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Abstract

We propose a parametric model for the simulation of limit order books. We assume that

limit orders, market orders and cancellations are submitted according to point processes with

state-dependent intensities. We propose new functional forms for these intensities, as well as

new models for the placement of limit orders and cancellations. For cancellations, we introduce

the concept of “priority index” to describe the selection of orders to be cancelled in the order

book. Parameters of the model are estimated using likelihood maximization. We illustrate

the performance of the model by providing extensive simulation results, with a comparison to

empirical data and a standard Poisson reference.
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1 Introduction

The limit order book is the central structure aggregating the orders of all traders to buy and sell

shares of a given stock on an exchange. It is standard to simplify the complex diversity of financial

messages into three types of orders : limit orders are submitted with a (limit) price into the

order book, where they wait to be matched by a counterpart for a transaction ; market orders are

submitted without any price and are executed immediately ; cancellations of pending limit orders

is possible at any time. The order book can thus be viewed as a complex dual queueing system

with price and time priority rules (see Abergel et al. (2016) for an introductory book treatment).

A partial theoretical treatment of this complex random system is possible under very simplistic

assumptions, essentially assuming that the submission of limit orders, market orders and cancel-

lations are basic Poisson processes (Cont et al. 2010, Muni Toke 2015). Exact analytical results

are however limited. With appropriate scaling techniques, some limit behaviours of this complex

system can be studied, see e.g. Abergel & Jedidi (2013), Huang & Rosenbaum (2015) for a price

diffusion process, or Cont & De Larrard (2012) for a diffusion approximation of the volumes at the

best quotes.

Another branch of study of the limit order books deals with a more statistical point of view.

Smith et al. (2003) investigates the order book structure with mean field techniques. Mike & Farmer

(2008) propose an empirical model of the order book that aims at reproducing some of empirical

observations usually made on financial markets. Among other contributions, they propose a Student

model for the placement of limit orders and a three-variable model for the cancellation of pending

limit orders. The core of the submission mechanism in the order book remains however a Poisson

process. Recently, Huang et al. (2015) have proposed a model in which the intensities of submission

of limit, market orders and cancellations depend on the volume of the first limit. They are able to

show that a queueing system with these intensities is able to reproduce some empirical features of

the limit order book, such as the distribution of the first level.

In this paper we propose a general model in line with previous contributions such as Mike &

Farmer (2008), Huang et al. (2015). We do not extend or specify previous models but build directly

from the data. Our goal is to provide state-dependent intensities of submissions of limit and market

orders that can be used for the simulation of a “realistic” limit order book. We adopt the following

modelling principle : limit and market orders intensities should depend on both dimensions of the

limit order book, namely the price dimension and the volume dimension. The spread is an obvious

choice to include the price dimension in the modelling for both types of orders. The volume of

the first level is another obvious choice for market orders, while the total volume available appears

to be a good candidate for the limit orders. We define exponential forms of intensities that are

convenient for two reasons: they keep the non-negativity of intensities of point processes, and they

allow for a practical maximum-likelihood estimation. For the cancellation process, we introduce

a new “priority index” as a main modelling variable, which turns out to be very efficient. All
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proposed models are fitted on a database of 10 consecutive trading days (January 17th-28th, 2011)

for six different liquid stocks traded on the Paris stock exchange during the construction phase of

the model, then on a much longer sample (2011-2013) to test its robustness.

The rest of the paper is organized as follows. Section 2 briefly describes the data and its

preparation. Section 3 provides empirical insights on the intensity of submission of market orders

and build a convenient parametric model. Section 4 introduces a similar model for the intensities of

limit orders and provide a very flexible Gaussian mixture model for the placement of limit orders,

that is able to reproduce the multi-modality of the empirical distribution. Section 5 shows that

the “priority volume”, i.e. the volume standing in front of a pending order according to time-price

priority rules is a good candidate for the modelling of the “placement” of cancellations. Section 6

provides insights on the stability of the model across time by fitting it weekly on a two-year-and-a-

half-long sample. Finally, Section 7 develops a market simulator and provides extensive results of

simulations of our model fitted on market data. The performances of the simulations are analysed,

in particular with respect to a standard Poisson reference.

2 Data

We use data extracted from the Thomson-Reuters Tick History (TRTH) database. We randomly

select six liquid stocks from the CAC 40 index (i.e. stocks among the highest capitalizations

exchanged at the Paris Bourse) : Air Liquide (Reuters Instrument Code (RIC): AIRP.PA), Alstom

(ALSO.PA), BNP Paribas (BNPP.PA), Bouygues (BOUY.PA), Carrefour (CARR.PA), Electricite

de France (EDF.PA). These stocks represent a wide panel of liquidity for CAC 40 index: BNPP.PA

is a heavily traded stock, one of the most traded on the Paris Stock Exchange, while EDF.PA is

less actively traded and is a much smaller capitalization (EDF.PA has even since been removed

from the CAC 40 index on December 21st, 2015).

For each stock, two files can be extracted from the TRTH database, which are commonly called

the trades file and the quotes file. The quotes file is a sequence of snapshots of the limit order book,

listing all the modifications due to the processing of orders, each modification being timestamped

with a millisecond resolution. This file can be parsed to extract a preliminary order flow of limit

orders (increase of the available liquidity on a given side at a given price) and cancel orders (decrease

of available liquidity on a given side at a given price). The trades file is then parsed and matched to

the previous (preliminary) order flow to identify and convert some of the cancel orders into market

orders.

For each trading day, we keep the subset of limit orders, market orders and cancellations occur-

ring between 9:05 in the morning and 17:25 in the afternoon, i.e. we keep the whole trading day

except the first five minutes of the day, following the opening auction, and the last fives minutes

of the day preceding the closing auction. The data in these very active periods seems indeed of

a lesser quality and not always reliable. In order to build the model in Sections 3, 4 and 5, we
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keep only orders occurring on the ask side of the limit order book, and we glue the ten days of

order flows as in an artificial continuous sample. The same procedure is applied in Section 6 for

some stability testing (weekly glueing of the ask side, on a longer sample). Finally, in order to run

simulations of the model in Section 7 however, we will adopt a more practical point of view and

use both sides of the book but only one day of trading at a time to fit and test the model, without

any glueing of consecutive trading days.

