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Abstract—Convex image restoration is a major field in inverse
problems. The problem is often addressed by hand-tuning hyper-
parameters. We propose an incremental contribution about a
Bayesian approach where a convex field is constructed via
Location Mixture of Gaussian and the estimator computed
with a fast MCMC algorithm. Main contributions are a new
field with several operator avoiding crosslike artifacts and a
fallback sampling algorithm to prevent numerical errors. Results,
in comparison to standard supervised results, have equivalent
quality in a quasi-unsupervised approach and go with uncertainty
quantification.

I. INTRODUCTION

Image restoration, or deconvolution, is a major problem with
an abundant literature and applications found in, for instance,
optics, radio astronomy, microscopy [1]–[6]. Deconvolution
is also related to the resolution of ill-posed inverse problems
where the likelihood of data presents defects like missing data
or instability [7].

Optimization methods, based on the minimization of mixed
criteria, are common [8], [9] and popular in high-dimension,
thanks to efficient algorithms, especially in the convex
case [10]. However, the hyper-parameters that determine the
balance between the data and prior adequacy are usually hand-
tuned (supervised) and uncertainty about the optimum estimate
are not well defined or studied.

Bayesian methods, on the contrary, present a natural way to
estimate the hyper-parameters (unsupervised) by considering
them as nuisance parameter and marginalization of the joint
a posteriori law [7], [11]. Moreover, a posteriori law anal-
ysis brings confidence interval analysis and quantification of
uncertainty about the estimation.

Within the Bayesian methods, variationnal approaches had
interest by providing apparently fast algorithms [12]–[14].
However, variationnal approaches build an approximation of
the a posteriori law and the uncertainty is known to be
underestimated, induced by the separability and the non-
correlation model.

The approach of this work is the use of Monte Carlo
Markov Chains (MCMC) algorithms for exact a posteriori law
exploration and computation of the Expectation a posteriori
estimator (EAP). However, results on unsupervised method
are sparser with some existing work [15], for instance based
on marginal likelihood [16], quadratic prior [17], [18], per

variables Metropolis-Hastings [19] or more recently Moreau
approximation [20].

In [21], authors present a fast MCMC deconvolution method
limited to quadratic prior. Work of J.-F. Giovannelli [22]
presents an unsupervised convex deconvolution approach.
However, the use of multiple regularization operator, like
horizontal and vertical gradient, is missing. In addition, some
numerical instabilities are present due to special functions.
Finally, divergence of the MCMC chains may be observed
in practice when the full set of hyper-parameters is estimated.

We propose an incremental work based on the method of
[22]. We show that multiple operators can be used, provid-
ing better results and no crosslike effect of the Laplacian
around the edges [23]. To prevent numerical instability of the
simulation we present a fallback solution based on a simple
and efficient Metropolis-Hastings algorithm. Finally, by just
considering a known or estimated noise level, the method
becomes robust and estimate the a priori shape and precision.
The proposed algorithm does not pretend to achieve the best
possible results but rather to complement ongoing work for
unsupervised convex image restoration.

The paper is organized as follows : Sec. II presents the
notation and the methodological context. Sec. III is devoted
to the convex potential, the unsupervised approach and the
MCMC algorithm. Finally, Sec. IV shows some results and
comparison to standard algorithm of the same class.

II. NOTATIONS AND PROBLEMS

We consider N pixels images x ∈ RN . The data model
is y = Hx + n where y ∈ RN collects the data, H ∈
RN×N is the convolution operator and n ∈ RN an unknown
random noise. The convolution are circulant and computed via
Discrete Fourier Transform F with a diagonalizable operator
H = F †ΛHF , where ΛH = diag(̊h0, . . . , h̊N−1).

The a priori noise law is supposed white Gaussian with a
known noise level σn = γ

−1/2
n > 0 leading to the likelihood

p(y | x; γn) = (2π)−
N
2 γ

N
2
n exp

(
−γn

2
‖y −Hx‖2

)
. (1)

We also consider a priori image law using Markov Random
Field

p(x | θ) = K(θ)−1 exp

(
−1

2
Eθ(x)

)
(2)



where K(θ) =
∫

exp(−Eθ(x)/2) dx is the partition function.
In the general case, K is dependant wrt. regularization parame-
ters θ which is a major difficulty that blocks θ estimation [16],
[21], [22].

For the well-posedness of the inverse problem we consider
the energy Eθ(x) = γx

∑
c∈C φ (dtcx;θ) with the set C of

cliques c and neighborhoods dc [7] and γx > 0. For edge
preserving consideration and uniqueness of the supervised
solution, the potential φ is chosen as convex.

