corresponds to the maximum average 

torque. It is less than 5% which confirms the validity of the 

analytical model. 
 

TABLE II 

COMPARISON OF VOLTAGE BETWEEN AM AND FEA AT 

MAXIMUM AVERAGE TORQUE 

 M1 M2 

Current rms (A) 28 43 28 43 

AM: Voltage (V) 152.1 193.2 130.5 156 

FEA: Voltage (V) 146.1 184.4 130.2 154.7 

Discrepancy % 4.1 4.7 0.2 0.8 

I.   Computational time 

In order to obtain accurate values of the average torque, the 

PF and the voltage, 4 static computations are needed [15]. The 

analytical and the finite element models are computed using 

Intel® Core™ i7-4600U CPU @2.10 GHz 2.70GHz with 

16GB RAM. The finite element model has about 20000 nodes 

and about 40000 elements (Fig.18). The average 

computational time of one calculation step is 3.1s for the AM 

and 17s for the FEA. This makes the analytical model about 5 

times faster than the finite element model. 

 

 
Fig.18 FEA mesh of half of the 18/16 structure 

IV.   EXPERIMENTAL VALIDATION 

In order to validate the analytical model, a prototype motor 

has been built and the experimental results were compared to 

the analytical ones.  

A.   Experimental setup 

The prototype specifications are given in the APPENDIX. 

The stator and rotor laminations of the prototype are shown in 

Fig.19. The assembled motor is given in Fig.20. The 

experimental setup with the prototype motor, the load motor 

and the motor drive are shown in Fig.21. 

 

 
Fig.19 Stator and rotor laminations of the prototype 

 
Fig.20 Assembled prototype motor 

 
 

 
Fig.21 Experimental setup 

B.   Experimental results 

The results of the average torque the power factor and the 

voltage are plotted for three current values: 12 A (Fig.22), 

17 A (Fig.23) and 26 A (Fig.24). 
 

 
Fig.22 Validation tests - Irms = 12 A 

 

 
Fig.23 Validation tests - Irms = 17 A 
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Fig.24 Validation tests - Irms = 26 A 

The discrepancy at the maximum average torque between 

the tests and the analytical results is 12.24% at 12 A, 11.76% 

at 17 A and 7.7% at 26A. Similar results can be found for the 

voltage for which the discrepancy at low current angle is 

10.7% at 12 A, 8.76% at 17 A and 3.3% at 26 A. This 

difference between the prototype and the analytical model 

suggests a higher saturation levels in the steel sheet that can be 

caused by the manufacturing process especially when cutting 

the barriers.  

The results of the power factor computed by the analytical 

model match those obtained during the tests. The discrepancy 

is below 3%. This validates the calculation of the tangential 

leakage flux which directly affects the power factor by the 

mean of the slot leakage inductance. 

The non-linear analytical model has been experimentally 

validated. It is able to deliver accurate results which make it 

suitable for motor design. Thus, it can be used in a multi-

physics design and optimization procedure. 

V.   CONCLUSION   

This paper presented a detailed analytical model for a 

saturated multi-V-shape IPM with non-overlapping 

concentrated winding. The proposed model took into 

consideration the evolution of the flux density along the height 

of the stator teeth with the tangential slot leakage flux. The 

saturation in the rotor flux-guide is modeled and the local 

saturation in the area near the exterior iron bridges is included 

for a more accurate computation of the airgap flux density. 

The analytical model was compared to a 2D finite element 

model. The results of the flux density in the different parts of 

the motor showed a very good agreement with the finite 

element analysis. The curves of the average torque, the power 

factor and the voltage for two motor structures showed also 

good agreement with the finite element model. 

A prototype motor has been manufactured and used to 

experimentally validate the non-linear analytical model. The 

tests showed that the analytical model is capable of giving 

accurate results of the motor performance. 

The analytical model is about 5 times faster than the finite 

element model and gives accurate results. Thus, in future 

work, it will be used for the electromagnetic calculation in a 

multi-physics optimization routine. 

VI.   APPENDIX  

MOTOR SPECIFICATIONS 

 M1 M2 Prototype 

Stator exterior radius (mm) 130 130 130 

Axial length (mm) 200  200 200 

Barriers width (pu) 1  1.3 1.3 

Barriers tilt angle (pu) 1  0.1 0.1 

Barriers opening angle (pu) 1  1.5 1.5 

Number of turns per coil (pu) 1 1 1.5 
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