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Abstract

We investigate TRTH tick-by-tick data on three exchanges (Paris, London and Frankfurt)

and on a five-year span. A simple algorithm helps the synchronization of the trades and quotes

data, enhancing the basic procedure. The analysis of the performance of this algorithm turns out

to be a a forensic tool assessing the quality of the database: significant technical changes affecting

the exchanges are tracked through the data. Moreover, the choices made when reconstructing

order flows have consequences on the quantitative models that are calibrated afterwards on such

data. Finally, this order flow reconstruction provides a refined look at the Lee-Ready procedure

and its optimal lags. Findings are in line with both financial reasoning and the analysis of an

illustrative Poisson model.

Keywords: Limit order book ; order flow ; trades and quotes matching ; trade signature ;

Lee-Ready algorithm ; model calibration.

1 Introduction

The development of high-frequency financial markets produces a huge amount of data every day.

After the studies of monthly prices of wool in the first part of the 20th century (reported by

Mandelbrot (1963)), the daily indicators (open, high, low, close,...) commonly used in the 1980s

and 1990s, intraday data and even (very) high-frequency data is now a common object of study for

quantitative finance modelling by both academics and practitioners. However, there is currently

no large public diffusion of complete and transparent data by the exchanges, and to our knowledge

there is no plan for such data sharing. Because they want to protect the identity of the market

participants, exchanges are reluctant to release very detailed data. Even anonymous versions of

such data might not be easily found, and, in any case, even less detailed/coarse/aggregated data is

often available to academics at a non-negligible price.
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The basic database available to most researchers is thus the tick-by-tick “trades and quotes”

database, which reports the anonymous transactions and updates of aggregated quotes as they

happen during the trading days. These are (supposedly exhaustive) snapshots of the state of the

limit order book, but they do not detail the messages that trigger the transitions from one state to

another. Researchers have therefore devised procedures and algorithms to infer some characteristics

of these messages, by tackling for example the signature problem, which aims at determining if a

given transaction has been initiated by the buying or the selling party. In this matter, the seminal

work by Lee & Ready (1991) is still a current object of study (see e.g. Easley et al. (2016) for a

very recent contribution).

Recent developments in market microstructure however focus on a more detailed point of view,

in which the characteristics of each order are to be studied in order to get a better grasp of the

dynamics of the limit order books. Two examples of such works include limit order book modelling

(see e.g. Cont et al. (2010), Muni Toke (2015), Huang et al. (2015) among many others) or order

flow modelling with Hawkes processes (see references in Section 6).

This work deals with the reconstruction of a detailed order flow from a standard “trades” and

“quotes” database. This exercise would be extremely simple and straightforward if the databases

were perfect, i.e. if they never missed an update, if their timestamps were accurate to an infinite

precision, and if all their sources were perfectly synchronized. As this is obviously not the case, the

reconstruction of the order flow needs some adapted algorithms.

In Section 2, we describe the database available, and in Section 3 we detail the difficulties

encountered when trying to synchronize the “trades” and “quotes” sources, and the consequences

on the matching procedure. We propose a matching procedure that significantly improves the basic

reasoning. For the purpose of illustration, this section presents results on stocks traded in Paris

in 2010 and 2011, but more extensive results are provided in Section 4, in which the matching

procedures are tested on a 5-year time window for three different exchanges (Paris - Euronext,

London and Frankfurt - Deutsche Börse). It is shown that the proposed matching significantly

improves the performance of the order flow reconstruction. Very interestingly, these tests reveals

that technical changes that affected these exchanges during these periods leave profound marks on

the tick-by-tick data, even after several steps of transformation and formatting by the exchanges

and data vendors. In Section 5, we use our order flow reconstruction to contribute to the assessment

of the Lee-Ready algorithm of trade signature. Because we have exactly matched trades to their

consequences in the order book, we know their “true” sign and can assess the performance of the Lee-

Ready procedure. We show that one should not recommend an absolute lag value for the Lee-Ready

procedure, as the optimal lag is time-dependent. Moreover, the study of the algorithm performance

is informative on some events affecting the exchanges and even a high-level operation such as trade

signature on aggregated data reveals technical changes affecting data production. Finally, Section

6 illustrates how the choices made when reconstructing the order flow can potentially impact the
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calibration of quantitative models on the reconstructed samples, underlining the importance of the

proposed procedure.

2 Description of the data

We use the Thomson-Reuters Tick History (TRTH) database in the form available at the Chair of

Quantitative Finance in CentraleSupélec, Paris, France. This database gives for a large spectrum of

stocks and futures all the reported trades and all the updates of the quotes of the limit order book,

up to a given number of limits (usually 5 or 10 depending on the date and stock studied). The

TRTH database identifies financial products by their (unique) Reuters Instrument Code (RIC). For

the sake of illustration, ’LAGA.PA’ denotes the stock Lagardère traded in Paris, ’BARC.L’ stands

for Barclays traded in London, ’FEIZ9’ is the December 2009 futures on the 3-month Euribor, etc.

The version hosted by CentraleSupélec spans roughly five years of data between 2008 and 2013,

with several gaps.

The basic extraction1 from the database gives us for any given product and trading day two

files2. The first one, which will be called “trades” file, lists all the recorded trades (price and volume)

with a timestamp in milliseconds. A flag field is also available, which is used for a basic filtering of

the trades : all “normal” trades are kept (the ones part of the continuous double auction), while

specific reports are discarded (trades flagged as “off the book”). After this filtering step a “trades”

file has thus three fields : “timestamp”, “price” and “quantity”. The second one, which will be

called “quotes” file, lists all the updates (price and volume) of the number of shares standing in

the order book at the five or ten best limits around the spread. A “quotes” file has thus five fields

: “timestamp”, “side”, “level”, “price” and “quantity”.

Table 1 show the structure of the “trades” file on an actual extract of the database for the stock

LAGA.PA on January 28th, 2010. The “trades” file illustrated in Table 1 is straightforward to

timestamp price quantity

35977.101 27.54 180
35987.244 27.545 200
35987.244 27.55 47
35987.244 27.55 129
35987.247 27.55 100

Table 1: Extract from the “trades” file for the stock LAGA.PA on January 28th, 2015

read. First line of Table 1 means that at time 35977.101 (in seconds, i.e. 9:59:37.101 a.m.), there

has been a transaction of 180 shares at price 27.54 EUR. In other words, each line of the “trades”

1Basic extraction is done by a BNP Paribas-developed script which we do not control. This step does not alter
the data, it only translates data from a binary format to a more readable compressed csv format.

2Some files can be made available to academic researchers upon request.
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file can be translated into a market order that triggers a transaction. However, the “trades” file

gives explicitly the price and the volume of a given market order, but does not say if it was a buy

or a sell market order: we do not know the aggressor in microstructure terms, i.e. the last party

to enter the deal and to therefore trigger a trade. This will be addressed in Section 5.