As a result of this process of data preparation, we have for each stock and each period (one

trading day or glued trading days) a list of orders (the order flow) and for each order a list of

variables describing the limit order book at the time of submission : spread, volume at the best

quotes, total liquidity available at the ten best quotes. Details and performances of the data

preparation procedure can be found in Muni Toke (2016). As a final step specific to this paper,

since we are going to deal with simple point processes — for which the probability of occurrences of

simultaneous events is zero — we combine orders of the same type and the same timestamp (precise

to the millisecond) into a single order with a size equal to the sum of the sizes of the combined

orders.

Let us add a few words on the units of this data. Time is measured in seconds (with a millisecond

precision). Prices in the order book must be integer multiples of a tick size which is fixed by the

exchange. In our sample, AIRP.PA and BNPP.PA have a 0.01 EUR ticksize, while the four other

stocks have a 0.005 EUR ticksize. As for the volumes, they are numbers of shares. For ease of

computations and presentation, all volumes are normalized by a stock-dependent quantity equal

to the median of the trade size (MTS) for this stock. In order to keep this volumes integers, we

round the results to the smallest larger integer (ceiling). As a result, 0 means really no share, while

1 is a small non-zero volume. These remarks should explain the x-axis scales of the graphs of the

following sections.

Remark 1. By normalizing the volumes, we are in line with e.g. Cont et al. (2010) (normalization

using the average size of limit orders) or Huang et al. (2015) (normalization using the average

event size per limit). This normalization however leads inevitably to a loss of information. By not

normalizing the sizes, we would observe peaks in the distribution for “round” values (50, 100, 200,

etc.), as reported long ago by Challet & Stinchcombe (2001). The median trade size (MTS) we

use here for normalization is a bit finer than the average trade size (ATS) as it is less sensitive to

a few extremely high volumes that are exceptionally observed but are not the focus of this model.

To get a better grasp of the empirical distribution, one may be tempted to use smaller bin sizes,

but this will quickly make the distribution noisier, and finding the “visually optimal” binning is an

open problem.

Finally, after all these steps of data preparation, the resulting order flow can be summarized by

a few average daily statistics given in Table 1. BNPP.PA is the most traded stock of the sample,

both in number of orders and volumes. It has the smallest average spread (in ticks) and the highest
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RIC # Limit # Market # Cancel MTS Traded Volume q1 spread

AIRP.PA 136,953 4,799 128,761 64.8 527,707 4.13 2.80

ALSO.PA 116,564 6,432 106,003 135.2 1,728,357 4.95 3.65

BNPP.PA 188,272 10,140 169,262 175.8 3,609,045 5.98 2.01

BOUY.PA 78,727 3,844 72,652 154.5 1,065,902 4.57 2.93

CARR.PA 96,800 4,337 88,689 208.0 1,639,336 4.73 2.44

EDF.PA 80,422 4,168 74,202 145.1 1,098,381 5.26 2.27

Table 1: Average daily statistics describing the order flow for the six stocks considered, between
January, 17th and January, 28th, 2011. q1 is the size of the first limit of the order book, expressed
in MTS. Spread are expressed in number of ticks.
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Figure 1: Empirical distribution of the spread for two stocks, ALSO.PA (left) and EDF.PA(right).

average volume available at the best quote q1 (in MTS). ALSO.PA is the second most actively

traded stock and is singular by its large average spread. AIRP.PA, BOUY.PA, and CARR.PA are

quite comparable in activity and average values. EDF.PA is singular by its larger average volume

available at the best quote.

Quantities in Table 1 are daily averages of normalized values. To give the reader a better view

of the data, we plot on Figures 1 and 2 the empirical distribution of the spread (in EUR) and the

empirical distribution of the volume at the best quote q1 (in shares), for two stocks of our sample.

These graphs show the dominance of a few low values, and a long tail of distribution. These

observations will help assessing the performances of the models proposed in the following sections.
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Figure 2: Empirical distribution of q1 for two stocks, ALSO.PA (left) and EDF.PA(right).

3 Market orders

Let NM be the point process of submission of market orders in the limit order book and let λM be

its instantaneous intensity. Our goal is to identify a simple parametric model for λM , which should

be based on meaningful variables and be easy to estimate. We therefore identify two covariates to

model λM : the spread S and the volume at the best quote q1 (on the side of submission).

Let us first investigate the spread. Using common financial knowledge, one should expect

specific variations of the intensity as a function. Firstly, λM should be decreasing with S. Indeed,

if a trader needs to buy a share when S is equal to one tick, he cannot gain priority in the limit

order book, and therefore has to submit a buy market order to be the first to buy the best quote.

On the contrary, if the spread is large, it is sufficient to submit a buy limit order just above the

best bid quote to be the first in line for the next sell-initiated transaction.

We compute on our samples an estimator of the spread-dependent intensity of limit orders:

λ̂M (S) =
NM (S)

T (S)
, (1)

where NM (S) is the total number of market orders submitted when the spread is equal to S and

T (S) is the total time during which the spread is equal to S in the sample. As an illustration,

λ̂M (S) is plotted in Figure 3 (left panel) for one of the stocks of the sample (more results will

be given below). As expected, the intensity of submission of market orders is decreasing with

the spread. However, this decrease does not to go to zero, and even seem to increase slightly for

very large values of the spread. A plausible interpretation is that when the spread increases above

usual levels, this may indicate a highly volatile period with many orders submitted. Subsequent
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Figure 3: Left panel : Empirical λM as a function of the spread (λ̂M (S)). Right panel : Empirical
λM as a function of the spread (λ̂M (q1)). Since data may be noisy for very high values of the
parameters, the x-axes span 99% of the empirical distribution of S and 90% of the empirical
distribution of q1.

uncertainty might translate into a “rush” for liquidity maintaining λ̂M (S) above zero.

Following these empirical results, one might propose the following parametric model to express

the functional dependence of λM on S :

λM (S) = exp
(
β0 + β1 ln(S) + β11[ln(S)]2

)
. (2)

The exponential form ensure that λM remains non-negative. The quadratic argument allows the

non-monotony of λM instead of the power-law form obtain with only one term. The preference for

the logarithm of the spread instead of the spread itself is detailed in Remark 4.