A common estimator in image processing community is the
maximum a posteriori (MAP) obtained by minimization of the
anti logarithm of the a posteriori law

xMAP = arg min
x

− ln(p(x | y, γn,θ)) (3)

= arg min
x

‖y −Hx‖2 +
γx
γn
Eθ(x). (4)

In that case of convex optimization, an abundant literature is
available to compute it efficiently [10], [24].

III. BAYESIAN FRAMEWORK AND ALGORITHM

A. LogErf potential and LMG

The LogErf potential φ [22], [25] is the convex function

φ(u) = −2 ln(χ(u) + χ(−u)) (5)

with

χ(u) = exp
(γb

2
u
)

erfc

(√
γx
2

(
γb

2γx
+ u

))
(6)

with γx > 0 and γb > 0. This potential, liken to Huber
potential, brings several advantages when used for Gibbs field:

1) φ is convex and, therefore, Eθ(x) is convex wrt. x.
2) The distribution p(u) can be expressed as a Location

Mixture of Gaussian (LMG)

p(u) ∝ exp

(
−1

2
φ(u)

)
∝
∫
R

p(u | b) p(b) db (7)

= P−1
∫
R

exp
(
−γx

2
(u− b)2 − γb

2
|b|
)

db (8)

with a Laplace distribution p(b) on the mean of p(u | b).
3) The partition function is tractable and does not depend

on b. For the LogErf potential, we have

P =
√

2πγ
− 1

2
x

(γb
4

)−1
. (9)

A Gibbs field on the image x can be constructed as

p(x | γx, γb) = K−1
∫

exp
(
−γx

2
‖Dx− b‖2

)
∏
c∈C

exp
(γb

2
|bc|
)

db (10)

that is, an LMG for each clique dtcx associated with an
auxiliary variable bc. Initial work [22] states the necessity that
the number of clique equals the number of pixels. The op-
erator was circulant convolution with second order difference

(Laplacian), leading to a priori independent clique in image
and Fourier space

p(x) ∝
N∏
c=1

∫
R

exp
(
−γx|x̄c − bc|2

)
exp
(γb

2
|bc|
)

dbc (11)

where x̄ = Dx, and x̄c the c-element of x̄. However, this
model introduces crosslike artifacts around the edges [23].
Moreover, this limitation is not necessary and a field build with
more clique and auxiliary variables than pixels is possible, at
the price of no longer orthogonal cliques.

For image, we consider two group of cliques (horizontal and
vertical gradient for instance) Dh and Dv with conditional
mean bh ∈ RN and bv ∈ RN

p(x | b) ∝ exp
(
−γx

2
‖Dx− b‖2

)
(12)

= (2π)−
N
2 |Q|

1
2 exp

(
− (x− µ)tQ(x− µ)

2

)
(13)

with Dt = [Dt
h,D

t
v], bt = [bth, b

t
v], Q = γx(Dt

hDh +
Dt

vDv) and µ = Q−1Dtb, if Q is not singular. Contrary
to [22], the distribution on x is not a product of independent
distributions on each clique, or two a priori law on each
clique group [23]. The prior mean µ is therefore a mix of
the auxiliary variables. Eq. (13) is sufficient statistics form but
Eq. (12) is more natural where each clique have an unknown
mean and, consequently, each clique has a LMG. The full
marginal a priori law for the image writes

p(x) =

∫
p(x | b)

2N∏
c=1

p(bc) db, (14)

remains an LMG and, by choosing a Laplace distribution for
bc, the partition function is expressed wrt. hyper-parameters
as

K(γx, γb) ∝ γ
−N

2
x γ−2Nb . (15)

Finally, the existence condition is not that the number of
clique equals the number of pixels but that Q is not singular.
Since the gradient operator leads to singular Q and improper
prior with a null eigen-value for the mean level, we refer to
papers [22] and [21] and the change to K(γx, .) ∝ γ−(N−1)/2x .

B. Posterior Law and Estimators

A full joint a posteriori law of the unknown can now be
expressed, with the horizontal and vertical gradient,

p(x, b, γx, γb | y; γn) ∝ p(y | x; γn)

p(x | b, γx) p(b | γb) p(γx) p(γb). (16)

The a priori laws is correlated Gaussian for x, Laplacian for
b and conjugate for γx and γb, that is the non-informative
Jeffrey’s distribution [26]. The a posteriori law writes

p(x, b, γx, γb | y; γn) ∝ γ−
(N−1)

2
x γ−2Nb exp

(
−γn

2
‖y −Hx‖2

)
exp
(
−γx

2
‖Dx− b‖2

)
exp
(
−γb

2
‖b‖1

)
. (17)

Several estimators are studied:



1) The Supervised Expectation a posteriori (SEAP)

xSEAP =

∫
x p(x | γx, γb,y) dx (18)

=

∫∫
x p(x, b | γx, γb,y) dx db. (19)

This estimator is the main reference for the proposed
unsupervised EAP estimator. It allows finding the best
hyper parameter values γ?x and γ?b given the true signal
x? and a measure. Then the image

x?
SEAP =

∫
x p(x | γ?x, γ?b ,y) dx (20)

is considered as a reference, being the best possible
reconstructed image given that model.