Table 2 show the structure of the “quotes” file on an actual extract of the database for the

stock LAGA.PA on January 28th, 2010. The penultimate line of Table 2 means, by comparing

timestamp side level price quantity

36003.97 A 3 27.585 697
36003.97 A 3 27.585 177
36004.067 A 3 27.59 391
36004.067 A 4 27.595 311
36004.067 A 5 27.6 427
36004.067 A 6 27.605 1688
36004.067 A 7 27.61 586
36004.067 A 8 27.615 677
36004.067 A 9 27.62 1999
36004.067 A 10 27.625 568
36004.613 A 6 27.605 2315
36005.314 B 1 27.55 6829

Table 2: Extract from the “quotes” file for the stock LAGA.PA on January 28th, 2015

it to the sixth line from the top, that there has been a increase of the offered volume (new limit

order) at time 10:00:04.613 at price 27.605 EUR of size 2315-1688=627. The second line of Table

2 means, by comparing to the first line of the extract, that there has been a decrease of the offered

volume (cancellation of a standing limit order) at time 10:00:03.97 at price 27.585 EUR of size

697-177=520.

In short, our data is tick-by-tick data in the sense that all event modifying the order book are

supposed to be individually reported, and aggregated in the sense that we do not have access to the

granularity of the messages/orders but to the aggregated volume of the sizes of the orders standing

in the limit order book.

3 Reconstruction of the order flow

Our goal is to reconstruct the precise order flow, i.e. the complete sequence of market orders, limit

orders and cancellations along with their price and volume that lead to the generation of given

“trades” and “quotes” files. The general algorithm for the determination of the order flow would

be straightforward if the database were perfectly coherent, but inconsistencies exist, mainly because

of the non-synchronization of the timestamps of the trades and quotes files, and maybe because of

probable inaccuracies in the data building process.
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3.1 Sample description

For the purpose of illustration while presenting the construction of the algorithm, we randomly se-

lect on our database seven liquid stocks from the CAC 40 (Air Liquide AIRP.PA, Alstom ALSO.PA,

BNP Paribas BNPP.PA, Bouygues BOUY.PA, Carrefour CARR.PA, Electricité de France EDF.PA,

Lagardère LAGA.PA). For each stock we extract from the database the “quotes” and “trades” files

as described above from January 17th, 2011. Please note that this sample is selected for illustration

only, and that Section 4 will provide more detailed results, for more stocks and an extensive range

of dates.

3.2 Parsing the “quotes” file

We start with an empty structure of 2N pairs “price”-“quantity” representing the state of the order

book, i.e. the number of share available at the N best bid and ask, and their price. (N = 5 or

10 limits are usually available, depending on the RIC and trading day). We scan line by line the

“quotes” file. The reading of the first lines allow us to initialize the state of the order book. Each

following line is an update of a given volume and price: in a first approach, each line is thus a

new limit order (increase of the number of shares available at a given price), or a cancellation of

an existing limit order (decrease of the number of shares available at a given price), as in the two

examples provided with Table 2.

When parsing the “quotes” file, one has to be cautious of “shifts”. For example, if a limit order

is submitted within the spread or at a price within the current N best quotes where no previous

limit order were standing, then it creates a new level, and all subsequent levels are re-numbered.

This gives multiple updates messages in the “quotes” file that are not actual orders. An example is

provided in Table 3. The first ten lines describe the current state of the order book. The eleventh

line shows that a new ask limit order with size 66 is submitted inside the spread at price 27.52 EUR.

Then the nine following lines do not describe any limit order, but simply update the level numbering

(the new level 2 is the level 1, and so on). When parsing these lines, the available volume at level

n is to be compared to the previous volume at level n− 1, in order to track potential changes.

Since we observe a fixed finite number of prices N (usually equal to 10), shifts may make some

information disappear: in table 3 for example, the fact that 1638 shares are available at price 27.59

on the ask side is lost at the update because of a left shift of this side of the book. By a reciprocal

mechanism, a right shift of the ask side (or a left shift of the bid side) may bring new information

to light, that is not to be interpreted as a new order. In table 4 below for example, the last line

stating that 598 shares are available at 27.095 on the tenth limit of the bid is not a new limit order

— despite being a new information — because this price was not monitored before.

When the whole “quotes” file is parsed, we have a sequence of limit orders and cancellations —

no market orders yet — with their timestamp to the millisecond, side, level, price and volume.
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timestamp side level price quantity

34819.37 A 1 27.54 326
34819.37 A 2 27.545 530
34819.37 A 3 27.55 989
34819.37 A 4 27.555 318
34819.37 A 5 27.56 79
34819.37 A 6 27.565 275
34819.37 A 7 27.57 468
34819.37 A 8 27.58 100
34819.37 A 9 27.585 612
34819.37 A 10 27.59 1638
34819.37 A 1 27.52 66
34819.37 A 2 27.54 326
34819.37 A 3 27.545 530
34819.37 A 4 27.55 989
34819.37 A 5 27.555 318
34819.37 A 6 27.56 79
34819.37 A 7 27.565 275
34819.37 A 8 27.57 468
34819.37 A 9 27.58 100
34819.37 A 10 27.585 612

Table 3: “Shift” of quotes due to a limit submitted at a price where no previous limit order was
standing, inside the spread in this example. Extract from the “quotes” file for LAGA.PA on January
28th, 2010.
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3.3 Parsing the “trades” file in the perfect case

The second step of the order flow reconstruction deals with the parsing of the “trades” file. If

everything were perfectly recorded, then each line of the “trades” file should represent a market

order, and at the exact same timestamp, we should see in the “quotes” file a decrease of the

quantity at the same price and with the same volume. In other words, each line of the “trades”

file should match a cancel order of the same volume, at the same price and timestamp in the order

flow resulting from the parsing of the “quotes” file. An example of this perfect case is documented

in Table 4. After parsing the extract of the “quotes” file in Table 4, we would have the following

timestamp price quantity

32472.252 27.32 267

timestamp side level price quantity

32472.086 B 1 27.32 267
32472.086 B 2 27.31 500
32472.086 B 3 27.29 585
32472.086 B 4 27.285 127
32472.086 B 5 27.27 500
32472.086 B 6 27.2 300
32472.086 B 7 27.16 500
32472.086 B 8 27.155 200
32472.086 B 9 27.15 1750
32472.086 B 10 27.1 223
32472.086 B 2 27.31 710
32472.252 B 1 27.31 710
32472.252 B 2 27.29 585
32472.252 B 3 27.285 127
32472.252 B 4 27.27 500
32472.252 B 5 27.2 300
32472.252 B 6 27.16 500
32472.252 B 7 27.155 200
32472.252 B 8 27.15 1750
32472.252 B 9 27.1 223
32472.252 B 10 27.095 598

Table 4: Perfect match between the “trades” and “quotes” files. The line of the “trades” extract
(top table) is perfectly matched with the same timestamp in the extract of the “quotes” file (bottom
table). Stock LAGA.PA on January 28th, 2010.

order flow :

32472.086 LIMIT B 2 27.31 210

32472.252 CANCEL B 1 27.32 267
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But after parsing the “trades” file, we conclude that the update at time 32472.252 is not a cancel-

lation, but the result of a market order. We thus change the order flow to :

32472.086 LIMIT B 2 27.31 210

32472.252 MARKET B 1 27.32 267

3.4 Basic approach of trade matching in the general case

The perfect case described above is however extremely rarely observed. On our 7-stock 1-day

illustrative sample, the perfect case occurs at a frequency lower than 0.001 (but one should refrain

from generalizing this figure, as Section 4 will show that matching results are strongly exchange

and time dependent). The cause of this situation is that the clock used to timestamp the “trades”

and “quotes” files are not synchronised. Therefore, it is very rare to exactly match a corresponding

market order read in the “trades” file to a cancellation read in the “quotes” file. Most of the time,

the transaction is recorded in the “trades” file and the updates are published in the “quotes” file

with a few milliseconds lag.