Let us now turn to the second explaining variable considered here, the volume q1 of the best

quote (on the side of submission, ask for a buy market order, bid for a sell market order). We

compute on our samples an estimator of the q1-dependent intensity of limit orders:

λ̂M (q1) =
NM (q1)

T (q1)
, (3)

where NM (q1) is the total number of market orders submitted when the volume on the (same side)

best quote is equal to q1 and T (q1) is the total time during which this volume is equal to q1 in

the sample. Recall that the unit for q1 is the median of the trades sizes. Results are plotted on

Figure 3 (right panel). One observes that λM increases as q1 decreases, as expected. Indeed, when

q1 is small, the probability that the first limit vanishes increases. This is an incentive for traders to
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grab the last shares available at the current price, leading to a “rush for liquidity”. This monotony

however is justified for small values of q1 and there is no obvious reason that the intensity should

go to zero for large values of q1. Figure 3 suggests that we can use a functional dependency on q1

similar to the one suggested for the spread :

λM (q1) = exp
(
β0 + β2 ln(1 + q1) + β22[ln(1 + q1)]

2
)
. (4)

We can finally combine the two dependencies into one single model and add an potential in-

teraction term between the two covariates. We thus obtain the following parametric model for the

intensity of submission of market orders in a limit order book:

λM (t;S(t), q1(t)) = exp

[
β0 + β1 ln(S(t)) + β11[ln(S(t))]2 + β2 ln(1 + q1(t)) + β22[ln(1 + q1(t))]

2

+ β12 ln(S(t)) ln(1 + q1(t))

]
. (5)

This model can be estimated by likelihood maximization. To emphasize the dependency on the

the parameters β = (β0, β1, β11, β2, β22, β12) to be fitted, we write λM (t;S(t), q1(t)) = λM (t;β)

when dealing with the estimation. Log-likelihood LMT for the point process {NM (t), t ∈ [0, T ]} as

a function of the parameter vector β is defined as:

LMT (β) =

∫ T

0
ln
(
λM (t;β)

)
dNM

t −
∫ T

0
λM (t;β) dt. (6)

Let {tMi } be the set of arrival times of market orders in our sample, {tSi } the set of times of jumps

of the spread process S, {tq1i } the set of times of jumps of the first limit process q1. Then the

log-likelihood on the sample is numerically computed as follows:

LT (β) = β0N
M (T ) + β1

∑
tMi

lnS(tMi −) + β11
∑
tMi

[lnS(tMi −)]2

+ β2
∑
tMi

ln(1 + q1(t
M
i −)) + β22

∑
tMi

[ln(1 + q1(t
M
i −))]2 + β12

∑
tMi

lnS(tMi −) ln q1(t
M
i −)

−
∑

ti∈{tSi }∪{t
q1
i }

exp

[
β0 + β1 lnS(ti−) + β11[lnS(ti−)]2

+ β2 ln(1 + q1(ti−)) + β22[ln(1 + q1(ti−))]2 + β12 lnS(ti−) ln(1 + q1(ti−))

]
(ti − ti−1). (7)

It is then numerically maximized using the routine mle2 of the bbmle package in the R language.

Results for all the stocks of our samples are given in Table 2. For simplicity of presentation these

results are shown for the ask side only (buy market orders), but results for the bid side are similar.
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RIC β0 (std) β1 (std) β11 (std) β2 (std) β22 (std) β12 (std)

AIRP.PA -0.527 0.389 1.730 0.190 0.370 0.023 -1.080 0.091 0.203 0.014 -0.016 0.019

ALSO.PA 6.193 0.299 4.034 0.131 0.537 0.014 -1.770 0.061 0.235 0.007 -0.125 0.013

BNPP.PA 3.713 0.452 3.100 0.220 0.482 0.027 -1.463 0.058 0.160 0.003 -0.126 0.013

BOUY.PA 1.426 0.532 2.698 0.224 0.425 0.024 -0.734 0.098 0.155 0.010 0.015 0.021

CARR.PA -0.694 0.678 1.565 0.281 0.298 0.029 -0.723 0.114 0.251 0.012 0.111 0.021

EDF.PA 7.863 0.646 5.066 0.269 0.629 0.028 -1.486 0.118 0.154 0.013 -0.134 0.022

Table 2: Maximum-likelihood parameters for the intensity λM for all the stocks of our sample.

Table 2 provides the numerical values of the parameters as well as the standard deviation estimated

by the maximization routine. These standard deviations assess the quality of the fitting and verify

that all the fitted values are significant to a high-level, except for small β0’s for AIRP.PA and

CARR.PA, and small β12 (AIRP.PA and BOUY.PA). This last fact concerning β12 is not very

surprising as the joint distribution between S and q1 is quite difficult to characterize, and an

independence hypothesis between these two modelling variables might not be unreasonable for

some stocks.

We now provide several graphs to illustrate the fitting performance of the model. We first plot

the empirical intensity as a function of the spread (λ̂M (S)) and the “marginal” spread-dependent

intensity λ̃M (S) computed by our model. This “marginal” represents the dependence on the spread

when q1 is distributed as in the sample, i.e. it is computed with obvious notations as :

λ̃M (S) =
∑
q

λM (t;S, q)P(q1 = q). (8)

Similarly, we then plot for each stock the empirical intensity as a function of the level q1 (λ̂M (q1))

and the “marginal” q1-dependent intensity λ̃M (q1) computed by our model as :

λ̃M (q1) =
∑
s

λM (t; s, q1)P(S = s). (9)

Results are given on Figure 4 for the dependence on the spread and on Figure 5 for the dependence

on the volume at the best quote q1. For the sake of conciseness, we reproduce only two “rep-

resentative” stocks (see the discussion below). The “marginal” intensities allow for a synthetic

view of the modelling intensity. In order to provide the reader with the full view of the fitting,

we finally plot the spread-dependent empirical intensities given the volume q1, and symmetrically

the q1-dependent intensities given the spread S. Results are plotted on Figures 6 and 7, for two

representative stock and each time for the first five most probables occurrences of the variables.

There again, two “representative” stocks are chosen.

