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Abstract

We develop a Markovian model that deals with the volume offered at the best quote of an

electronic order book. The volume of the first limit is a stochastic process whose paths are

periodically interrupted and reset to a new value, either by a new limit order submitted inside

the spread or by a market order that removes the first limit. Using applied probability results on

killing and resurrecting Markov processes, we derive the stationary distribution of the volume

offered at the best quote. All proposed models are empirically fitted and compared, stressing

the importance of the proposed mechanisms.

Keywords : limit order book ; volume of the best quote ; aggressive limit orders ; aggressive

market orders ; killing and resurrecting Markov processes.

1 Introduction

The limit order book has been for the past few years the subject of a growing interest among

academics and practitioners studying financial markets. This electronic structure centralizes all

the orders submitted to a given market by all participants, finds matchable buy and sell orders,

and therefore defines the price of the financial product exchanged. The fundamental question is

thus to understand how the sequences of submitted orders – the orders flows – are translated into

price dynamics. Biais et al. (1995) and Bouchaud et al. (2002) are pioneer investigations on the

empirical properties of the limit order book. Smith et al. (2003) is a pioneer theoretical framework

for the study of the continuous double auction that is used in limit order books.

The order book is a complex system. Basic mathematical models, such as Cont et al. (2010),

rely on simplifying assumptions: only three main types of orders are submitted (limit, market

and cancellations, ignoring exchange-specific rules and specificities) ; all orders flows are Poisson

processes ; all orders have the same unit size. Abergel & Jedidi (2013) shows that under appropriate
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assumptions, some limit theorems apply and such Markovian models lead to a diffusion equation

for the price. Muni Toke (2015) shows that with similar Poisson models, the average shape of the

order book is analytically computable, even when relaxing the unit-volume hypothesis.

Among the important quantities that describe a limit order book, the volume offered at the

best quote (bid or ask), i.e. the total number of shares available at the first limit of the order

book, is fundamental. One reason is that this quantity is often the only information easily available

to market participants (known as Level-1 data). Another (linked) reason is that this quantity is

heavily used in trading strategies by market participants : Farmer et al. (2004) shows that the

majority of market orders that move the price have a size exactly equal to the volume of the best

quote at the time of submission (see below for more details). However, this volume remains difficult

to model. When the volume of the best quote drops to zero (because of large market orders or

cancellations that remove all the liquidity of the best quote), or when a new best quote is submitted

inside the spread, the price changes, and the volume of the best quote is reset to a new quantity

that may have no link to the quantities describing the last order submitted. Therefore, computing

the volume of the best quote after a new event requires to keep track of the whole order book.

Recently, Cont & De Larrard (2012) proposes a model in which the order book is restricted

to its first limits. When the price does not move, the volume at the best quote obviously varies

according to the arriving orders flows, and when this volume drops to zero, the price moves and

the volume at the best quote is immediately reset to some random value. Therefore, the volume of

the best quotes (bid and ask) is a two-dimensional process with values on the positive orthant that

jumps randomly inside the orthant each time it reaches an axis. Cont & De Larrard (2012) shows

that under appropriate assumptions and using limit theorems in the spirit of queueing theory, this

volume may approximately exhibit a jump-diffusive behaviour. There is however a very restrictive

assumption for this model to be valid: the spread has to always be equal to one tick. Indeed, one

cannot allow for limit orders submitted inside the spread in this framework, since it would make

the process jumps even when it does not reach an axis. Such an assumption may be an appropriate

model for busy periods of trading of so-called large tick stocks, but probably not in the general

case.

Even more recently, Huang et al. (2015) studied a limit order book modelled (with some con-

straints) by a collection of queueing systems, one per limit price, in which the intensities of arrival

of orders (market, limit and cancellations) are dependent on the size of the queue at this limit

price. It is shown that this model with size-dependent intensities is able to give a more realistic

distribution of the volume available at the first limit than the classic Poisson model. Figure 1 (left

panel) reproduces the distribution of the best quote observed in this model. It appears that such

models of limit order books based on point processes with state-dependent intensities may provide

fruitful results. Muni Toke & Yoshida (2017) obtain similar figures, also reproduced in Figure 1

(right panel), with a model in which the intensities of the orders flows depend on the spread and
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Figure 1: Distribution of the best quotes obtained in state-dependent limit order book models. Left
panel reproduced from Huang et al. (2015) and right panel reproduced from Muni Toke & Yoshida
(2017).

several volumes characterizing the order book.

In this paper, we show that taking a different route, namely keeping the classical zero-intelligence

order book model with Poisson processes, can still lead to interestingly similar results. In the full

Poisson model of the order book in this work, the stationary distribution of the volume offered at

the best quote can be analytically and then numerically computed. The proposed model is basic

but flexible. It does not assume that the spread is always equal to one tick, i.e. all types of events

that make the volume of the best quote jump are taken into account: aggressive market orders that

matches the full first limit, as well as aggressive limit orders submitted inside the spread as well.

The main idea is that such jumps of the volume at the best quote can be identified as killing and

resurrecting a Markov process (Pakes 1997). The assumptions that all orders have to be unit-sized

can even be lifted, with additional restrictions on the volume of market orders.