Therefore in a first approach of trade matching, when we parse the “trades” file and look for

a matching cancellation in our order flow constructed from the “quotes” file, with the exact same

price and volume, we look not only at the exact transaction timestamp, but within −δ and +δ

seconds around this transaction timestamp. In the event of multiple matches possible, we choose

the one which minimizes the timestamp difference. This procedure will called “Matching 1” from

now on.

Figure 1 plots the proportion of trade left unmatched after the Matching 1 procedure has been

applied to the sample. It appears that the performance of the matching is similar for all stocks.

As expected, when δ increases, the matching performance improves, but unexpectedly it reaches

a plateau for all stocks for δ ≈ 150 − 200 ms. Beyond this value, increasing δ has no effect of

the performance, and the Matching 1 procedure leaves unmatched between roughly 5− 20% of the

trades reported in the trades file, in this illustrative sample.

For a more precise view on this phenomenon, we plot in Figure 2 the empirical distribution of

the measured time lags ∆τ = τq − τt where τt is the time stamp of a trade in the “trades” file, and

τq the time stamp of its matched modification in the “quotes” file. This distribution has a mainly

positive support, indicating that the updates of the “quotes” files are most of the time following

the report of the transaction in the “trades” file. Furthermore, all the empirical densities drop to 0

around 150 ms, indicating that it is rare to match an order more that 150 ms later in the “quotes”

file.

3.5 Enhanced approach of trade matching

The previous matching procedure leaves quite a large number of unmatched transactions. It is

indeed quite frequent that consecutive lines in the “trades” file lead to only one update in the
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Figure 1: Proportion of trades left unmatched by Matching 1. All trades reported in the database
on Jan. 17th, 2011 between 09:05 and 17:20 are considered for matching.

−0.05 0.00 0.05 0.10 0.15 0.20 0.25

0
5

10
15

20
25

Timestamps lag distribution for matching 1

Timestamp difference (quotes file update delay)

D
en

si
ty

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ●
● ●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

●

●

●

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ●●●●●●●●●●●●●●●●●

●●●●
●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●●●●●●●●●●●●●●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●●

AIRP.PA
ALSO.PA
BNPP.PA
BOUY.PA
CARR.PA
EDF.PA
LAGA.PA

Figure 2: Empirical density of the time lag ∆τ between a transaction recorded in the “trades” file
and its matching cancellation in the “quotes” file with the “Matching 1” procedure with δ = 0.4.
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“quotes” files. The common explanation for this phenomenon is that the exchange issues one

message for each pending limit order that is (partially) matched by an incoming market order. In

this case, one has to aggregate consecutive lines of the “trades” file at the same price to find the

corresponding cancellation in the “quotes” file. This is illustrated in Table 5. The result of the

timestamp price quantity

32951.412 27.45 300
32951.412 27.45 182

timestamp side level price quantity

32951.419 A 1 27.45 482
32951.419 A 2 27.455 730
32951.419 A 3 27.465 200
32951.419 A 4 27.47 200
32951.419 A 5 27.475 200
32951.419 A 6 27.48 279
32951.419 A 7 27.485 1813
32951.419 A 8 27.495 529
32951.419 A 9 27.5 3030
32951.419 A 10 27.505 200
32951.419 A 1 27.455 730

Table 5: Aggregation of two lines of the “trades” file (top table) to match the updates of the
“quotes” file (bottom table). Stock LAGA.PA on January 28th, 2010

parsing of the extract of the “quotes” file in Table 5 is the cancel order (CANCEL, 32951.419, A,

1, 27.45, 482). After parsing the “quotes” file, we conclude that it is in fact the recording with a 7

milliseconds delay of a market order that was recorded in the “trades” file as two transactions.

The difficulty is that there is no simple rule to make this procedure automatic, since all market

orders at the same timestamp do not necessarily have to be aggregated to match the “quotes” file.

In order to tackle these difficulties, we enhance the matching procedure: when parsing the “trades”

file, we group consecutive lines (transactions) with the same price and the same timestamp (for now

; see below) into a batch. Then for each constructed batch, we test the matching of all its possible

divisions into partitions of consecutive lines, and keep as our solution the matching that matches

the highest number of lines of the original “trades” file. For example, when parsing a “trades” file,

if we find three transactions at the same timestamp, as follows (synthetic example, not real data):

timestamp price quantity

36000.000 20.00 100

36000.000 20.00 50

36000.000 20.00 200

then in addition to the matching of these three lines consecutively, we will also test the matching
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Figure 3: Proportion of trades left unmatched by Matching 2. All trades reported in the database
on Jan. 17th, 2011 between 09:05 and 17:20 are considered for matching. In this example, δ = 0.4.

the following of the arrangements of the transactions :

timestamp price quantity

36000.000 20.00 150

36000.000 20.00 200

timestamp price quantity

36000.000 20.00 100

36000.000 20.00 250

timestamp price quantity

36000.000 20.00 350

To illustrate the performance increase due to this enhancement, Figure 3 plots the fraction

of trades left unmatched by this Matching 2 procedure as a function of Nb, the maximum size

allowed for a single batch. When Nb = 1 (first point on the left), the matching is identical to

the Matching 1 procedure (δ = 0.4 in the example plotted). As expected, when Nb increases, the

matching is improved : on our sample, a minimum of 12% (LAGA.PA) and up to 33% (BNPP.PA)

of previously unmatched trades are now matched to the limit order book, which for BNPP.PA or
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AIRP.PA represents more than 4% of the total transactions. Note however that on this sample

increasing the size of the batch above 5 or 6 lines does not have any significant impact on the

performance.

Among the orders that are still left unmatched by Matching 2, another difficulty is identified

by a careful observation of data files : market orders that do not have exactly the same timestamp

sometimes have to be aggregated to match the “quotes” file. This is illustrated in Table 6. In

timestamp price quantity

33095.296 27.51 100
33095.296 27.51 202
33095.296 27.51 303
33095.296 27.51 486
33095.296 27.51 334
33095.296 27.535 210
33095.299 27.535 140

timestamp side level price quantity

33046.84 A 1 27.535 3951
[. . . ]

33085.836 B 1 27.51 2264
33095.297 B 1 27.51 839
33095.31 A 1 27.535 3601

Table 6: Aggregation of lines of the “trades” file with different time stamps (top table) to match
the updates of the “quotes” file (bottom table). Stock LAGA.PA on January 28th, 2010.