Let us start with Figure 4. It turns out that the marginal fitting for the spread is always good,

and even excellent for most stocks. Results for AIRP.PA, BNPP.PA, CARR.PA (not shown) are
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Figure 4: Empirical (λ̂M (S)) and model (λ̃M (S)) intensities of market orders as functions of the
spread S. Dots sizes are proportional to the empirical frequency of the spread. x-axis spans 99%
of the spread distribution.
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Figure 5: Empirical (λ̂M (q1)) and model (λ̃M (q1)) intensities of market orders as functions of the
volume of the first limit q1. Dots sizes are proportional to the empirical frequency of q1. x-axis
spans 90% of the distribution of q1.
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Figure 6: q1-conditional intensities as functions of the spread. Lines with large dots represent
empirical intensities and solid lines the fitted model intensities. Each q1 level has one color. Dots
sizes are proportional to the empirical frequency of the state (S, q1).
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all similar to BOUY.PA (left panel), showing an excellent visual fit. It seems that the model fails

to catch the full extent of the increase of λM observed for large values of the spread for some stocks

(ALSO.PA (right panel), and to a lesser extent EDF.PA (not shown)). It is however important

to recall that high-spread values are very rare events, as was observed on Figure 1. This shows

for example that the points that are less well fitted — e.g. the rightmost points of the graphs —

actually represent a very small part of the spread distribution. It is therefore perfectly normal that

the MLE estimation favours the main part of the distribution (left part of the graphs). The sizes of

the dots on the figure are proportional to the observed spread frequency to emphasize this point.

This good fitting with respect to the spread is confirmed on Figure 7 where each spread-conditional

intensity is well modelled for each stock. The results for two stocks are shown but all results are

comparable, showing a good fit for frequent events.

Continuing the analysis of the graphs, we observe on Figure 5 that the quality of the fitting

of the dependency on the volume q1 seems a bit poorer. Two stocks are shown as examples. On

the one hand, AIRP.PA (left panel) shows a quite regular decrease, with a curvature smaller than

the one proposed by the model. BOUY.PA, CARR.PA and EDF.PA (not shown) are similar. On

the other hand, ALSO.PA (right panel) and BNPP.PA (not shown) have higher intensities for

lower values of q1 and decrease faster, which the model can eventually capture. Figure 6 plots the

conditional intensity given q1. Again we show only two representative graphs for brevity. CARR.PA

(left panel) is a good fit, in which all states are well fitted (AIRP.PA and BOUY.PA are similar).

EDF.PA and ALSO.PA (not shown) are also very well fitted with a lesser quality for extreme spread

values, as expected from the discussion of Figure 4. BNPP.PA (right panel) is a good fit except

for simultaneous large spread and small volume at the best quote (S ≥ 3 ticks and q1 = 1), which

intuitively is a situation of an unusually high level of activity. Figure 6 clearly shows that larger

levels of q1 have less influence, leading to the collapsing of the conditional intensities on the same

curve. The secondary role of larger values of q1 is not surprising. There again, recall the examples

of empirical distributions of q1 given in Figure 2. The body of the distribution is clearly to the left,

leaving less weight for the higher values.

Therefore, the proposed model is overall a good fit, especially if we keep in mind that despite

their differences we have managed to propose the same functional form for the dependence on the

spread and the dependence on the volume at the best quote q1. We end this section by three

modelling remarks, opening potential future works, and then move on to modelling of limit orders.

Remark 2. The form ln(1 + q1(t)) is here preferred to ln(q1(t)) for flexibility as it allows for a

normalized volume q1 equal to zero. This is not the case in this paper since we have rounded above

normalized volumes, so that 0 is really 0, not a small volume. But the difference being marginal,

we keep the general (right-shifted) form.

Remark 3. The likelihood analysis here is a conditional likelihood analysis given S(t) and q1(t),

or a regression analysis with these explanatory variables. We discuss the modeling of limit orders
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and cancellations in the following sections, where a certain parametric model is introduced for each

order. Naturally, these models should be unified to describe the whole picture of all orders though

we do not pursuit the integration of models in this paper.

Remark 4. In the above construction of a model for the intensity, the exponential of a quadratic

form of the logarithm of the variable is selected by the AIC criterion over an exponential of a

quadratic form of the natural variable. Hence our choice that may not appear standard at first sight.

Furthermore, significance of every parameter suggests that we could introduce more explanatory

variables and select a suitable model by a certain information criterion or a sparse estimation

method. This is future work.

4 Limit orders

We now turn to the modelling of limit orders. Defining a limit order requires one dimension more

than defining a market order : its (limit) price has to be chosen upon submission. We have decided

to treat the two problems separately. In a first subsection 4.1, we deal with the point process NL

counting all limit orders (at any prices), with an instantaneous intensity λL. The distribution of

prices is assumed to be independently defined and will be discussed in the following subsection 4.2.

4.1 Modelling limit orders intensities

Similarly to what we did for market orders, we choose two variables for our modelling. The price

dimension is represented by the spread S. As for the “volume” dimension, we investigate the total

volume available in the limit order book at the side of submission (more precisely the sum of all the

liquidity available up to the tenth limit), denoted here Q10. Since λL deals with all limit orders,

Q10 appears obviously more relevant that q1 as a modelling variable.

Following our modelling principles, we propose the following model for limit orders :

λL(t;S(t), Q10(t)) = exp

[
β0 + β1 ln(S(t)) + β11[ln(S(t))]2 + β2 ln(1 +Q10) + β22[ln(1 +Q10)]

2

+ β12 ln(S(t)) ln(1 +Q10)

]
. (10)

Here, we expect the intensity λL to increase with the spread (by an argument exactly symmetric to

the one we have used in Section 3, see above). We also expect it to increase when Q10 decreases since

by an expected stability mechanism, a global drop in the available volume should be an incentive

to provide more liquidity. As mentioned before, these monotonous variations guessed by “common

financial sense” are only expected to be observed for frequent values of the modelling variables,

since (rare) extreme values of the parameter are noisy and therefore difficult to characterize.

The model defined at Equation (10) can be fitted by maximization of the likelihood. It is
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RIC β0 (std) β1 (std) β11 (std) β2 (std) β22 (std) β12 (std)

AIRP.PA 5.772 0.108 -0.028 0.031 0.048 0.004 -2.182 0.041 0.263 0.005 0.079 0.005

ALSO.PA 14.516 0.102 3.964 0.030 0.443 0.003 -2.386 0.035 0.248 0.004 -0.024 0.005

BNPP.PA 6.472 0.087 1.898 0.040 0.285 0.005 -0.645 0.018 0.101 0.001 0.084 0.004

BOUY.PA 17.042 0.128 3.090 0.041 0.296 0.004 -4.789 0.040 0.507 0.005 -0.113 0.007

CARR.PA 12.223 0.150 0.699 0.046 0.116 0.005 -4.635 0.048 0.563 0.005 0.079 0.007

EDF.PA 15.176 0.155 1.971 0.047 0.164 0.005 -4.443 0.052 0.456 0.006 -0.064 0.007

Table 3: Fitted coefficients by maximum likelihood estimation for the intensity of limit orders.

straightforward to modify the formula given at Equation (7) to obtain the log-likelihood of the

model, so we skip it for brevity. The numerical results of the maximum likelihood estimation are

given in Table 4.1. There again, standard deviations are provided to assess the quality of the fitting.