2) The supervised Maximum a posteriori (MAP)

xMAP = arg min
x

− ln(p(x | γx, γb,y)) (21)

= arg min
x

− ln

(∫
p(x, b | γx, γb,y) db

)
. (22)

Champagnat et. al. shown in [25] that this estimator
can be computed by an EM algorithm equivalent to the
efficient HQ Geman & Yang optimization scheme. The
MAP also allow to qualify and quantify the differences,
if any, with the SEAP, and can also be used to determine
best γ?x and γ?b .

3) The semi-unsupervised Expectation a posteriori (EAP)

xEAP =

∫
x p(x | y) dx (23)

=

∫∫
x p(x, b, γx, γb | y) dx dbdγx dγb. (24)

The EAP estimator is the objective and will be compared
to supervised reconstructions. The algorithm, presented
Sec. III-C, also provides the EAP γ̂x and γ̂b that can be
compared to γ?x and γ?b .

4) The unsupervised Expectation a posteriori with
quadratic prior, that is with prior model

p(x | γx) ∝ exp
(
−γx‖Dx‖2/2

)
. (25)

This estimator xQUAD is known to produce near optimal
hyper-parameter estimation when a quadratic penaliza-
tion is used [21].

C. MCMC Algorithm for EAP and SEAP

The computation of the EAP estimator is based on a Gibbs
sampler that successively simulate, after an initialization k =

0, b(0) = 0 and γ(0)x = γ
(0)
b = 1, the conditional a posteriori

laws as
1) x(k+1) ∼ p

(
x | b(k), γ(k)x ,y

)
,

2) b(k+1) ∼ p
(
b | x(k+1), γ

(k)
x , γ

(k)
b

)
,

3) γ
(k+1)
x ∼ p

(
γx | x(k+1), b(k+1)

)
,

4) γ
(k+1)
b ∼ p

(
γb | b(k+1)

)
,

5) k ← k + 1.

For the SEAP estimator, step 3 and 4 are not undertaken as
γx, γb are fixed, eventually to γ?x and γ?b .

The conditional a posteriori law of x is Gaussian. Since all
operators are circulant convolution, this law can be simulated
very efficiently with diagonal matrix in Fourier space

p
(
x̊ | b̊, γx,y

)
∝ exp

(
−γn

2
‖ẙ −ΛH x̊‖2

−γx
2
‖Λhx̊− b̊h‖2 −

γx
2
‖Λvx̊− b̊v‖2

)
. (26)

A sample is x(k+1) = F †x̊(k+1) where

x̊(k+1) = γnΣΛ†HFy + Σ
1
2Fε (27)

with Σ−1 = γn|ΛH |2+γx(|Λh|2+ |Λv|2), and ε ∼ N (0, I).
The conditional a posteriori law of auxiliary variables b is

more delicate but is a posteriori conditionally independent

p(b | x, γx, γb) ∝
2N∏
c=1

exp
(
−γx

2
|x̄c − bc|2 − γb|bc|

)
(28)

where x̄ = Dx. The choice of the LogErf allows fast
simulation by inversion of the cumulative density function
(icdf) as described in [22].

However, practical use of the icdf shows that numerical
error and floating point arithmetic overflow may arise, even
if small fraction of b is concerned. In that case we propose
a fallback on a random-walk Metropolis-Hastings (MH) step.
This fallback algorithm rarely occurs, is for independent scalar
variables, and is used only for the elements of b where the icdf
has failed. In practice, the MH appears not to be difficult to
tune, is efficient, and produce satisfactory results.

Lastly, the conditional a posteriori laws for hyper-
parameters are Gamma distribution

p(γx | x, b) ∝ γ
− (N−1)

2
x exp

(
−γx

(
‖Dx− b‖2

2

))
(29)

and

p(γb | b) ∝ γ−2Nb exp

(
−γb

(
2N∑
c=1

|bc|
2

))
. (30)

These scalar distribution are simulated with standard toolbox
available in Matlab or Numpy for instance.