The remainder of the paper is organized as follows. Section 2 describes precisely the general

zero-intelligence model of the order book with Poisson processes that is used here. The main

result on killing and resurrecting Markov processes is recalled and adapted to the order book

context. Sections 3 and 4 then explore two types of restrictive assumptions that allow the analytical

computation of the stationary distribution of the volume at the best quote: Section 3 excludes

market orders that partially match the best quote, while Section 4 allows for all types of market

orders but with some size restrictions. Finally, Section 5 provides empirical fittings of all the

analytical models proposed, with a comparison to the simulated ”best effort” of the unrestricted
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Poisson model.

2 A Markovian model of the one-side order book

2.1 Model definition

Let us consider the best ask quote of an electronic order book (the model for the best bid is strictly

identical). Three types of events can alter the quantity offered at the best quote : market orders,

limit orders and cancellation of existing limit orders. For each type of order, we will distinguish

between orders that move the price, called “aggressive” from now on, and orders that do not move

the price, labelled “passive” hereafter1.

Let us start with passive orders. We assume that passive limit orders (i.e. submitted at the best

quote) are submitted according to a Poisson process with rate λ1 and that the size of these passive

limit orders form a set of independent and identically distributed random variables with probability

distribution (g1,n)n∈N. We then assume that passive market orders are submitted according to a

Poisson process with rate µ and are all unit-sized (one share). Since a passive market order should

not move the price, it cannot be submitted when there is only one share left. The third type

of passive orders, passive cancellations, are modelled as follows: each unit-size component of a

limit order (i.e. each share) standing at the best quote is cancelled some random time after its

submission. All these random times are assumed to form a set of independent and identically

distributed random variables with exponential distribution with parameter θ1 > 0. Since passive

cancellations should not move the price, the last share standing should not be removed by this

process, so that if there is n1 shares at the best quote, the total cancellation intensity is (n1− 1)θ1.

Let us now turn to aggressive orders. Aggressive limit orders are limit orders submitted inside

the spread, i.e. at a price lower than the current best ask. We will assume that aggressive limit

orders are submitted according to a Poisson process with rate λ0, and that the size of all aggressive

limit orders form a set of independent and identically distributed random variables with probability

distribution (g0,n)n∈N. The effect of the submission of an aggressive limit order is simple: at the

moment of the submission, this order instantly becomes the best quote, i.e. the ask price is reset

to the price of the aggressive limit order, and the quantity available at the best quote is reset to

the volume of the submitted limit order.

Aggressive market orders are submitted according to a Poisson process µA, and their size is equal

to the available quantity at the best quote at the time of the submission. In other words, aggressive

1The concept of aggressiveness of orders is somewhat common in the financial microstructure literature, even
though the precise definition of “aggressive” may vary with frameworks and authors. Such a terminology is already
used in early works such as Harris & Hasbrouck (1996) and Biais et al. (1995) to classify orders: a limit order
submitted inside the spread (i.e. moving the price) is labeled “more aggressive” than a limit order submitted at the
best quote, which in turn is labeled “more aggressive” than a limit order submitted inside the book ; similarly, a
market order larger than the volume available at the best quote (hence moving the price) is more aggressive than a
market order matching only partially the first limit.
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Figure 2: Fraction of aggressive market orders that have a size exactly equal to the volume of the
best quote from 2011 to 2016 for BNPP.PA and ACCP.PA.

market orders match all the liquidity available at the best quote. This is not an unreasonable

assumption: Farmer et al. (2004) shows that on a 16-stock sample from the London stock exchange,

86% of the buy market orders that change the price have a size that is exactly equal to the volume

offered at the best ask. It turns out that this figure is still valid with recent data: on Figure 2,

the fraction of aggressive market orders that have a size equal to the volume of the best quote is

plotted from 2011 to 2016 for two stocks traded on the Paris stock exchange, and in this period it

indeed varies between roughly 80% and 90%. When an aggressive market order is submitted, the

volume available at the best quote drops to zero, the price moves up and the quantity available

at the best limit is instantaneously reset to the quantity available at the second limit of the order

book (we’ll say second limit for convenience, it is more precisely the next non-empty limit of the

order book).

Note that an aggressive cancellation would be the cancellation of the last share at the best

quote with volume one. Its effect is therefore strictly equivalent to the one of an aggressive market

order. We can then without loss of generality for our model assume that the intensity µA includes

aggressive cancellations.

Because of the effect of aggressive market orders and cancellations, we also need to model the

second limit of the order book. Using assumptions coherent with the Markovian setting we are

establishing, we will assume the following: limit orders are submitted at the second limit (or more

generally at any limit inside the book) according to a Poisson process with rate λ2 ; the sizes of these

limit orders form a set of independent and identically distributed random variables with probability

distribution (g2,n)n∈N ; each unit-size component of a limit order (i.e. each share) standing at the
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Figure 3: Schematic diagram describing the stylized model of the order book and its three type of
orders: limit orders (↓), market orders (←) and cancellations (↗).

second limit is cancelled some random time after its submission, and all these random times are

assumed to form a set of independent and identically distributed random variables with exponential

distribution with parameter θ2 > 0.

Figure 3 summarizes the types of orders and notations introduced.

Remark 1. It is of course very well known that the memoryless assumptions made to build this

stylized model (Poisson processes, exponentially distributed lifetimes of orders) are not satisfied

in practice on financial markets, and that long-memory phenomena, clustering of events, etc. are

commonly observed (see e.g. Abergel et al. (2016) and references therein). More realistic modeling

of the limit order book can for example rely on Hawkes processes (see e.g. Bacry et al. (2015)

for a review), or non-Poisson point processes with state-dependent intensities (see e.g. Huang

et al. (2015), Muni Toke & Yoshida (2017)). The interest of this work is to show that even with

basic non-realistic assumptions, our purely mechanistic description of the order book can produce

empirically realistic distributions otherwise obtained with different principles.