Table 6, the five first line of the extract of the “trades” file have to be aggregated to match the

order (33095.297, CANCEL, B, 1, 27.51, 1425), with a 1 millisecond time lag. But the last two

orders, although with two different timestamps separated with 3 milliseconds have to be aggregated

to match the order (CANCEL, A, A, 27.535, 350), reported with a 11 milliseconds delay from one

order, and 14 milliseconds delay from the other.

In order to track these special cases, we enhance the Matching 2 procedure described above by

grouping into the same batch lines that have a time stamp close to the first time stamp read, but not

necessarily equal. The parameter measuring the maximum allowed time lag of a single batch will

be denoted δb. To illustrate the performance increase due to this enhancement, Figure 4 plots the

fraction of trades left unmatched by this Matching 3 procedure as a function of δb. In this sample

it appears that the transactions that are to be aggregated have a very close time stamp, and that

the typical time lag to be considered is 2-3 ms. For higher values of δb no matching improvements

is observed. The improvement of Matching 3 allows to match between 3% (ALSO.PA, BOUY.PA,

EDF.PA) to more that 10% of the previously unmatched trades (CARR.PA, BNPP.PA), except

for LAGA.PA whose performance is not improved. However, this improvements represent in any

case less than 1% of the total transactions observed.

12
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Table 7 summarizes the performances of the matching procedures described above. In short, on

Matching 1 Matching 2 Matching 3

AIRP.PA 83.11% 87.63% 88.75%

ALSO.PA 88.21% 89.78% 90.15%

BNPP.PA 87.81% 91.85% 92.67%

BOUY.PA 85.07% 87.90% 88.22%

CARR.PA 89.15% 92.11% 93.03%

EDF.PA 90.99% 92.14% 92.41%

LAGA.PA 96.89% 97.30% 97.30%

Table 7: Percentages of transactions for the “trades” file matched by the different matching proce-
dures described in the text

this 7-stock sample, our detailed algorithm allows in average the matching of roughly 92% of the

trades reported in the “trades” file, which is an average improvement of 3% of the total transactions

from the standard Matching 1 procedure. It is important to keep in mind that this small 1-day

sample and the associated results are only illustrative of the method, detailed here to make the

matching procedure easy to understand. Detailed results are provided in Section 4 et sq., showing

that for some stocks and dates the enhanced matching (Matching 3) is crucial.

3.6 Sources of unmatched trades

Several other difficulties might be treated by further enhancing the above matching procedure, but

at probable high cost with marginal enhancement. A manual observation of the files show that

some of the orders that remain unmatched truly appear “out of bound”, with quantities or prices

that are not at all observed in the limit order book. For many unmatched orders however, only a

small volume discrepancy prevents a matching: even if the price is equal to the best bid and we

observe cancellations at the best bid, we cannot exactly equate their volumes, no matter how we

aggregate the information. In this case, no exact matching can be obtained.

We can only speculate about the sources of these roughly 10% of trades in average that are

not matched. The most obvious explanation would be that the reported transactions are executed

against hidden liquidity, which is allowed by many exchanges and on Euronext Paris takes the form

of “iceberg” orders. Only a fraction of the size of an iceberg order is displayed on the order book (for

example assume 100 shares are displayed alone at the best quote out of a full size of 1000). When a

market order occurs and eats part of this liquidity (let us say 50 shares), the quotes are updated as

usual (and we observe a decrease of 50 shares, which is easily matched). But when a market order

eats more than the displayed quantity (let us say 125 shares), then it is executed against the first

100 shares, which are immediately replaced by 100 previously hidden shares, and the last 25 shares

are executed against the newly displayed quantity. If there is one update for this single market

14
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Figure 5: Empirical density distributions of the sizes (left, in log-log scale) and the timestamps
(right) of the unmatched trades, compared to the matched ones. In this example, Matching 3 is
used for the stock BNPP.PA on the whole month of January 2011.

order, then the final observation is an decrease of 25 shares. That would explain the fact precise

quantities fail to match despite the observations of trades and corresponding cancellations at the

same price. Another explanation would be that some lines report transactions that occurred outside

of the limit order book and therefore they have no effect on the “quotes” file. The inaccuracies

here would be in the “trades” files, since such trades are supposed to be flagged as “off the book”.

For the sake of completeness, Figure 5 plots the empirical density distributions of the sizes

and the timestamps of the unmatched trades, which are the only two information we have on

these transactions. On these figures we observe that unmatched trades occur all day, and that the

density of their timestamp is similar to the one of the unmatched trades, following a well-known

U-shaped pattern indicating a daily seasonality. Therefore we cannot link unmatched trades to

specific periods of the day.

However, we observe that the sizes of the unmatched orders are significantly larger than the sizes

of matched orders (a Kolmogorov-Smirnov test confirms this observation). This may be in line with

both previous assumptions. As for hidden liquidity, large market orders are more likely to fully eat

the displayed chunk of an iceberg order, and therefore trigger liquidity that prevents the exact size

matching. This is also coherent with “off the book transactions”, since one reason to trade outside

the book might be to trade larger volumes. Finally, this finding about size might suggest that these

orders could eventually be matched by the aggregation of several quotes modifications. A manual

parsing of the files does not reveal systematic examples of this behaviour, but this eventuality
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Figure 6: Performance of the basic and enhanced matching algorithms for the stock BNPP.PA
(left) and ACCP.PA (right) from Jan, 1st, 2008 to June, 30th, 2013, with gaps.

should not be completely ruled out yet.

4 Empirical results for order flow reconstruction

In this section we present extensive results of our matching algorithm for multiple stocks and

trading days.

4.1 Evolution of the performance through time – Data quality

In this section we test our algorithms on several European exchanges (Euronext - Paris Stock

Exchange, London Stock Exchange, Deutsche Börse - Frankfurt Stock Exchange) on the whole

range available in our database, from January 2008 to June 2013, with a large gap between June

2008 and March 2009.

Results for the stocks BNP.PA (BNP Paribas) and ACCP.PA (Accor Group), both components

of the CAC 40, are presented for the basic matching (Matching 1, δ = 0.4) and the enhanced

matching (Matching 3, δ = 0.4, δb = 0.005, Nb = 9) on Figure 6. The first general observation is that

on the most part of the 5-year span of the database, the improvement due to the enhanced matching

procedure is very significant. Four global periods are easily identified. From Wednesday January

2nd, 2008 to Tuesday September 30th, 2009 (included), the basic matching can place roughly 45% of

market orders in the book, while the performance of the enhanced matching is roughly 70%3. Note

3These performances might be improved by tuning the parameters, but this is not the aim of this section.
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that our database has a large gap of missing data in this period. On Wednesday October, 1st, 2009,

the performance of the basic matching suddenly jumps to roughly 55% and keeps this level until

Friday June 12th, 2010 (included), while in this period the performance of the enhanced matching

stays constant. On Monday June 14th, 2010, the performances of both matching algorithms jump

to roughly 90%, and keep this level until Friday November 12th, 2010. During this five months,

the performance of the basic algorithm is very close to the performance of the enhanced one. On

Monday November 15th, 2010, however, the performance of the basic matching drops to roughly

85% while our enhanced algorithm remains at roughly 90%. This observation remains valid until

the end of the sample (June 2013).