The SEAP and EAP are approximated by the empirical mean
of K samples, after discarding samples of the burn-in period,

xEAP ≈
1

K

K∑
k=1

x(k), bEAP ≈
1

K

K∑
k=1

b(k). (31)

The pixel variance, diagonal of the posterior covariance, is
also approximated by

σ2
EAP = diag(Σx,EAP) ≈

1

K − 1

K∑
k=1

(
x(k) − xEAP

)2
. (32)



IV. RESULTS

The proposed method is tested on the “cameraman” image,
a N = 256×256 pixels image with strong discontinuities. The
observation operator has a squared impulsionnal response (IR)
of size 5 × 5 pixels. The convolution is done by filtering in
frequencies space as y = F †ΛHFx

?+n, where x? stands for
the true image. The tested noise inverse variance γn are 100,
1 and 0.1. The horizontal and vertical gradients are computed
via the frequency space xh = F †ΛhFx and xv = F †ΛvFx.

The MCMC algorithm produces 1000 samples [x, b, γx, γb],
with a burn-in period of 500 samples. These numbers are
chosen to have visually a sufficiently good exploration after the
burn-in period. The algorithm, implemented with Python and
Scipy has been run on a 1.9 GHz processor. The total time to
produce 1000 samples is around 80 seconds, with 0.08 seconds
per iteration. The majority of time (60%) is spent inside the
icdf simulation and special functions evaluation.

Fig. 1 shows the true image x? and the data y with γn = 1.
The best Supervised Expectation a posteriori xSEAP is illus-
trated in Fig. 1d, where the hyper-parameters γ?x, γ

?
b are deter-

mined by minimization of the `1 error ‖xSEAP(γx, γb)−x?‖1.
The minimization is done by exhaustive search to reach the
near optimal SEAP solution. The Fig. 1c shows our proposition
where hyper-parameters are automatically estimated from the
data without hand-tuning and without knowledge of the true
image, except the noise level.

For comparison, the unsupervised quadratic solution, xQUAD

Fig. 1e, has some noise residual, well visible inside flat region,
and Gibbs effect is present near the edges. These defects are
no more visible on the proposed solution xEAP, see Fig. 1c,
as for the other convex solutions. To assess the good results
of the semi-unsupervised EAP estimator, Fig. 1f shows the
best supervised convex x?

MAP estimator, known to provide good
results [24]. In that case, the hyper-parameters are also found
via the minimization of the `1 error ‖xMAP(γx, γb) − x?‖1.
Almost no differences is visible by eyes between supervised
x?

SEAP, x?
MAP and our unsupervised proposition xEAP.

Thanks to the MCMC algorithm, the EAP estimator also
provides the uncertainties for every quantities, notably the
image x illustrated Fig. 2a, where uncertainty is concentrated
near region of strong gradient. Fig 2b shows the Expectation
a posteriori of bv . The values are naturally around zero and
variables are clearly able to detect edge as awaited.

Chains of hyper-parameters are illustrated in Fig. 3. The γb
chains converge in short time and present a small dispersion in
regards to the γx chain. An explanation is the small variation
of the auxiliary variables during the iteration. On the contrary,
the γx chain presents a longer convergence time with more
intra-correlation. The chain still converges after approximately
200 iterations. A possible explanation is the greater sensibility
of prior adequacy wrt. the auxiliary variables changes but
further investigations are needed. Finally, tests with more and
less noise is also presented Fig. 4.

25
50
75
100
125
150
175
200
225

(a) True x?

25
50
75
100
125
150
175
200
225

(b) Data y

25
50
75
100
125
150
175
200
225

(c) Unsupervised xEAP

25
50
75
100
125
150
175
200
225

(d) Best x?
SEAP

25
50
75
100
125
150
175
200
225

(e) Unsupervised xQUAD

25
50
75
100
125
150
175
200
225

(f) Best x?
MAP

Fig. 1. Results with noise precision γn = 1. The true image x? and data
y are represented Fig. 1a and 1b. The Fig. 1d is the best SEAP solution and
Fig. 1c the proposed unsupervised restoration. For comparison Fig. 1e shows
the quadratic unsupervised solution and 1f the best supervised MAP.
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Fig. 2. Results with noise precision γn = 1. Fig. 2a shows the estimated
standard deviation of each pixel. Fig. 2b shows the estimated vertical auxiliary
variables. Both image are slightly saturated for display purpose.
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(b) γb chain with γ(0)b = 1

Fig. 3. Chains for noise precision γn = 1. Fig. 3a shows the chain for the
γx parameter and Fig. 3b shows the γb chain. Black dot is the initialization.
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(a) xQUAD with γn = 0.1
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Fig. 4. Results with different noise precision γn = 0.1 and 100. Quality
and absence of Gibbs effect on the camera arm is notable.

V. CONCLUSION

This paper presents an incremental contribution to the unsu-
pervised convex image restoration within a Bayesian approach
based on [22]. However, the proposed approach allows to
use several regularization operator for better image restoration
avoiding crosslike effect. In addition, we propose a fallback
algorithm based on a random walk Metropolis-Hastings step
to avoid the numerical instability of the original algorithm.
The noise level is supposed known and it’s estimation jointly
with the other is the main perspective.
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