Remark 2. In a full model, submission of aggressive limit orders should be spread-dependent, since

these orders cannot be submitted when the spread is equal to one tick. This restriction is not

included in the model described here, which is not state-dependent. This assumption makes the

model more suitable for small tick stocks, for which the spread is generally not constrained to one

tick, rather than for large tick stocks.
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2.2 Stationary distribution of the best quote

In this general Poisson model, the continuous-time stochastic process X = {X(t), t ∈ [0,∞)} de-

scribing the volume available at the best quote evolves as follows. Let τ1 be the random time

of the first price move. During the time interval [0, τ1), in the absence of events that move the

price (aggressive market orders/cancellations, aggressive limit orders), X evolves as the stochastic

process 1 + Y = {1 + Y (t), t ∈ [0,∞)}, which is one (the last share that cannot be cancelled or

executed without moving the price) plus the size of a queue with the infinitesimal generator:

−λ1 λ1g1,1 λ1g1,2 λ1g1,3 λ1g1,4 . . .

µ+ θ1 −(µ+ λ1 + θ1) λ1g1,1 λ1g1,2 λ1g1,3 . . .

0 µ+ 2θ1 −(µ+ λ1 + 2θ1) λ1g1,1 λ1g1,2 . . .

0 0 µ+ 3θ1 −(µ+ λ1 + 3θ1) λ1g1,1 . . .
...

...
. . .

. . .
. . .

. . .


. (1)

Now, at time τ1, the price moves because of an aggressive limit order or an aggressive market

order. The process X is instantaneously reset to a new random variable Xτ1 = H that, depending

on the direction of the price move, represents either the size of the incoming aggressive limit order

(downward price move), or the volume offered at the second limit inside the order book (upward

price move). Then, if τ2 is the random time of the next price movement, X on [τ1, τ2) behaves

according to the infinitesimal generator (1), and so on.

This mechanism is identifiable to what is known in applied probability as killing and resurrecting

a Markov process. The process of the volume of the best quote starts at time 0 and evolves according

to the infinitesimal generator (1). Then, upon the submission of an aggressive limit or market order,

it is killed, and (instantaneously) resurrected to a random variable H with distribution (hi)i∈N∗ ,

from where it restarts its course according the previous dynamics. Such a mechanism is studied in

Pakes (1997), where the following result is proved.

Theorem 1 (rephrased from Pakes (1997)). Let Z = {Zt, t ∈ [0,∞)} be a Markov process on N with

initial distribution (hi)i∈N. Zero state is assumed to be absorbing for Z. Let R = {Rt, t ∈ [0,∞)}
be the process constructed as follows : R starts following some path of the process Z ; at some

random time (exponentially distributed with parameter β > 0), R is killed, i.e. reset to 0 ; after

some random time (exponentially distributed with parameter α > 0), R is resurrected, i.e. restarts

following a new path of the process Z ; and so on.

Then the process R admits a stationary distribution (πj)j∈N) given by:

π0 =
β

α+ β − αβf̂0(β)
, πj = απ0f̂j(β), (2)

7



where f̂j is the Laplace transform of the series
∑
i∈N

hipi,j(t), in which pi,j(t) = P(Z(t) = j|Z(0) = i)

is the transient probability of the (non-killed) process Z from state i to state j.

In our order book model, the resurrection is instantaneous, i.e. α → +∞ ; the killing events

are aggressive limit and market orders, i.e. β = λ0 + µA by standard properties of the Poisson

processes ; the state 0 is not accessible without killing (classic cancellations and partial market

orders cannot deplete the best limit), i.e. f̂0 = 0. Another consequence of the last fact is that the

distribution (hi)i∈N∗ of H represents exactly the new volume available at the best quote after an

aggressive event. This distribution is therefore a mix of the distribution (g0,i)i∈N∗ with probability
λ0

µA + λ0
and the stationary distribution of the volume at the second limit, denoted (π2,i)i∈N, with

probability
µA

µA + λ0
. We thus obtain the following result.

Proposition 1. In the general Poisson order book model described in this section, the stationary

distribution (πj)j∈N∗ of the total volume offered at the best quote is written for any j ≥ 1 :

πj = (λ0 + µA)f̂j(λ0 + µA) (3)

where f̂j(·) is the Laplace transform of the series
∑
i∈N

hipi,j(t) in which ∀i ∈ N∗,

hi =
λ0g0,i
λ0 + µA

+
µAπ2,i
λ0 + µA

, (4)

and pi,j(t) = P(1 + Y (t) = j|1 + Y (0) = i) is the transient probability of the (non-killed) process

1 + Y from state i to state j.

This result is central in this work. In the following, we will study several specifications of the

above general model, all of them allowing analytical tractability at some cost. The first criterion

dividing the different types of models is the presence or absence of ”partial” market models. In

the first type of model (Type-1 models), we assume that all market orders are aggressive market

orders. In other words µ = 0, and there are no ”partial” market orders that match only partially

the best limit. In the second type of models (Type-2 Models), this restriction is lifted, i.e. market

orders may or may not be aggressive (µ > 0), but some restrictions on the distributions of the

volumes will be added. These different types of models are studied in the next two sections.