It is very interesting to observe that all the three above dates are also ruptures for the stock

ACCP.PA. They are therefore to be interpreted as exchange-related events. On October 1st, 2009,

Euronext made its “Universal Trading Platform - Market Data” its primary data feed for European

markets4. We may conjecture that this change has been translated (through the data vendor

building the database) into a significant improvement for the database. On June 14th, 2010,

Euronext significantly improved the way it disseminates the best bid and offer quotes through its

Universal Trading Platform5, there again we may conjecture that this is the cause of a significant

improvement of the quality of the historical tick data. Finally, a precise cause for the observed

drop for Matching 1 on November 15th, 2010 is less clear to conjecture, but more elements will be

provided in Section 5.

On Figure 7, we present a similar plot for two others exchanges, the London Stock Exchange

(stock PSON.L, Pearson Group, component of the Footsie) and the Frankfurt Stock Exchange -

Deutsche Börse (stock BMWG.DE, BMW AG, component of the DAX). Several observations can

be made. Firstly, these plots also display obvious ruptures in the matching process, i.e. in the

quality of the database. For PSON.L, the basic matching with δ = 0.4 is nearly perfect for the

major part of the database, starting March 2009. In 2008 however, this basic matching barely

matches 1/3 of the orders even with larger parameters (δ = 1). This demonstrates the usefulness

of our algorithm, even for exchanges it was not designed for, since our enhanced matching is able

to match roughly 90− 95% of the trades even in 2008. Due to a gap in our data, we are not able

to exactly pinpoint the date of the quality change of the database, although we can conjecture,

following the Euronext case above, that the “Market Data Optimisation 2009” project, that was

designed in particular to improve data feeds and was precisely implemented during this period6, is

a good candidate to explain this shift in performances.

As for the stock BMWG.DE, in opposition to the previous exchanges and very counter-intuitively,

we observe a sharp degradation of the matching performances through time. Until April 1st, 2010,

we observe matching performances that compare to the previous exchanges, using the same param-

4Euronext Info-flash dated September 30th, 2008
5Euronext Info-flash dated May 18th, 2010
6London Stock Exchange Service Annoucements 125/08 and 130/08, December 2008.
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Figure 7: Performance of the basic and enhanced matching algorithms for the stock PSON.L (left)
and BMWG.DE (right) from Jan, 1st, 2008 to June, 30th, 2013, with gaps. For PSON.L, δ = 1.0
in 2008, 0.4 from 2009.

eters used for the other stocks : both the basic and enhanced procedures are able to exactly match

around 90% of the transactions, the enhanced matching appearing slightly better starting from

2009. But on April 1st, 2010, the performance of the basic procedure suddenly drops to roughly

30% of the trades. The enhanced procedure is still better, but even with bigger parameters (Match-

ing 3+ uses δb = 1.0 second and δ = 2.0 seconds) its performance stays in the order of magnitude

of 50%. The same drop had been observed during the first two weeks of 2010. It is interesting

to note that April 1st, 2010 is precisely the date Deutsche Börse implemented significant changes

in its data transmission, restricted the access to un-netted market data to its “Xetra Enhanced

Broadcast Solution”7. We can conjecture that these changes were the probable cause of the shift

we observe on the quality of the database of our data vendor. Interestingly enough, the change was

initially planned on January 4th8, which reinforces our conjecture.

All in all, these contributions will hopefully be useful for researchers and practitioners dealing

with the TRTH database. For example, when using TRTH data on the Paris stock exchange, one

should probably not mix 2009 and 2010 data on a study that needs a precise identification of trades.

7Xetra Circular 151/09 dated December 2nd, 2009.
8Xetra Circular 151/09 dated December 2nd, 2009.

18



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

2000 4000 6000 8000 10000 12000

0.
80

0.
85

0.
90

0.
95

Matching performance as a fonction of the daily number of trades

Number of reported transactions

F
ra

ct
io

n 
of

 o
rd

er
s 

m
at

ch
ed

AIRP.PA

ALSO.PA

BNPP.PA

BOUY.PA

CARR.PA

EDF.PA

LAGA.PA

ACCP.PA

ALUA.PA

ISPA.AS

AXAF.PA

CAPP.PA

CAGR.PA

DANO.PA

LOIM.PA

ESSI.PA

PRTP.PA

OREP.PA

LVMH.PA

MICP.PA

FTE.PA

PERP.PA

PEUP.PA

PUBP.PA

RENA.PA

SAF.PA
SGOB.PA

SASY.PA
SCHN.PA

SOGN.PA

SOLB.BR TECF.PA

TOTF.PA

UNBP.PA

VLOF.PA

VIE.PA

SGEF.PA

VIV.PA

VLLP.PA

STM.PA

Figure 8: Proportion of matched trades as a function of the total number of reported transactions.
All trades reported in the database on Jan. 17th, 2011 between 09:05 and 17:20 are considered for
matching. In this example, δ = 0.4, Nb = 9, δb = 0.005.

4.2 Influence of the liquidity (number of transactions)

We close this section by testing the intuitive idea linking the quality of the matching to the number

of trades on the studied stock: intuitively, for heavily traded stocks, overloads of the reporting

system might occur, leading to potentially more inaccuracies in the “quotes” and “trades” files, so

that the matching performance should decrease.

A first rough cross-stocks look at a macro level does not reveal any obvious illustration of this

fact: Figure 8 plots the matching performance as a function of the number of trades reported during

one trading day for 40 different stocks mostly trade on Euronext, this sample being very close, but

not identical, to the composition of the CAC 40 index. Names of the stocks are provided on the

plot. This scatter plot provides no obvious evidence that less traded stocks have better trades

matching rates.

We can however provide a refined look at this problem by looking at matching rates for a

single stock (BNPP.PA) with the following procedure : we divide the sample (full sample restricted

to data post January 1st, 2011, to avoid the exchange effects observed in Section 4.1) into five-

minute sub-samples, and compute the matching performance on each sub-sample. We then group

the sub-samples according to the decile of the number of trades, and draw the box plots of the

performance distributions for each decile on Figure 9. At this micro level, Figure 9 clearly shows

a decreasing performance as the number of reported trades increases. A two-sided Kolmogorov-

Smirnov test indeed rejects the null hypothesis that the empirical cumulative distribution function
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Figure 9: Box plots of the empirical distribution of the matching performance as a function of the
number of trades (grouped per decile, x-axis) for the stock BNPP.PA on five-minute sub-samples.

of the performance on the least active five-minute bins is equal to the one on the most active

five-minute bins (p-value < 2.2× 10−16). On the contrary, a one-sided Kolmogorov-Smirnov leads

to the alternative hypothesis that the performance on the most active bins is significantly smaller

than the one on the least active bins (p-value < 2.2× 10−16). Using daily performances instead of

five-minutes bins does not give an obvious decrease in the boxplots, but similar results are obtained

with the Kolmogorov-Smirnov tests, although with higher p-values (1.5% and 1.2% respectively).