We now provide graphical illustration of the quality of the fitting of the model. One can

straightforwardly adapt Equations (8) and (9) to compute the “marginal” intensities of limit orders

with respect to the spread and Q10. These are plotted on Figures 8 and 9 where they are compared

to the empirical intensities. As for the dependence on the spread, we observe that the intensity

λ̂L(S) exhibits several shapes. There is indeed an increase for large spreads, as we expected, but

for small spread values we observe either a strong decrease (BOUY.PA, top right panel), a slower

decrease (BNPP.PA, top left panel) or an immediate (slow) increase (EDF.PA, bottom right panel).

The interesting point is that the proposed model is flexible enough to reproduce all observed shapes,

except when the empirical distribution shows a very irregular behaviour (unexpected drop for large

spreads for AIRP.PA, bottom left panel). Note that one could probably get better fits (for the eye)

with some least-squares regression techniques, but the maximum-likelihood estimation chosen here

emphasizes on the main body of the distribution, i.e. small spreads.

As for the dependence on the total volume available in the book on the side of submission Q10,

we observe that the intensity increases when the available liquidity decreases, as expected. The

model is able to reproduce this feature : AIRP.PA, ALSO.PA and EDF.PA (not shown) are similar

to BOUY.PA (right panel). Again the fitting procedure favours the main part of the distribution

(BNPP.PA, left panel), but the model is however able to grasp an increase of the intensity when

Q10 increases above average (observed on CARR.PA, not shown). Note that the empirical part of

the plot is quite noisy : this is because we have kept for coherence the binning size equal to the

median trade size (MTS), which is small compared to the order of magnitude of the whole volume

available in the limit order book.

Finally, the proposed model is once again a good fit, especially if we keep in mind that we have

managed to propose the same functional form for the limit and market orders intensity, including

both a price and a volume variable, following our modelling principle.
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Figure 8: Empirical (λ̂L(S)) and model (λ̃L(S)) intensities for limit orders as functions of the
spread S.
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Figure 9: Empirical (λ̂L(Q10)) and model (λ̃L(Q10)) intensities for limit orders as functions of the
total book volume Q10.

4.2 Modelling the placement of limit orders

Modelling the placement of limit orders can a be difficult challenge. The support of any placement

distribution is indeed state-dependent : in our model that distinguishes between three types of

orders (limit, market, cancellation), one cannot submit a sell/buy limit order below/above the

current best bid/ask. Such an order should be a market order.

With a simulation perspective, one can settle for a general distribution and then drop at the

time of simulation any non-acceptable price (see Section 7). Using this technique, Mike & Farmer

(2008) argued that the Student distribution centred around the current best quote is a good fit for

the placement of limit orders (using data for the stock AstraZeneca on the London Stock Exchange).

In the same spirit, we will use continuous distributions on R to model the placement. 0 will be

the current best quote. We consider the placement distribution as a function on the continuous

variable price, and then integrate this density to obtain the discrete probability distribution of

the placement of limit orders on the grid of integers numbers of ticksize. If πL : R → R+ is the

continuous density of placement of limit orders and δ is the ticksize, then
∫ (n+0.5)δ
(n−0.5)δ π

L(u) du is the

probability that the limit order is submitted at price p = nδ.

We propose here two models. The first one is a generalized version of the Mike & Farmer (2008)

proposition in which the limit orders are placed according to a location-scale version of the Student
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RIC π1 π2 π3 µ1 µ2 µ3 σ1 σ2 σ3
AIRP.PA 0.211 0.309 0.480 0.050 2.751 4.849 0.793 1.249 2.903

ALSO.PA 0.191 0.288 0.522 0.064 3.056 4.702 0.726 1.659 3.371

BNPP.PA 0.319 0.304 0.378 0.192 1.905 4.570 0.719 0.935 2.733

BOUY.PA 0.193 0.295 0.512 0.004 2.886 4.583 0.704 1.418 3.145

CARR.PA 0.235 0.283 0.483 0.159 2.405 4.560 0.768 1.214 2.695

EDF.PA 0.242 0.269 0.489 0.024 2.558 4.400 0.695 1.158 2.865

Table 4: Fitted parameters for the normal mixture model for the placement of limit orders. Pa-
rameters of the Gaussian distributions are expressed in number of ticksizes.

distribution:

πL(p;µ, σ, ν) =
Γ(ν+1

2 )

Γ(ν2 )
√
πνσ

(
1 +

1

ν

(
x− µ
σ

)2
)− ν+1

2

. (11)

This model is interesting as it has only three parameters. However empirical data suggests that

for some of the stocks we have studied placement of limit orders is often multi-modal. To our

knowledge this observation has not been made before. One indeed observes a peak of submission

at the best quote, and then another mode inside the book, a few ticks away from the best quote.

In order to reproduce this complex distribution we use a mixture of G = 3 normal distributions:

πL(p;G,µ,σ,π) =
G∑
i=1

πiφ(p;µi, σi), (12)

where φ(•;µ, σ) is the density of the Gaussian distribution with parameters (µ, σ).

The normal mixture model is fitted with the mclust package of the R language. The fitted

parameters are given in Table 4. For all stocks, the fitted mixture model exhibits the same compo-

nents. One Gaussian is centred on the best quote and very thin (standard deviation of two-third

of a ticksize). This distribution accounts for roughly 20-25% of the submitted limit orders, and

helps modelling the peak of limit orders submitted at the best quote. Two other Gaussian distri-

butions are further away in the book (roughly 2-3 and 4-5 ticks away from the best quote), and

help modelling the second mode observed and the more passive limit orders.

In order to illustrate the quality of the fitting obtained, Figure 10 plots the model distribution

compared to the empirical one for two stocks of the sample. AIRP.PA, ALSO.PA, CARR.PA and

EDF.PA (not shown) are all similar to BOUY.PA (left panel). They all show a bimodal empirical

distribution that is very well grasped by the mixture model. BNPP.PA (right panel) is singular in

that it is mono-modal but with a large hump on the right side, that is also well fitted by the mixture

model. The fitted location-scale Student is given for comparison. This mono-modal distribution

is in our sample centred on the maximum inside the book, a few ticks away from the best. As a

result, it underestimates on the one hand the number of orders submitted at the best quote, but
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Figure 10: Empirical and model distribution of the placement of limit orders.

on the other hand it overestimates the number of aggressive orders submitted inside the spread.