3 Models with aggressive market orders exclusively

Type-1 models assume that all market orders are aggressive, i.e. that µ = 0. In this setting, we

are able to analytically compute the stationary distribution π of the process X through a direct
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approach: we compute the transient probabilities (pi,j(t))i,j∈N by a standard generating function

method, as well as the stationary distribution (π2,i)i∈N∗ by a direct method.

Let us start with the transient probabilities (pi,j(t))i,j∈N. Let pi,j = ri−1,j−1 for any (i, j) ∈
(N∗)2. (ri,j(t))i,j∈N are the transition probabilities of the process Y . The Kolmogorov forward

equations are written for any (i, j) ∈ N2:

r′ij(t) = −(λ1 + jθ1)rij(t) + (j + 1)θ1ri,j+1(t) +

j−1∑
k=0

λ1g1,j−kri,k(t). (5)

Let G1(z) =
+∞∑
j=1

g1,jz
j be the generating function of the distribution of the sizes of incoming limit

orders at the best limit. By multiplicating this equation by zj and summing over j, we obtain that

the generating function ϕi(z, t) =

∞∑
j=0

rij(t)z
j is solution of the partial differential equation:

0 =
∂ϕi
∂t

(z, t)− θ1(1− z)
∂ϕi
∂z

(z, t) + λ1(1−G1(z))ϕi(z, t), (6)

subject to the initial condition ϕi(z, 0) = zi.

As for the stationary distribution (π2,i)i∈N∗ , we use the Markovian setting described in Section

2 : λ2 > 0 is the rate of arrival of limit orders, (g2,n)n∈N is the distribution of their sizes, and 1/θ2

is the average lifetime of a share standing inside the book. Similarly to what has been assumed for

the best quote, we assume that the last share cannot be cancelled, so that the size of the queue

does not drop to zero (it is by definition the next-non empty limit of the order book). With these

assumptions, the size of the book at the second limit is the process {1 + Y2(t), t ∈ [0,∞)} with

infinitesimal generator

−λ2 λ2g2,1 λ2g2,2 λ2g2,3 λ2g2,4 . . .

θ2 −(λ2 + θ2) λ2g2,1 λ2g2,2 λ2g2,3 . . .

0 2θ2 −(λ2 + 2θ2) λ2g2,1 λ2g2,2 . . .

0 0 3θ2 −(λ2 + 3θ2) λ2g2,1 . . .
...

...
. . .

. . .
. . .

. . .


. (7)

The process Y2 admits a stationary distribution (ρ2,i)i∈N, and obviously π2,i = ρ2,i−1. Writing

the classical balance equations and solving the derived ODE for the generating function ψ(z) =
+∞∑
n=0

ρ2,nz
n, we obtain :

ψ(z) = ρ2,0e
λ
θ

∫ z
0

1−G2(u)
1−u du (8)

9



where G2(u) =

∞∑
n=0

g2,iu
i is the generating function of the distribution of the sizes of limit orders

submitted inside the book.

Therefore, if we specify the distributions g1 and g2 of the sizes of incoming limit orders re-

spectively at the best quote and inside the book, and if subsequent computations are analytically

tractable, then we can derive the distribution π. We study two variants 1a and 1b of the model 1

setting. On the one hand, model 1a assumes that all limit orders submitted at the best quote or

inside the book are unit-sized, i.e. g1,1 = g2,1 = 1 and g1,n = g2,n = 0 for any n ≥ 2. This assump-

tions is the one usually made in zero-intelligence models that look for some analytical tractability

(see e.g. Cont et al. 2010). On the other hand, model 1b assumes that all limit orders submitted

at the best quote or inside the book are geometrically distributed with parameters 0 < q1 < 1 and

0 < q2 < 1 respectively. This assumption has been used in Muni Toke (2015) in which it has been

used to compute a general average shape of an order book. The results in these two cases are now

stated.

Proposition 2 (Model 1a). If all limit orders at the best quote or inside the book are unit-sized,

then the stationary distribution (πj)j∈N∗ of the volume offered at the best quote is:

πj = (λ0 + µA)
∞∑
i=1

hi

min(i−1,j−1)∑
k=0

(
i− 1

k

)
1

(j − 1− k)!

(
λ1
θ1

)j−1−k
×
∫ ∞
0

e−(λ0+µ)te−kθ1t(1− e−θ1t)i+j−2−2ke−
λ1
θ1

(1−e−θ1t)
dt, (9)

and

hi =
λ0g0,i
µA + λ0

+
µA

µA + λ0
e
−λ2
θ2

(λ2)
i−1

(θ2)i−1(i− 1)!
. (10)

Proof. The unit-size assumption gives G1(z) = z, and inserting this in equation (6) allows a direct

solving of the latter as:

ϕi(z, t) =
[
1− (1− z)e−θ1t

]i
exp

[
λ1
θ1

(
z − (1− z)e−θ1t

)]
, (11)

which then gives after some computations, using Leibniz differentiation formula, the transition

probabilities:

rij(t) =

min(i,j)∑
k=0

i!

k!(i− k)!(j − k)!

(
λ1
θ1

)j−k
e−kθ1t(1− e−θ1t)i+j−2ke−

λ1
θ1

(1−e−θ1t)
. (12)

Shifting both indices by one, multiplying by hi, summing over i and taking the Laplace transform

yields equation (9).