All in all, the naive intuition that a very high trading activity might lessen the performance of

the matching algorithm is confirmed. Furthermore, this observation is stronger at a micro (minutes)

level than at a daily level, which aggregates periods of different trading activities.

5 Assessment of the performance of trade signature

5.1 The Lee-Ready procedure

Signing a trade consists in assigning to each recorded transaction a “buy” or “sell” label, depending

on the side of the market order that initiated this transaction. A “buy” market order is matched

to liquidity (pending limit orders) on the ask side of the order book, while a “sell” market order

is matched to liquidity (pending limit orders) on the bid side of the order book. One of the first

notable algorithm for trade signing was proposed by Lee & Ready (1991). The motivation for

this work at that time was to improve the standard signing techniques that roughly fell into two

categories : the tick test, which decides whether a trade is buy or sell by comparison to adjacent
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trades (i.e. without using any quotes data); and the comparison to the current quote. Lee & Ready

(1991) observe that the current quote is often not synchronized to the trades, so they suggest based

on this empirical observation that if a quote is less that five seconds old, the trade price should be

compared to the quote 5 seconds before. This algorithm has encountered a certain success, being

regularly used or revisited in the financial literature. Among others, Ellis et al. (2000) reports

of roughly 80% of trades correctly classified by the Lee-Ready algorithm using 1996-1997 NYSE

data (the “true” sign is determined by using several data indicators, including the identity of the

trader), Theissen (2001) reports a success rate of roughly 70% using 1996 data on German DAX

and MDAX stocks (the “true” sign is determined using market maker information). More recently,

Chakrabarty et al. (2012) assess the performance of the Lee-Ready procedure by comparing its

results to a sign provided by the exchange (i.e. not using quotes data) and find on 2005 data a

misclassification by the Lee-Ready procedure of the order of magnitude of 20 to 30% (similar to

Omrane & Welch (2016) on 2005 data as well). Please note these few references have been selected

just as an illustration with various data (from 1996 to 2005), references in each of them should be

checked for further details.

By parsing the “trades” file and matching it to the “quotes” file, our reconstruction of the

order flow provides the signature of the trades as a by-product, so that we are in a position to

contribute to the assessment of the Lee-Ready signing procedure. Of course, the five seconds delay

recommended in 1991 is probably not relevant anymore more than twenty years later in a context

of high-frequency data, but the idea behind the procedure — finding the optimal lag/quote for

comparison — is still valid (see e.g. Piwowar & Wei (2006) using 1990s data or Chakrabarty et al.

(2012) using 2005 data). Therefore, we implement the Lee-Ready procedure as follows : for a trade

with transaction time τt, retrieve the best bid and ask quotes at time τq = τt + δLR; if the trade

price is strictly greater (resp. lower) than the mid-price, classify the trade as “buy” (resp. sell).

If the trade is equal to the mid-price, we left its sign undecided. Of course, we could implement

a tick test to decide this last case, and obtain the “full” Lee-Ready algorithm, but we coherently

restrict ourselves to a quote-only procedure.

5.2 Lee-Ready performance as a function of the lag

We now compare the results of the Lee-Ready procedure to the result of our own matching proce-

dure. Our signing is considered here the “reference” signing, since it fully uses the “quotes” data,

including available liquidity volumes. Orders that are not signed by our procedure are excluded

from the comparison. Obviously, and even if the use of all volume data makes our matching a very

strict procedure, our reference sign may not be the “true” sign (available on detailed order data

which we do not have in this case). But the interesting point is that even with this approximation,

the comparison with the Lee-Ready procedure gives results in line with previous results available in

the literature, and our millisecond approach allows us to provide a new refined view of the optimal
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lag problem.

Figure 10 plots the fraction of the correctly signed orders by the Lee-Ready procedure as a

function of the lag parameter δLR (ranging from −10 minutes to +10 minutes).

The first observation is that the global performance of the Lee-Ready signature compared to

our reference sign is quite good, and importantly is in line with the reported performances of the

Lee-Ready signature compared to “true” signs. On our 7-stock 1-day sample used above in Section

3, the Lee-Ready procedure correctly signs roughly 90% of the trades when using the current quotes

or a lagged quote with a small lag (a few tens or hundreds of milliseconds). When using a larger

negative lag for the signing quote, the performance drops quite fast. Between −5 and −10 seconds

lag, the signature performance is roughly 80% on our sample. The 90% performance obtained in

this sample is slightly better than what is usually reported in the financial literature, but note

that most previous works use older data and do not go below a granularity of 1 second. It is quite

intuitive that recent tick-by-tick data timestamped to the millisecond should allow for a better

signature performance.

The second observation is that, at least visually on this small sample, the lag rule does not seem

to be increasing the performance. The five second rule of 1991 is not relevant on 2011 high-frequency

data, but even very small lags slightly depreciate the performance. The third panel of Figure 10

shows the slight performance drop as the lag goes from 0 to −200 milliseconds. This would tend to

advocate for the use of contemporaneous quotes when signing trades with the Lee-Ready algorithm

on recent data, but we will provide a more detailed view on this problem in Section 5.4.

Our third observation is that this signing performance drops dramatically for δLR ∈ [0.050, 0.150]

before eventually increasing again for larger positive lags. In roughly 100 milliseconds, the signa-

ture performance drops from roughly 90% to roughly 60%. This allows us to make a clear link to

Figure 2: the time interval [0.050, 0.150] is precisely the support of the synchronization lag between

the “trades” file and the “quotes” file for our 7-stock 1-day sample under scrutiny here. Therefore

during that time interval the transactions are reflected on the quotes, and the prices changes occur,

if any, so that the quotes after that reflect the consequences of the trades, and therefore cannot be

used to sign them. In other words, Figure 10 is an illustration of the market impact of trades (see

e.g. Bouchaud et al. (2009) for a review). It is particularly interesting to see that the performance

of the Lee-Ready signing procedure actually reflects the instantaneous market impact of the trades:

immediately after the transaction, prices may move — so that the quotes are not useful to sign the

trades — but the impact gradually disappear — the performance of the signature increases slowly

for large positive δLR.

5.3 A toy model for the signature performance

We now propose a toy model that account for the shape of the performance of the Lee-Ready

signature as observed on Figure 10. Let mt be the mid-price at time t. Let us assume that the
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Figure 10: Performance of the Lee-Ready signing procedure (fraction of correctly signed orders)
as a function of the lag parameter δLR, in seconds. All three plots represent the same data, at a
different zooming level around 0.
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flows of orders that moves the mid-price are homogeneous Poisson processes : let λLC+ (resp. λM+ )

be the intensity of the limit orders and cancellations (resp. market orders) that make the mid-

price move up, and λLC− and λM− be the intensities for the same events that instantaneously trigger

downward moves of the mid-price. For simplicity, we assume that all movements of the best quotes

have a size of one tick, and that the spread is constantly equal to one tick, so that the mid-price

also moves by exactly one tick.