Remark 5. We observe that the multi-modality of the placement of limit orders strongly depends

on the observed spread. It is usually stronger for small spreads, and disappears for larger spread.

This can be interpreted as follows. When the spread is smaller than usual, the market participants

anticipate its widening, thus providing liquidity a few ticks inside the book besides the usual

liquidity provided at the best quote. Hence the appearance of two peaks in the distribution on

the placement of limit orders, and the strong multi-modality. When the spread is large, market

participants anticipate its tightening, thus providing more liquidity close to the best quote, hence

the disappearance of the multi-modality.

It is easy to generalize our model given at Equation (12) to a spread-dependent model, by

splitting our sample according to the observed spread and then fitting spread-dependent parameters:

πL(p, S;G,µ,σ,π) =

G∑
i=1

πi(S)φ(p;µi(S), σi(S)). (13)

This would increase the number of parameters of the model but allow for a better flexibility in the

modelling of the placement of limit orders. With the simulation of Section 7 in mind and given the

good performances of the proposed fit, we stick, at least for now, to the unconditional model.

18



5 Cancellations of pending orders

Cancellations are different from the two previous types of orders studied (limit and market) because

they are not a message to buy or sell some shares on the market, but a message to cancel a previous

message to buy or sell some shares. For example, we cannot model the placement of cancellations as

we did for the limit orders, since we can only cancel orders at prices where some orders are actually

standing in the book. We thus adopt a completely different type of modelling for cancellations.

The first choice of modelling is that we do not model the intensity of submission of cancellation,

but we model instead the lifetime of pending limit orders. One reason for this choice is that

cancellations ensures the stability of the system. Cancellation process is intimately linked to the

limit submission process. By defining an autonomous state-dependent cancellation process, we

introduce a risk of instability in the model. The choice of the lifetime of orders as the main variable

is thus a safe choice. Its drawback however is that it is a very difficult parameter to estimate.

Our trades and quotes database does not provide a unique identifier for each order, thus when

we observe a cancellation we do no know for sure which limit order has been cancelled. We can

narrow it down by selecting only limit orders with the volume and price equal to the one cancelled,

but this identification does not necessarily return a unique match. Finally, even if we perform

the above algorithm with some selection rules, the obtained distribution is not necessarily easy to

characterize. As an example, on the stock AIRP.PA on January 17th, 2011, the above algorithm

gives an empirical distribution of lifetimes with median of 5.2 seconds, and a mean of 89.7 seconds.

We choose to compute the average lifetime of an order so that a basic order book model with

Poisson intensities would have an average total liquidity in the book equal to the empirical observa-

tion. More precisely, Muni Toke (2015) shows that in an order book with Poisson arrival of market

orders with intensity λM ∈ R+ and average size σM , Poisson arrival of limit orders with intensity

λL ∈ R+ and average size σL, and a lifetime of pending limit orders exponentially distributed with

parameter θ−1, the expected total liquidity Q available in the book is

Q = σM

ν
q
− δ +

δq
ν

1−q

2F1

(
δ,− ν

1−q , 1 + δ, 1− q
)
 , (14)

where ν = λL

θ , δ = λM

θ , q = σM

σL
and 2F1 is the hypergeometric function. It is easy to numerically

optimize θ so that Q given in the equation above is equal to its empirical counterpart.

The second choice of modelling deals with the “placement” of the cancellations. Mike & Farmer

(2008) has proposed a three-variable model to determine the placement of cancellations, based on

the distance to the best quote, the total liquidity available and the imbalance. We here propose a

new efficient one-parameter model to choose which pending order is to be cancelled. We introduce

as modelling variable the “priority index”. We firstly define the “priority volume” of a limit order

as the sum of all the sizes of pending limit orders standing ahead in the queue, i.e. at a better price
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or at the same price but with time priority. If a limit order is the oldest order standing at the best

quote, then it will be executed first when a market order arrives, its priority volume is thus zero.

One may expect that the probability to be cancelled decreases with the priority volume, but that

would be ignoring the fact that most of the activity occurs around the best quotes.

Let us now define the “priority index” ξ of a pending limit order as the ratio of the “priority

volume” defined above over the total volume available in the book (on the same side). Obviously

ξ ∈ [0, 1]. ξ can be used as a indicator of placement of cancellations inside the book. As for the

empirical estimation of ξ however, our data does not allow for the unique tracking of individual

orders. We know the price of an order, but not exactly where the order is inside the sub-queue of

all orders at this price (at least not without further algorithmic development). We thus compute

the priority volume as the total liquidity available at better prices plus half the liquidity available

at the same price, i.e. we act as if the cancelled order were in the middle of the queue. This allows

for an easy estimation of ξ on our data. It turns out that the distribution of cancellations as a

function of ξ is remarkably smooth. Some empirical results are given below. We propose to model

it with a scaled truncated power law distribution, i.e. we have the following model for the density

of the cancellation “placement” πC : [0, 1]→ R+:

πC(ξ) =
σ(α+ 1)

(1 + σ)α+1 − 1
(1 + σξ)α. (15)

The log-likelihood of a sample (ξ1, . . . , ξN ) is straightforwardly computed as

L(α, σ) = N log

(
σ(α+ 1)

(1 + σ)α+1 − 1

)
+ α

N∑
i=1

log(1 + σξi), (16)

which can be numerically maximized using the mle2 routine of the bbmle package. Numerical

results of the maximum-likelihood estimation are given in Table 5. Illustrations of the quality of

RIC α (std) σ (std)

AIRP.PA -1.378 0.008 6.760 0.095

ALSO.PA -0.876 0.005 13.101 0.241

BNPP.PA -1.256 0.004 16.014 0.132

BOUY.PA -1.561 0.017 4.412 0.098

CARR.PA -1.775 0.015 4.684 0.078

EDF.PA -1.694 0.013 5.749 0.090

Table 5: Parameters for the placement of cancellations obtained by numerical minimization of the
loglikelihood.

the fit are provided on Figure 11. Table and figures all show an excellent agreement between the

model and the empirical data for all the stocks studied. Two graphs are shown for brevity. All
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Figure 11: Empirical and model distribution of the placement of cancellations as a function of the
priority index.

results not shown (ALSO.PA, BOUY.PA, CARR.PA, EDF.PA) are similar to AIRP.PA (left panel).