Furthermore, still using the unit-size assumption, the stationary distribution of a process with

10



generator defined in equation (7) is a Poisson distribution with parameter
λ2
θ2

. This readily gives

equation (10).

Proposition 3 (Model 1b). If all limit orders submitted at the best quote and inside the book

are i.i.d. and geometrically-distributed with parameter q1 and q2 respectively, then the stationary

distribution (πj)j∈N∗ of the volume offered at the best quote is:

πj =(λ0 + µA)

[ ∞∑
i=1

hi

[
q1
λ1
θ1

min(i−1,j−2)∑
k=0

(
i− 1

k

)
1

(j − 1− k)!

j−2−k∑
l=0

(
j − 1− k

l

)
(−1)l

×
l∏

α=1

(
λ1
θ1
− α(1− q1)

) j−2−k−l∏
β=1

(
λ1
θ1

+ β(1− q1)
)

×
∫ +∞

0
(1− e−θ1t)i−ke−(l+k)θ1t

[
q1 + (1− q1)e−θ1t

] λ1
θ1(1−q1)

−l−1
e−(λ0+µ)t dt

]
+
∞∑
i=j

hi

(
i− 1

j − 1

)∫ +∞

0
e−(j−1)θ1t(1− e−θ1t)i−j

[
q1 + (1− q1)e−θ1t

] λ1
θ1(1−q1) e−(λ0+µ)t dt

]
, (13)

and

hi =
λ0g0,i
µA + λ0

+
µA

µA + λ0
q

λ2
(1−q2)θ2
2

(1− q2)i−1

(i− 1)!

Γ(i− 1 + λ2
(1−q2)θ2 )

Γ( λ2
(1−q2)θ2 )

. (14)

Proof. The assumption of a geometric distribution of the sizes of limit orders inside the book gives

G1(z) =
q1z

1− (1− q1)z
. With this definition of G1, we can solve equation (6) to obtain:

ϕi(z, t) = [1− (1− z)e−θ1t]i
[
q1 + (1− q1)(1− z)e−θ1t

1− (1− q1)z

] λ1
θ(1−q1)

. (15)

The Leibniz differentiation formula and some computations lead to the transient probabilities:

rij(t) =q1
λ1
θ1

min(i,j−1)∑
k=0

i!

k!(i− k)!(j − k)!
(1− e−θ1t)i−k+1

×
j−1−k∑
l=0

(
j − 1− k

l

)
(−1)le−(l+k)θ1t

[
q1 + (1− q1)e−θ1t

] λ1
θ1(1−q1)

−l−1

×
l∏

α=1

(
λ1
θ1
− α(1− q1)

) l∏
β=1

(
λ1
θ1

+ β(1− q1)
)

+ 1j≤i

(
i

j

)
e−jθ1t(1− e−θ1t)i−j

[
q1 + (1− q1)e−θ1t

] λ1
θ1(1−q1) . (16)

As in the previous case, shifting the indices by one, multiplying by hi, summing over i and taking
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the Laplace transform yields equation (13).

Now, as for the stationary distribution of the volume offered at the second limit, the assumption

of geometrically distributed sizes of limit orders gives G2(z) =
q2z

1− (1− q2)z
, and equation (8) gives

by derivation and after some computations:

∀i ∈ N, ρ2,i = q
λ2

(1−q2)θ2
2

(1− q2)i

i!

Γ(i+ λ2
(1−q2)θ2 )

Γ( λ2
(1−q2)θ2 )

, (17)

hence the result. Note that the distribution (ρ2,i)i∈N is a negative binomial distribution (or Polya

distribution) with non-integer size parameter
λ2

(1− q2)θ2
and probability parameter q2 (see e.g.

Feller 1968, Chap. VI.).

4 Models with both partial and aggressive market orders

Type-2 models allow for both partial and aggressive market orders to be submitted, i.e. µ > 0

and µA > 0. With both types of market orders, the direct approach of the previous section does

not provide analytically tractable results. Therefore we propose a different strategy. In this new

setting, we can keep the tractability of the model at the cost of assuming that classic orders directly

affecting the best quote are unit-sized. This is the only restriction: orders submitted inside the

spread or inside the book can be kept with a general distribution, and the aggressive market orders

are still defined the same way, obviously, with a size equal to the volume at the best quote. With

this assumption, the best quote is a birth-and-death process, for which we can compute the Laplace

transform of its transition probabilities, which can be expressed using continuous fractions. The

original result dates back to Murphy & O’Donohoe (1975) but a modern derivation of the result is

found in Crawford & Suchard (2012). Therefore, we are able to study the stationary distribution of

the volume available at the best quote without computing the transient probabilities of the process

Y with infinitesimal generator (1) and µ > 0 (to our knowledge, such a computation is still an

unresolved challenge).

Assume that both partial market orders and limit orders submitted at the best quote are unit-

sized. Then the process Y , which translates the evolution of the volume at the best quote (minus

one) without any price movement, is a birth-and-death process with constant birth-immigration

rate λ1 and linear death-emigration rate µ+nθ1 for any n ≥ 0. Let (qm,n(t)), (m,n) ∈ N2, t ∈ [0,∞)

be the transition probabilities of the process Y , and (q̂m,n(s)), (m,n) ∈ N2, s ∈ C their Laplace

transform, if it exists. Let (Bn(s))n∈N the real sequence defined by the two-step recurrence:{
B0(s) = 1, B1(s) = s+ λ1,

Bn(s) = (s+ λ1 + µ+ (n− 1)θ1)Bn−1 − λ1 (µ+ (n− 1)θ1)Bn−2, n ≥ 2.
(18)

12



Then, adapting Crawford & Suchard (2012, Theorem 1) to our special case, we have for any

(m,n) ∈ N2 such that m ≤ n :

q̂m,n(s) = λn−m1

â1

b̂1 + â2
b̂2+

â3
b̂3+...