Let us now take a market order that is incorporated in the “quotes” file at time τq. This market

order is (has been most of the times) reported in the “trades” files at time τt = τq− δ where δ is for

now assumed to be deterministic. Furthermore, when attempting to sign this trade, the Lee-Ready

algorithm will compare it to the mid-price at time τLR = τt + δLR = τq + (δLR − δ).
Assume for now that τLR < τq, i.e. δ − δLR > 0, and that we have a buy market order. It

is straightforward to see that this buy market order will be correctly signed by the Lee-Ready

signature if and only if mτLR ≤ mτq i.e. if and only if N+ ≥ N− where N+ is the number of

events on the time interval (τLR, τq) making the mid-price move upward and N− is the number

of events making the mid-price move downward on this same time interval. Since N+ and N−

are Poisson variables, their difference is distributed according to a Skellam (or Poisson Difference)

distribution. Recall that the cumulative distribution function of the Skellam distribution with

parameters (µ1, µ2) is written :

F (n;µ1, µ2) = e−(µ1+µ2)
n∑

k=−∞

(
µ1
µ2

)k/2
Ik(2
√
µ1µ2), (1)

where Ik is the modified Bessel function of the first kind. Then the probability pb(δ, δLR) that the

buy market order considered is correctly signed by the anterior τLR mid-price is :

pb<(δ, δLR) = F (0; (λLC− + λM− )|δ − δLR|, (λLC+ + λM+ )|δ − δLR|). (2)

In the case of a sell market order, we obviously need N+ −N− ≤ 0, hence we obtain the result by

exchanging the + and − intensities:

ps<(δ, δLR) = F (0; (λLC+ + λM+ )|δ − δLR|, (λLC− + λM− )|δ − δLR|). (3)

Let us now turn to the case τq < τLR, i.e. δ−δLR < 0. Let us first assume that the market order

we consider does not change the mid-price. In this case, with the same arguments as above, a buy

(resp. sell) market order will be correctly signed if and only if mτq ≥ mτLR (resp. mτq ≤ mτLR) i.e.

if and only if N+ −N− ≤ 0 (resp. N− −N+ ≤ 0) on the time interval (τq, τLR). In short, we have

with obvious notations the probability to correctly sign non quote-changing trades with posterior
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quotes :

pb>(δ, δLR) = ps<(δ, δLR), (4)

ps>(δ, δLR) = pb<(δ, δLR). (5)

Now, if we consider a trade that changes the best quote (by assumption by exactly one tick),

we need to correct for its instantaneous impact. Therefore, with the same arguments as above, a

buy (resp. sell) market order will be correctly signed if and only if mτq ≥ mτLR (resp. mτq ≤ mτLR)

i.e. if and only if (N+ + 1) − N− ≤ 0 (resp. (N− + 1) − N+ ≤ 0) on the time interval (τq, τLR).

Therefore, in this case :

pb>,agg(δ, δLR) = F (−1; (λLC+ + λM+ )|δ − δLR|, (λLC− + λM− )|δ − δLR|), (6)

ps>,agg(δ, δLR) = F (−1; (λLC− + λM− )|δ − δLR|, (λLC+ + λM+ )|δ − δLR|). (7)

Finally, let ρagg be the fraction of (aggressive) market orders (of either side) that make the

price move (equivalently let us assume that each market order can make the mid-price move with

probability ρagg). By basic properties of Poisson processes the fraction of buy market orders is

ρ+ =
λM+

λM+ +λM−
since among market orders only buy (resp. sell) orders can make the price move up

(resp. down). Then the probability p(δ, δLR) that a trade, reported in the quotes file with a lag

δ from the “trades” file timestamp, is correctly signed by the “quotes” taken with a lag δLR from

the timestamp of the “trades” file, is computed as :

p(δ, δLR) =1(δ − δLR > 0)
[
ρ+p

b
<(δ, δLR) + (1− ρ+)ps<(δ, δLR)

]
+ 1(δ − δLR < 0)

[
(1− ρagg)

[
ρ+p

b
>(δ, δLR) + (1− ρ+)ps>(δ, δLR)

]
+ρagg

[
ρ+p

b
>,agg(δ, δLR) + (1− ρ+)ps>,agg(δ, δLR)

]]
. (8)

Finally, we can now incorporate in the model the fact that δ is a random variable with an probability

density function that should resemble the empirical densities of Figure 2. If δ is assumed to be

absolutely continuous with density fδ, then the theoretical performance of the Lee-Ready signature

using a δLR lagged-quote is:

p(δLR) =

∫
p(u, δLR)fδ(u)du. (9)

Figure 11 plots examples of these theoretical performances, illustrating how Equation (9) is

able to account for the general shape of the Lee-Ready performance as a function of the lag, as it

is observed on our sample. As this is a toy model however, based on time-homogeneous Poisson

processes that are not able to capture the features of the order flows (autocorrelation of trades

signs, trades clustering, etc.), we should not expect high fitting power when calibrated on market

data. The results for the fitting on our 7-stock 1-day sample gives nonetheless interesting results.
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Figure 11: Theoretical performance of the Lee-Ready signature in the proposed toy model, for a
deterministic δ (left) and a random δ (right). For these illustrations,λLC± = 5, λM± = 1, ρagg = 0.6
and δ = 1 (deterministic) or δ is Gaussian with parameters (1; 0.1) (random).

Figure 12 plots the results for the stock AIRP.PA (for the sake of brevity we reproduce only the

graphs for the first stock of the sample, but they are all similar). Firstly, at small time scales, the

model is able to satisfactorily reproduce the drop of the signature performance around δLR = +100

milliseconds, translating the incorporation of the trades into the quotes. Secondly, at larger time

scales, we observe that the empirical performance is globally overestimated by the model from

roughly δLR = −1 second and onwards. This might be a mark of the clustering of market events:

trades are submitted irregularly during the trading day, with burst of activities during which all

types of market events occur ; it is therefore expected that the mid-price moves more actively around

the timestamps of trades submission, decreasing the actual empirical signature performance. One

may also argue that the fact that the overestimation of the performance by the model is greater

after the trades than before is an indication that transactions trigger market activity rather than

result from it.

Remark 1. It is easy to make the model more flexible by adding a spread distribution or by

distinguishing between aggressive buy and sell orders. However, the roughness of the Poisson

hypothesis is such that these enhancements are not expected to be crucial.

5.4 Signature performance through time

To complement the previous results, we run the Lee-Ready procedure on the stock BNPP.PA

for all the trading days of the database, with lags δLR ∈ {−5,−2,−1.5,−1,−0.75,−0.5,−0.2,
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Figure 12: Empirical vs toy model performance of the Lee-Ready signature for the stock AIRP.PA.
Both left and right graphs show the same data at different time scales.