BNPP.PA (right panel) is the worst visual fit of all 6 stocks tested (see also Section 6).

6 Stability of the fitted parameters across time

This work is primarily an exploratory investigation on the potential of a parametric model to

reproduce the dynamics of an order book. Before going on with the simulation results of our model

in Section 7, we report for the sake of completeness the results of the weekly calibration of the

model on two and a half years of data, from January 2011 to June 2013, representing 128 trading

weeks (two trading weeks with only three full trading days or less have been discarded) for the

stock ACCP.PA (Accor Group, hotel industry, component of the CAC40). All results have been

obtained after three numerical log-likelihood maximization with different starting points to avoid

local extrema.

Results for the parameters of the intensities of market orders and limit orders are reported on

Figure 12. These results confirms the exploratory work of Sections 3 and 4. All parameters are

stable on the whole sample. Second-order parameters for both intensities lie in the range [−1, 1],

and first order parameters in the range [−10, 10]. Fitted parameters for market orders intensities

are very stable across time. Confidence intervals are very thin for all parameters and therefore not

reported for clarity. For market orders, β1, β11, β2 and β12 are very stable and keep a constant sign

through the sample, with a few exceptions. β22 is mostly positive until the first quarter of 2012,
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Figure 12: Second-order (left panels) and first-order (right panels) fitted parameters for the inten-
sities of market orders (top panels) and limit orders (bottom panels) across time.
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Figure 13: Fitted parameters of the Gaussian mixture model for the placement of limit orders
across time.

and but mostly negative and more volatile afterwards. For limit orders, the same observations

apply for the spread dependency, β1 and β11, being stable and keeping a constant sign across the

whole two-year sample. Situation is less clear for the Q10 dependency, for which parameters are

more volatile. All in all, this confirms the quality of the modelling of the spread dependency, and

a greater variability for the dependence on the quantities, confirming the observations of Section 3

and 4.

Figure 13 plots the evolution across time of the fitted parameters for the placement of limit

orders with the Gaussian mixture model described in Section 4.2. The three components of the

placement distribution identified in Section 4.2 are clearly identified and stable across the two-year-

and-a-half sample : a thin Gaussian at the best quote (in black), a larger one roughly two ticks
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Figure 14: Fitted parameters of the cancellation model for the placement of limit orders.

inside the book, and a even larger one roughly five ticks inside the book. The component describing

the placement of limit orders at the best quote is very stable, accounting for roughly 30% of the

total distribution. For about one third of the weeks in 2011, mostly in the first quarter, it appears

that two distributions seem sufficient to describe the placement of limit orders inside the book : in

these weeks, the third component is large, far away in the book, and accounting for a very small

part of the submitted limit orders. However on most of the sample, all components have similar

weights accounting each for roughly one third of the orders.

Finally, the evolution of the fitted parameters for the cancellations are plotted in figure 14. It

turns out that the exponent parameter α is quite stable across time, taking values in the interval

[−3,−1], except for four months in mid-2012 (June to September) during which the likelihood

maximization gives a negative exponent two orders of magnitude below, associated with a scale

parameter σ close to zero. Visual examinations of the fitting shows that in this period, the empirical

distribution of the priority index of cancelled orders has a quite large drop for very small abscissas,

i.e. that the intensity of cancellation at or close to the best quote is lower. As a consequence,

the placement distribution has a maximum away from zero. In this context, it is natural that the

performance of our single-exponent monotonous model distribution is degraded. This observation

opens future directions to improve this model.

7 A market simulator with state-dependent order flows

Finally, this last section shows the benefits of our model by fitting it to daily empirical data

and simulating it. Simulating a “realistic” limit order book is a quite complex task given the

many parameters involved and the somewhat complex time-priority execution mechanism to be
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implemented. Several results have previously been obtained, for example in Gatheral & Oomen

(2010), Muni Toke (2011). Some key elements for basic simulation can be found in Abergel et al.

(2016).

7.1 Market simulator

We build a market simulator with four agents. Two “liquidity providers” submit (and cancel) limit

orders, one on the ask side and another on the bid side. Two “liquidity takers” submit market

orders, one on the ask side and another on the bid side. We choose to simulate here a symmetric

limit order book, i.e. both providers share the same parameters, and both takers share the same

parameters.

Liquidity providers submit limit orders with the intensity λL(S,Q10) defined in Equation (10).

The distribution of the sizes of the limit orders is exponentially distributed with parameters 1
σ̂L

where σ̂L is the median of the empirical sizes of limit orders. The distribution of the prices of the

limit orders is defined by our Gaussian mixture model given by Equation (12).

Liquidity takers submit market orders with the intensity λM (S, q1) defined in Equation (5).

The distribution of the sizes of the limit orders is exponentially distributed with parameters 1
σ̂M

where σ̂M is the median of the empirical sizes of market orders.

Finally, cancellations in the order book occur with an intensity proportional to the available

liquidity, i.e. λC = Qθ where Q is the total number of orders and θ is determined by the procedure

detailed in Section 5 and Equation (14). When a cancellation occurs, a random priority index ξ̄ is

drawn according to the distribution with density πC given at Equation (15). This distribution is

easy to simulate given its inverse cumulative distribution function (ΠC)−1:

(ΠC)−1(x) =
1

σ

[[(
(1 + σ)α+1 − 1

)
x+ 1

] 1
α+1 − 1

]
. (17)

The order cancelled is then the first one that has a priority index greater or equal to ξ̄.

7.2 Poisson simulator reference

To provide a reference simulation, we simulate a standard Poisson model. This reference model

has the same agents, the same distributions of sizes of limit and market orders, and the same

cancellation intensity proportional to the liquidity available. However, all agents submit their orders

according to a homogeneous Poisson process with a constant intensity fitted by MLE estimation.

The placement of limit orders is done according to the location-scale Student distribution given

in Equation (11). Finally, the cancellation is purely zero-intelligence in the sense that the chosen

order when a cancellation occurs is uniformly selected in the book.
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Figure 15: Distribution of the spread in the model, compared to the empirical distribution and the
one produced by a Poisson model. Data: January 18th, 20011.

7.3 Simulation results

We fit our model for each stock of our sample, and using one day of trading. Since we simulate

a symmetric limit order book, we aggregate bid and ask order flows in one sample for the fitting.