, λn−m1

â1(s)

b̂1(s)+

â2(s)

b̂2(s)+

â3(s)

b̂3(s)+
. . . (19)

(The symbol , is the definition equality that introduce a simplified notation for the continuous

fractions.) In the above equation the sequences (âi)i∈N∗ and (b̂i)i∈N∗ are defined as follows:

âi =


Bm(s) if i = 1,

−λ1 (µ+ (n+ 1)θ1)Bn(s) if i = 2,

−λ1 (µ+ (n+ i− 1)θ1) if i ≥ 3,

(20)

and

b̂i =

Bn+1(s) if i = 1,

s+ λ1 + µ+ (n+ i− 1)θ1 if i ≥ 2.
(21)

The result for any (m,n) ∈ N2 such that m ≥ n is similarly written:

q̂m,n(s) =

 m∏
j=n+1

(µ+ jθ1)

 α̂1(s)

β̂1(s)+

α̂2(s)

β̂2(s)+

α̂3(s)

β̂3(s)+
. . . (22)

where the sequences (α̂i)i∈N∗ and (β̂i)i∈N∗ are defined as follows:

α̂i =


Bn(s) if i = 1,

−λ1 (µ+ (m+ 1)θ1)Bm(s) if i = 2,

−λ1 (µ+ (m+ i− 1)θ1) if i ≥ 3,

(23)

and

β̂i =

Bm+1(s) if i = 1,

s+ λ1 + µ+ (m+ i− 1)θ1 if i ≥ 2.
(24)

Hence, the Laplace transforms (q̂m,n(s)), (m,n) ∈ N2, s ∈ C are numerically computable using

appropriate numerical methods for the computation of continuous functions. If we now go back to

the killing and resurrection of Markov processes, we have the following result.

Proposition 4 (Type-2 models). If all orders submitted at the best quote are unit-sized, then

the stationary distribution of the volume offered at the best quote is given by equation (3), i.e.

πj = (λ0 + µA)

∞∑
m=1

hmq̂m−1,j−1(λ0 + µA), where the q̂m,n’s are given by (19) and (22).
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If limit orders submitted inside the book are assumed to be unit-sized as well (model 2a), then

the probabilities hm are given by equation (10). If the sizes of these limit orders are assumed to be

geometrically distributed (model 2b), then the probabilities hm are obtained with equation (14).

5 Empirical results

5.1 Data and estimation

We use Thomson-Reuters tick-by-tick data for the stock BNPP.PA traded on the Paris stock ex-

change, from January 3rd, 2011 to May 20th, 2016, i.e. a five-year-and-five-month long sample.

This stock among the largest market capitalizations and most liquid stocks on the Paris stock

exchange.

For each available trading day, we consider the data from 10:00 a.m. to 16:00 p.m., i.e. a

six-hour period at the heart of the trading day. The idea is to get rid of the very busy opening and

closing period where the assumption of a stationary model may be difficult to fulfil. It is well-known

that even on the six-hour period considered, one does observe a seasonal activity (the U-shaped

pattern of financial activity), and one might get better ”stationary” results by shortening the daily

period under investigation. However, it will appear that our models actually provides satisfying

results even using the full day sample. For each stock, for each trading day, we compute the total

numbers and the distributions of the sizes of: limit orders inside the spread; limit orders at the best

quote; limit orders at the second best limit; partial market orders; and aggressive market orders.

We also compute the time-weighted empirical distribution of the volume offered at the best quote

and at the second best limit. Details on data preparation can be found in Muni Toke (2016).

Straightforwardly, the estimators of the Poisson parameters λ0, λ1, λ2, µ and µA (if needed by

the model) are defined as the number of the associated events (aggressive limit order, limit order

at the best quote, limit order inside the book, partial market orders, aggressive market orders)

divided by the length of the time interval. For each of these types of orders, we also compute

their respective mean order size σ0, σ1, σ2, σµ and σµA . As for the cancellation parameters, we do

not have any data allowing us to track the submitted orders individually, and therefore we cannot

easily estimate an average lifetime θ−11 and θ−12 for cancelled orders at the best quote and inside

the book. However, we can get an order of magnitude by using equilibrium relations of incoming

and outgoing flows of the order book. Our data let us compute the time-weighted average volume

offered at the best quote L1 and at the second best quote L2. Then equating the average number of

incoming and outgoing share in the order book, we set θ1 and θ2 so that λ1σ1 = µσµ+µAσµA+θ1L1

and λ2σ2 = θ2L2.

Finally, following our theoretical framework, we will assume that all partial market orders are

unit-sized, and therefore rescale all size and volume quantities by the median trade size. The

rescaling gives us the empirical versions of the distributions (g0,i), (g1,i), (g2,i) and (π2,i) (if needed
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by the model) with a support roughly included in 1, . . . , 40. It may happen that the average

rescaled limit order size at the best quote is actually smaller than the median trade size, forbidding

a geometric modelling of the distribution (expectation lower than 1). In such cases (frequent from

2014 in our data, very rare before), the scaling size is set to a fraction of the median trade size, so

that the average rescaled limit order size at the best quote is larger slightly larger that 1 (we’ve

arbitrarily chosen 1.1 in the following empirical work).