−0.15,−0.1,−0.05, 0, 0.05, 0.1} seconds. On Figure 13 we plot the (a posteriori) optimal perfor-

mance of the Lee-Ready signature as a function of the calendar dates, as well as the performance

for the representative lags −5, 0 − 1,−0.1, and 0. On the right pannel, we plot the optimal lag

(giving the optimal performance) for each of these days. The first observation is that signature

performance by the Lee-Ready algorithm are roughly constant over time, with (visually) a slight

downward trend of the optimal performance from 2008 to 2012 and a increasing slope for the last

part of the sample, but roughly always staying around 90% and above at all time The second

observation is that performances for given lags do not move in parallel. In 2008, the use of the

current quote (δLR = 0) and the use of a −5 seconds lagged quote would give similar performances,

less that 80%, while the use of the −1 second lagged quote would improve the result (in accordance

with Chakrabarty et al. (2012) on 2005 data), and the use of the 100 milliseconds lagged quote

would even be better. One therefore cannot recommend absolute values for the Lee-Ready lag,

since these quantities depend intrinsically on the database used, the exchange, the stock and the

time-window considered. From Figure 13, we can only confirm the conjecture that the more recent

the data studied, the shorter the lag should be used. On our sample, from 2011 and onwards, we

even observe that a positive δLR = +50 milliseconds is most of the times optimal to get the best

performance of the Lee-Ready signature !

Very interestingly, the graphs allow as well for some forensic analysis of the quality of the data,

as it is plausible that these variations in signature performances are marks of technical changes in

the production of the data. We observe that the performance of the signature with the current
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Figure 13: Performance of the Lee-Ready signature for the stock BNPP.PA (left) and optimal lag
for these signatures (right) as a function of the calendar date. Continuous lines are monthly moving
average of the associated quantities (±11 trading days).

quotes (δLR = 0) sharply and suddenly increases on October 5th, 2009, a date close to one we have

already identified in Section 4 as a change in data feeds on Euronext. Furthermore, this analysis

confirms that 2010 has been a year of significant changes in the production of the data, especially

between April 21st, 2010 (the first day of the sample for which δLR = 0 gives the optimal signature

performance, if we except one outlier in 2008) and November 15th, 2010 (the first day of the sample

for which δLR = +0.050 gives the optimal signature performance). These dates are also very close

to dates identified in Section 4, and interestingly, they are also the dates of the migration process

conducted by Euronext to relocate its data centre to Basildon (near London). This process started

in April, with the first tests in May, and the production migration was completed in October9. We

may conjecture that such a huge technical change is the source of our observations, either directly

or through changes that the data vendor (Reuters) would implement in response.

It is striking that a simple operation such as trade signature bears the marks of these technical

changes.

6 Potential side effects of choices of order flow reconstruction

We end this work by an illustration of the potential side effects of choices made when reconstructing

the order flow. Let us imagine the (very academic and hypothetical...) case of a trader looking to

9Euronext Info-flashes date April 21st, 2010, May 17th, 2010 and October 11th, 2010.
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calibrate on market data a Hawkes process to model the clustering behaviour of trades. Hawkes

models have been increasingly popular in finance and a vast literature is available on the subject

(see e.g. Bowsher (2007), Large (2007) for pioneering papers and Bacry et al. (2015) for a recent

review). Let us assume that our trader wants to model the counting process of market orders

(NM
t )t≥0 with an intensity λMt driven by the following equation :

λMt = λ0 +

∫ t

0
αe−β(t−s)dNM

s , (10)

i.e. to use a one-dimensional Hawkes model with a unique exponential kernel. In this model,

each market order makes the intensity increase with a jump of size α, and this effect decreases

exponentially fast with time with parameter β. The ratio α
β is interpreted as the fraction of trades

triggered by previous trades in this model, in other words as a level of “endogeneity” in the market

(Filimonov & Sornette 2012, Hardiman et al. 2013). We are aware that this is arguably a very poor

model to try on a full trading day — a single exponential kernel, i.e. a single time scale, combined

with a constant baseline intensity cannot satisfyingly model the complexity of the market, e.g.

account for daily seasonality, see Lallouache & Challet (2016) —, but we will nonetheless keep this

simple example for the sake of illustration. Our trader has two choices : the first one is to take

the “trades” file as is, each different time stamp counting for one market order ; the second one is

to precisely match each line in the “quotes” file, and in this case several lines might possibly be

merged into one quote change, i.e. one transaction. In both cases, the model can then be fitted by

numerical maximization of the log-likelihood of the model (see e.g. Muni Toke & Pomponio (2012)

and references therein).

On Figure 14, we plot the ratio evolution α
β through time for the stock PSON.L in February

and March 2008, i.e. two full trading months. The plot shows that the endogeneity ratio estimated

with the raw “trades” file is consistently greater by roughly 15% to the endogeneity ratio estimated

on a sample prepared with the matching procedure. Indeed, this result is consistent with the fact

that matching procedure groups trades with close time stamps into one market order, if this is

necessary to match the “quotes” file, while the calibration on the raw “trades” file considers these

parts of the same trade as several closely-occurring market orders, therefore increasing the apparent

clustering of transactions, hence the larger endogeneity ratio. This effect is best seen on the sample

chosen since on this stock and at these dates, Matching 3 procedure groups a significant proportion

of lines of the “trades” files, as is explicit on Figure 7.

The matching procedure also has an effect on the cancellations, since transactions are matched

against (a priori) cancellations at the best quotes. Let us now imagine that our trader were now

to model the intensity λC of the counting process of cancellations at the best quotes being excited
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Figure 14: Hawkes ratio α
β calibrated for the model (10) on the stock PSON.L in January and

February 2008 (left). Idem for model (11) (right).

by arrival of market orders (counting process NM ) as:

λCt = λ0 +

∫ t

0
αe−β(t−s)dNM

s . (11)

There again, this arguably very poor model is kept simple for the purpose of illustration. The

fitted ratio α
β in this case is plotted on Figure 14. In this case, the sample that does not match

the “trades” and “quotes” overestimates the number of cancellations at the best quotes by keeping

incorrect cancellations following trades that should be identified as the incorporation of the trades

effect in the quotes. There is thus an incorrectly high number of occurrences of the pattern “trade

then cancellation”, it is therefore not surprising to observe here again a greater ratio when fitting

without matching, that when fitting with prior matching.

7 Conclusion

We have investigated in this paper the TRTH trades and quotes database. We provide an algorithm

that helps synchronizing the two data sources and therefore allows for a “true” reconstruction of the

flow of limit orders, market orders and cancellations, even if we have only aggregated data and not

any detailed information on the trades. It turns out that the enhanced matching is very useful for

older data (2008), and still significantly better even for recent data (2013). We have provided basic

examples illustrating potential side effects of the reconstruction procedure on model calibration.
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This hopefully may be useful for the community of researchers that work on high-frequency data

but do not have access to detailed data down to the granularity of the messages sent to/from the

exchange.

This work is also a tentative of forensic analysis of financial data in the sense that we are able

to track through our tick-by-tick aggregated data fundamental technical changes that occurred

between 2009 and 2011 on the way financial exchanges (Paris, London, Frankfurt are tested here)

produce data. It is very interesting to observe that these technical changes still leave marks on our

aggregated database, even after several steps of data transformation and formatting.

As a conclusion, this work may be useful in reminding that a database, even packaged and

provided by a unique source, is not a uniform object. Therefore, despite the temptation to use

always larger sets of data in a search of statistical significance, the coherence of the sample should

be ensured foremost.
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