We have made the full simulation of our model for each of the first two days of the sample, but

for the sake of brevity, we show in this section the results for only one day, January 18th, 2011.

Results for the other day tested are exactly similar. The sample used for fitting is smaller than the

full one (ten days) used in the previous sections to derive the functional shapes of the intensities

and distributions of our model. This may lead to potentially noisier estimates of our model, but

for practical purposes one trading day is a convenient unit of time, hence this choice.

The simulator (and the reference Poisson simulator) is then run to produce exactly one day of

trading data (i.e. the same length as the fitting sample). We then analyse the simulated data and

compare it to the empirical observations.

One of the most important feature is that our model is able to reproduce very well the empirical

distribution of the spread. Figure 15 shows two representative stocks, but all stocks tested show

good fittings for the simulated distribution of our model, while the Poisson reference is not relevant

at all. The spread in the Poisson model is most of the time equal to 1 tick, and the support of the

whole Poisson simulated distribution is mostly [1, 4] ticks, rarely larger, i.e. the book is “stuck”.

One can understand this result by observing that most of the limit orders are placed at or close to

the best quote. When market orders are submitted (roughly 1 market order for 40 limit and cancel
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Figure 16: Distribution of q1 in the model, compared to the empirical distribution and the one
produced by a Poisson model. Data: January 18th, 20011.

orders), they are executed against a quite large volume available at the best quote, leaving the

spread equal to one tick. In the Poisson model, there is no mechanism to cluster the market orders

(see e.g. Muni Toke (2011)) and dig deeper into the order book, and hence get the limit order book

out of this “small spread - high volume” state. On the opposite, our model of intensities is able to

tackle this problem by increasing the market intensity and decreasing the limit intensity when the

spread is small, as it is empirically observed in the previous sections. It also increases the intensity

of submission of market orders when q1 is small. Both mechanisms increase the probability to

observe states of the limit order book with larger spread. It is remarkable to observe that this close

fit is obtained for all stocks and dates tested, irrespective of the liquidity and ticksize of the stock

studied.

We now turn to the second modelling variable of our model, q1, which is closely linked to the

spread. On Figure 16, we plot the empirical distribution of q1 and its simulated counterparts. There

again, the model provides an excellent fit for this distribution while the standard Poisson reference

constantly underestimates the probability to observe smaller values of q1, i.e. its q1 distribution is

shifted to the right. Two representative stocks are represented: AIRP.PA, ALSO.PA and CARR.PA

(not shown) are similar to BNPP.PA (left panel). The best observed result for the Poisson model is

for BOUY.PA (right panel), still worse than the state-dependent model. The failure of the Poisson

model is linked to the above analysis of the spread results. In the Poisson model, since the spread

is stuck to 1 or 2 ticks, most of the limit orders are submitted at or around the non-moving best

quotes, hence increasing the available volume at the best quote, which we now observe on Figure
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Figure 17: Average shape of the order book in the model, compared to the empirical shape and
the one produced by the Poisson model. Data: January 18th, 2011.

16. This will in turn prevent market orders from increasing the spread, hence a vicious circle for

the Poisson model. This analysis shows that the modelling of the spread and the first limit are

closely linked problems in our limit order book framework.

We finally turn to the third variable used in our model, the total volume available Q10. We

start with the average order book shape, i.e. the time average of the quantities q1 to q10, the sum of

which is Q10. Figure 17 plots the empirical average shape of the order book and the ones produced

by the simulators for two representative stocks, but all results are similar. Both models are able

to quite well reproduce the order of magnitude of average shape of the limit order book. This is

not surprising, since the magnitude of the average is directly linked to the way we estimate the

parameter θ in Section 5, which is identical in both models. However only our model correctly

reproduces the slope of the average order book for the best prices, as well as a sound estimation

of the position of the maximum away from the best quotes: BNPP.PA, BOUY.PA, CARR.PA and

ALSO.PA (not shown) are roughly similar to BNPP.PA (left panel), while EDF.PA (right panel)

is the worst visual fit of our model. As for the Poisson reference, it exhibits a sharper slope for the

best prices, realizes a maximum too high and too close to the best quote, and underestimates the

volume available far away from the best quotes. Once again, these observations are valid for all

stocks and dates tested.

Beyond the analysis of these averages values, Figure 18 plots the empirical distribution of Q10

for two representative stocks (again all results are similar). It turns out that if the model is able

to reproduce the order of magnitude of the mean of Q10, the support of the distribution is actually

smaller and slightly right-shifted compared to the empirical distribution. In fact the empirical Q10

distribution exhibits a quite heavy tail for large values of Q10. Since both models are fitted on the
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Figure 18: Distribution of Q10 in the model, compared to the empirical shape and the one produced
by the Poisson model.

mean, this leads to an underestimation of the probability of lower values of Q10 in both simulations.

Note however that the full model outperforms the Poisson reference even in this case. Figure 18

suggests that some state-dependency of the intensities is still not grasped by the model, and that

there is probably room for more complex definitions of theses intensities. Compared to the Poisson

reference, our model is able to reproduce a regime with lower liquidity in the book, by increasing

the intensity of limit orders when the liquidity becomes low, decreasing it when the book gets full.

Figure 18 suggests that this phenomenon is even more pronounced in reality : most of the time the

liquidity available in the book is even lower than in our model, with rare occurences of very large

volumes, impacting the mean.

8 Conclusion

We have provided a fully parametric model for the limit order book. The submission of orders

is modelled as a point processes with state-dependent intensities. We provide detailed functional

forms for these intensities, as well as the estimation procedure by likelihood maximization. By

developing a market simulator we are able to show that the model performs very well to reproduce

key features of the order book, such as the spread, the volume of the best quote, and the average

shape of the order book.

This very empirical and numerical work will hopefully lead to further improvements. The in-

tensities we have proposed here are chosen with respect to some model principles in the choice of
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variables and functional forms. One may probably go further in the statistical model by exper-

imenting other forms or variables. In particular, the model for the placement of cancellations is

monotonous in its main variable, which is sufficient on the primary sample tested, but leaves room

for further work and improvements on more recent data.

This work could also stimulate research on the stability of such complex random systems.

Although the mathematics of the “Poisson” models for the order book are beginning to be well-

understood, the introduction of state-dependent intensities could lead to several theoretical prob-

lems that have not been studied here.
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