5.2 Fitted models and benchmarks

In the previous section we have presented two types of models (namely type-1, without partial

market order, and type-2, with unit-sized partial market orders), each type having two variants

(namely, a and b). In variants a, the distribution (g2,i)i∈N∗ , which represents the volume of the

limit orders submitted inside the book, is a Dirac distribution on the atom 1. In variants b, it is

geometric with parameter 0 < q2 ≤ 1. The distribution (g0,i)i∈N∗ , which represents the volume of

the limit orders submitted inside the spread, has not been specified up to now. In line with the

other assumptions, we will assume in this empirical section that this distribution is a Dirac on 1 in

variants a, and a geometric distribution with parameter 0 < q0 ≤ 1 in variants b.

We now add further elements of comparison for our models. First, for each type of model,

we add a variant c in which both distributions (g0,i)i∈N∗ and (g2,i)i∈N∗ are taken equal to their

empirical counterpart. Furthermore, in order to underline the importance of the mechanism that

takes into account aggressive orders and consequent upward and downward movements of the best

price, we recall as benchmark the following simplistic model of the best quote, in which aggressive

market and limit orders are ignored, which is equivalent to assume a constant price in our setting.

This benchmark will be referred to as the Type-0 model. In the Type-0 model, limit orders arrive

at rate λ1 with volume distribution (g1,i)i∈N ; market orders are unit-sized and arrive at rate µ ; all

standing shares have a (i.i.d.) exponential lifetime with parameter θ1 > 0. It is thus easily shown

that the volume at the best quote in the Type-0 model is the Markov process with infinitesimal

generator given at equation (1). This process admits a stationary distribution (πi)i∈N satisfying

the following recurrence :
0 = −λ1π0 + (µ+ θ1)π1,

0 = −(λ1 + µ+ nθ1)πn + (µ+ (n+ 1)θ1)πn+1 + λ1

n∑
i=1

g1,iπn−i (n ≥ 1),
(25)

with

π0 =

(
µ

θ1

∫ 1

0
u
µ
θ1
−1
e
λ1
θ1

∫ 1
u H(v) dv

du,

)−1
(26)

where H(u) =
1−G1(u)

1− u
, G1 being the generating function of the distribution (g1,i)i∈N (see e.g.
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Model type (g0,i)i∈N (g1,i)i∈N (g2,i)i∈N (π2,i)i∈N µ > 0 ? λ0 > 0, µA > 0 ?

Model 0a None Unit-size None None Yes No
Model 0b None Geometric None None Yes No

Model 1a Unit-size Unit-size Unit-Size Poisson No Yes
Model 1b Geometric Geometric Geometric Neg. binomial No Yes
Model 1c Empirical Geometric None Empirical No Yes

Model 2a Unit-size Unit-size Unit-Size Poisson Yes Yes
Model 2b Geometric Unit-size Geometric Neg. binomial Yes Yes
Model 2c Empirical Unit-size None Empirical Yes Yes

Model 3 Empirical Empirical None Empirical Yes Yes

Table 1: Summary of the different models and their variants. Italic means that the distribution
(π2,i)i∈N (resp. (g2,i)i∈N) in these variants is not a free parameter, but a consequence of the choice
of (g2,i)i∈N (resp. (π2,i)i∈N).

Muni Toke 2015, section 4). We will consider two cases: unit-sized limit orders (Model 0a) and

limit orders with geometrically-distributed size with parameter q1 (Model 0b). In line with the

general models, one may assume that the last share cannot be cancelled or executed by shifting the

indices of distribution (πi)i∈N by 1 (i.e. on N∗).
Finally, we add a second benchmark by simulating our general zero-intelligence model of the

best quote with all distributions of the model equal to their empirical counterpart. This could be

considered as the ”best effort” of a zero-intelligence mechanism with both classic and aggressive

market and limit orders to compute the distribution of the volume offered at the best quote. Note

that we cannot solve analytically the distribution in this general setting: the distribution in this case

is numerically estimated by simulation. This simulated benchmark will be referred to as Type-3

model.

Table 1 summarizes the models that are under study here.

5.3 Empirical results

We split the sample into 65 monthly calendar periods. For each period, we compute the analytical

distribution of the volume offered at the best quote for all our models and variants, as well as the

distribution obtained by simulation of the model 3.

On figure 4 we compare some examples of these analytical distributions with their empirical

counterpart. Six examples are provided (every month of January on the sample, from 2011 to 2016),

that illustrate different qualities of fits that are found on the data: at least visually, January 2011,

2012 and 2014 are good fits, 2016 is average while the 2013 and 2015 are of lesser quality. The

interesting result is that the killing and resurrecting mechanism used to compute the analytical

distributions of models of types 1 and 2 is able to produce an empirically-sound shape of the

distribution of the volume offered at the best quote in an order book. Indeed, all models of
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Figure 4: Distribution (πi)i∈N of the volume offered at the best quote for all the models described,
compared to the empirical one. Data fitted on the January period, from 2011 to 2016 (top left to
bottom right, by row).
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Figure 5: Distribution (πi)i∈N of the volume offered at the best quote for all the models described,
compared to the empirical one, in semi-log-scale, for January 2014.

type 1 and 2 outperform the basic models of type 0, the latter failing to reproduce the empirical

distribution. This outlines the importance of the flows of aggressive limit orders and aggressive

market orders when describing the volume at the best quote. This quantity cannot be modeled by

a simple queue with limit order, partial cancellation and partial market order.

It is enlightening to compare these shapes with the ones produced by more complete state-

dependent order book models such as the ones mentioned in Section 1. Figure 1 reproduces two

distributions of the best quotes obtained by state-dependent models. More precisely, to obtain these

shapes, Huang et al. (2015) use a model in which the intensities of submission of orders depend and

the volume of the queue in which it is submitted, while Muni Toke & Yoshida (2017) use a model

in which intensities of submission of orders depend on the spread, the volume at the best quote

and the total volume of the book. It is very interesting to observe that a basic non-state-dependent

time-homogeneous model such as the one proposed here is still able to reproduce sound shapes of

the distribution of the volume at the best quote, very similar to the ones obtained by fuller models.

We complement these observations on the main body of the distribution by looking at the tail on

Figure 5 (for brevity only one period is shown, but the analysis is valid for all periods). As expected,

large differences between the models are observed when looking at the tail of the distribution.

Variants a, with unit-sized orders, exhibit the thinner tails. The geometric distributions for the

size of orders at the best quote and in the book (variants b) allows for slightly heavier tails,

but still much thinner than the empirically observed one. Interestingly, variants c exhibit a tail

of the analytical distribution of the volume at the best quote that is much heavier. This hints

that using the empirical distributions for the distributions (g0,i)i∈N (aggressive limit orders) and

(π2,i)i∈N (after an aggressive market order) is sufficient to obtain a heavy tail at the best quote,

even if the distribution of the size of the limit orders arriving at the best quote is thin-tailed. This
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Figure 6: Distance in L2-norm between the distribution of the volume at the best quote computed
by each type of models and the empirical observation.

again underlines the prime importance of the aggressive order flows modeled with the killing and

resurrecting mechanism in our models.

We finally investigate the performances of the model over time. For each period, we plot on

6 the L2-distance between the computed (or simulated) distributions and the empirical one. For

readability we have only included the versions of the models with geometric sizes (variants b), but

other versions are very close. As observed above, the Poisson benchmark is outperformed by the

proposed models. The performances of the proposed models are roughly constant through time

on the tested sample, with a temporary decrease in the first part of 2013. The quality of the

fit of models of type 1 and 2 is very similar, yet on this sample models of type 1 are in average

slightly better that models of type 2. Recall that models of type 1 have only aggressive market

orders (no partial market orders) but allow for a flexible (geometric) size of limit orders at the best

quote, while models of type 2 require that all limit orders at the best quote are unit-sized. This

observation underlines the potential importance of allowing general sizes of orders in a limit order

book model. We also observe that the performances of the proposed models (of both types 1 and

2) is comparable to the one of model 3. This is a good achievement, since model 3 is the result

of a simulation of a complete limit order book with all zero-intelligence parameters available while

others models are limited. We may also observe a bit surprisingly that models of types 1 and 2

even provide in average a better fit of the volume at the best quote than the model 3. It may not
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Figure 7: Distribution (π2, i)i∈N (empirical, Poisson obtained with models 1a and 2a, and negative
binomial obtaind with models 1b and 2b) of the volume at the second best quote, main body (left
panel) and tail in semi-log-scale (right panel) for January 2014.

be straightforward to explain this fact, so we will not risk a conjecture at the moment.

Remark 3. Models 1b is on average the best model on the whole sample. However, formula (14)

involves several series and integrals that have to be numerically evaluated, which makes this model

much more time-costly than the others. Using basic (non-optimized) straightforward Python imple-

mentations of the above formulas, using Scipy for the numerical integration with default numerical

parameters, model 1b/1c require about 4 minutes to compute the whole distribution while mod-

els 1a needs less than 1 second and models of type 2 less than 2 seconds. These absolute values

are obviously only indicative, since they are hardware-dependent and numerical optimization and

enhancements might be performed, but the relative values may be important in selecting the ap-

propriate model for a potential use.

6 Conclusion

This paper has shown that a basic zero-intelligence model of the limit order book is able to accu-

rately describe the stationary distribution of volume offered at the best quote providing it includes

a proper mechanism to take into account aggressive orders that move the price: aggressive limit

orders submitted inside the spread, as well as aggressive market orders that remove the whole liq-

uidity available at the first level of the book. We have modelled these aggressive orders using results

on killing and resurrecting a Markov process (this process being here the quantity at the best quote

when the price is constant), which allows us to provide analytical formulas for the distribution of

interest.

We end this section by one last observation that may trigger future enhancements. Figure 7

shows that the theoretical models for (π2,i)i∈N have the same defects in modeling the empirical
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distribution of the volume inside the book as Type-0 models with respect to the volume at the best

quote: namely, a body slightly shifted to the right and a tail too thin (only one period is plotted,

but the observation is valid on the whole sample). This is not surprising as the volume inside the

book as been treated here as one entity, without taking into account killing and resurrecting (as

in models of Type-0). Future work may include the killing and resurrecting as a cascading effect:

when the price move, all the limits in the book are shifted, i.e. are killed and resurrected.
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